blob: a162d18bfa5652ad48df9fbf8f4391b3764bfeca [file] [log] [blame]
/*
* Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2021 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_S390_VM_ASSEMBLER_S390_HPP
#define CPU_S390_VM_ASSEMBLER_S390_HPP
#undef LUCY_DBG
// Immediate is an abstraction to represent the various immediate
// operands which exist on z/Architecture. Neither this class nor
// instances hereof have an own state. It consists of methods only.
class Immediate {
public:
static bool is_simm(int64_t x, unsigned int nbits) {
// nbits < 2 --> false
// nbits >= 64 --> true
assert(2 <= nbits && nbits < 64, "Don't call, use statically known result.");
const int64_t min = -(1L << (nbits-1));
const int64_t maxplus1 = (1L << (nbits-1));
return min <= x && x < maxplus1;
}
static bool is_simm32(int64_t x) {
return is_simm(x, 32);
}
static bool is_simm20(int64_t x) {
return is_simm(x, 20);
}
static bool is_simm16(int64_t x) {
return is_simm(x, 16);
}
static bool is_simm8(int64_t x) {
return is_simm(x, 8);
}
// Test if x is within signed immediate range for nbits.
static bool is_uimm(int64_t x, unsigned int nbits) {
// nbits == 0 --> false
// nbits >= 64 --> true
assert(1 <= nbits && nbits < 64, "don't call, use statically known result");
const uint64_t xu = (unsigned long)x;
const uint64_t maxplus1 = 1UL << nbits;
return xu < maxplus1; // Unsigned comparison. Negative inputs appear to be very large.
}
static bool is_uimm32(int64_t x) {
return is_uimm(x, 32);
}
static bool is_uimm16(int64_t x) {
return is_uimm(x, 16);
}
static bool is_uimm12(int64_t x) {
return is_uimm(x, 12);
}
static bool is_uimm8(int64_t x) {
return is_uimm(x, 8);
}
};
// Displacement is an abstraction to represent the various
// displacements which exist with addresses on z/ArchiTecture.
// Neither this class nor instances hereof have an own state. It
// consists of methods only.
class Displacement {
public: // These tests are used outside the (Macro)Assembler world, e.g. in ad-file.
static bool is_longDisp(int64_t x) { // Fits in a 20-bit displacement field.
return Immediate::is_simm20(x);
}
static bool is_shortDisp(int64_t x) { // Fits in a 12-bit displacement field.
return Immediate::is_uimm12(x);
}
static bool is_validDisp(int64_t x) { // Is a valid displacement, regardless of length constraints.
return is_longDisp(x);
}
};
// RelAddr is an abstraction to represent relative addresses in the
// form they are used on z/Architecture for instructions which access
// their operand with pc-relative addresses. Neither this class nor
// instances hereof have an own state. It consists of methods only.
class RelAddr {
private: // No public use at all. Solely for (Macro)Assembler.
static bool is_in_range_of_RelAddr(address target, address pc, bool shortForm) {
// Guard against illegal branch targets, e.g. -1. Occurrences in
// CompiledStaticCall and ad-file. Do not assert (it's a test
// function!). Just return false in case of illegal operands.
if ((((uint64_t)target) & 0x0001L) != 0) return false;
if ((((uint64_t)pc) & 0x0001L) != 0) return false;
if (shortForm) {
return Immediate::is_simm((int64_t)(target-pc), 17); // Relative short addresses can reach +/- 2**16 bytes.
} else {
return Immediate::is_simm((int64_t)(target-pc), 33); // Relative long addresses can reach +/- 2**32 bytes.
}
}
static bool is_in_range_of_RelAddr16(address target, address pc) {
return is_in_range_of_RelAddr(target, pc, true);
}
static bool is_in_range_of_RelAddr16(ptrdiff_t distance) {
return is_in_range_of_RelAddr((address)distance, 0, true);
}
static bool is_in_range_of_RelAddr32(address target, address pc) {
return is_in_range_of_RelAddr(target, pc, false);
}
static bool is_in_range_of_RelAddr32(ptrdiff_t distance) {
return is_in_range_of_RelAddr((address)distance, 0, false);
}
static int pcrel_off(address target, address pc, bool shortForm) {
assert(((uint64_t)target & 0x0001L) == 0, "target of a relative address must be aligned");
assert(((uint64_t)pc & 0x0001L) == 0, "origin of a relative address must be aligned");
if ((target == NULL) || (target == pc)) {
return 0; // Yet unknown branch destination.
} else {
guarantee(is_in_range_of_RelAddr(target, pc, shortForm), "target not within reach");
return (int)((target - pc)>>1);
}
}
static int pcrel_off16(address target, address pc) {
return pcrel_off(target, pc, true);
}
static int pcrel_off16(ptrdiff_t distance) {
return pcrel_off((address)distance, 0, true);
}
static int pcrel_off32(address target, address pc) {
return pcrel_off(target, pc, false);
}
static int pcrel_off32(ptrdiff_t distance) {
return pcrel_off((address)distance, 0, false);
}
static ptrdiff_t inv_pcrel_off16(int offset) {
return ((ptrdiff_t)offset)<<1;
}
static ptrdiff_t inv_pcrel_off32(int offset) {
return ((ptrdiff_t)offset)<<1;
}
friend class Assembler;
friend class MacroAssembler;
friend class NativeGeneralJump;
};
// Address is an abstraction used to represent a memory location
// as passed to Z assembler instructions.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class Address {
private:
Register _base; // Base register.
Register _index; // Index register
intptr_t _disp; // Constant displacement.
public:
Address() :
_base(noreg),
_index(noreg),
_disp(0) {}
Address(Register base, Register index, intptr_t disp = 0) :
_base(base),
_index(index),
_disp(disp) {}
Address(Register base, intptr_t disp = 0) :
_base(base),
_index(noreg),
_disp(disp) {}
Address(Register base, RegisterOrConstant roc, intptr_t disp = 0) :
_base(base),
_index(noreg),
_disp(disp) {
if (roc.is_constant()) _disp += roc.as_constant(); else _index = roc.as_register();
}
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
Address(Register base, ByteSize disp) :
_base(base),
_index(noreg),
_disp(in_bytes(disp)) {}
Address(Register base, Register index, ByteSize disp) :
_base(base),
_index(index),
_disp(in_bytes(disp)) {}
#endif
// Aborts if disp is a register and base and index are set already.
Address plus_disp(RegisterOrConstant disp) const {
Address a = (*this);
a._disp += disp.constant_or_zero();
if (disp.is_register()) {
if (a._index == noreg) {
a._index = disp.as_register();
} else {
guarantee(_base == noreg, "can not encode"); a._base = disp.as_register();
}
}
return a;
}
// A call to this is generated by adlc for replacement variable $xxx$$Address.
static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
bool is_same_address(Address a) const {
return _base == a._base && _index == a._index && _disp == a._disp;
}
// testers
bool has_base() const { return _base != noreg; }
bool has_index() const { return _index != noreg; }
bool has_disp() const { return true; } // There is no "invalid" value.
bool is_disp12() const { return Immediate::is_uimm12(disp()); }
bool is_disp20() const { return Immediate::is_simm20(disp()); }
bool is_RSform() { return has_base() && !has_index() && is_disp12(); }
bool is_RSYform() { return has_base() && !has_index() && is_disp20(); }
bool is_RXform() { return has_base() && has_index() && is_disp12(); }
bool is_RXYform() { return has_base() && has_index() && is_disp20(); }
bool uses(Register r) { return _base == r || _index == r; };
// accessors
Register base() const { return _base; }
Register baseOrR0() const { assert(_base != Z_R0, ""); return _base == noreg ? Z_R0 : _base; }
Register index() const { return _index; }
Register indexOrR0() const { assert(_index != Z_R0, ""); return _index == noreg ? Z_R0 : _index; }
intptr_t disp() const { return _disp; }
// Specific version for short displacement instructions.
int disp12() const {
assert(is_disp12(), "displacement out of range for uimm12");
return _disp;
}
// Specific version for long displacement instructions.
int disp20() const {
assert(is_disp20(), "displacement out of range for simm20");
return _disp;
}
intptr_t value() const { return _disp; }
friend class Assembler;
};
class AddressLiteral {
private:
address _address;
RelocationHolder _rspec;
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
switch (rtype) {
case relocInfo::external_word_type:
return external_word_Relocation::spec(addr);
case relocInfo::internal_word_type:
return internal_word_Relocation::spec(addr);
case relocInfo::opt_virtual_call_type:
return opt_virtual_call_Relocation::spec();
case relocInfo::static_call_type:
return static_call_Relocation::spec();
case relocInfo::runtime_call_w_cp_type:
return runtime_call_w_cp_Relocation::spec();
case relocInfo::none:
return RelocationHolder();
default:
ShouldNotReachHere();
return RelocationHolder();
}
}
protected:
// creation
AddressLiteral() : _address(NULL), _rspec(NULL) {}
public:
AddressLiteral(address addr, RelocationHolder const& rspec)
: _address(addr),
_rspec(rspec) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(jobject obj, RelocationHolder const& rspec)
: _address((address) obj),
_rspec(rspec) {}
AddressLiteral(intptr_t value, RelocationHolder const& rspec)
: _address((address) value),
_rspec(rspec) {}
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
intptr_t value() const { return (intptr_t) _address; }
const relocInfo::relocType rtype() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
RelocationHolder rspec(int offset) const {
return offset == 0 ? _rspec : _rspec.plus(offset);
}
};
// Convenience classes
class ExternalAddress: public AddressLiteral {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// External_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
ExternalAddress(oop* target) : AddressLiteral(target, reloc_for_target((address) target)) {}
};
// Argument is an abstraction used to represent an outgoing actual
// argument or an incoming formal parameter, whether it resides in
// memory or in a register, in a manner consistent with the
// z/Architecture Application Binary Interface, or ABI. This is often
// referred to as the native or C calling convention.
class Argument {
private:
int _number;
bool _is_in;
public:
enum {
// Only 5 registers may contain integer parameters.
n_register_parameters = 5,
// Can have up to 4 floating registers.
n_float_register_parameters = 4
};
// creation
Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
Argument(int number) : _number(number) {}
int number() const { return _number; }
Argument successor() const { return Argument(number() + 1); }
// Locating register-based arguments:
bool is_register() const { return _number < n_register_parameters; }
// Locating Floating Point register-based arguments:
bool is_float_register() const { return _number < n_float_register_parameters; }
FloatRegister as_float_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister((number() *2) + 1);
}
FloatRegister as_double_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister((number() *2));
}
Register as_register() const {
assert(is_register(), "must be a register argument");
return as_Register(number() + Z_ARG1->encoding());
}
// debugging
const char* name() const;
friend class Assembler;
};
// The z/Architecture Assembler: Pure assembler doing NO optimizations
// on the instruction level; i.e., what you write is what you get. The
// Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
protected:
friend class AbstractAssembler;
friend class AddressLiteral;
// Code patchers need various routines like inv_wdisp().
friend class NativeInstruction;
#ifndef COMPILER2
friend class NativeGeneralJump;
#endif
friend class Relocation;
public:
// Addressing
// address calculation
#define LA_ZOPC (unsigned int)(0x41 << 24)
#define LAY_ZOPC (unsigned long)(0xe3L << 40 | 0x71L)
#define LARL_ZOPC (unsigned long)(0xc0L << 40 | 0x00L << 32)
// Data Transfer
// register to register transfer
#define LR_ZOPC (unsigned int)(24 << 8)
#define LBR_ZOPC (unsigned int)(0xb926 << 16)
#define LHR_ZOPC (unsigned int)(0xb927 << 16)
#define LGBR_ZOPC (unsigned int)(0xb906 << 16)
#define LGHR_ZOPC (unsigned int)(0xb907 << 16)
#define LGFR_ZOPC (unsigned int)(0xb914 << 16)
#define LGR_ZOPC (unsigned int)(0xb904 << 16)
#define LLHR_ZOPC (unsigned int)(0xb995 << 16)
#define LLGCR_ZOPC (unsigned int)(0xb984 << 16)
#define LLGHR_ZOPC (unsigned int)(0xb985 << 16)
#define LLGTR_ZOPC (unsigned int)(185 << 24 | 23 << 16)
#define LLGFR_ZOPC (unsigned int)(185 << 24 | 22 << 16)
#define LTR_ZOPC (unsigned int)(18 << 8)
#define LTGFR_ZOPC (unsigned int)(185 << 24 | 18 << 16)
#define LTGR_ZOPC (unsigned int)(185 << 24 | 2 << 16)
#define LER_ZOPC (unsigned int)(56 << 8)
#define LEDBR_ZOPC (unsigned int)(179 << 24 | 68 << 16)
#define LEXBR_ZOPC (unsigned int)(179 << 24 | 70 << 16)
#define LDEBR_ZOPC (unsigned int)(179 << 24 | 4 << 16)
#define LDR_ZOPC (unsigned int)(40 << 8)
#define LDXBR_ZOPC (unsigned int)(179 << 24 | 69 << 16)
#define LXEBR_ZOPC (unsigned int)(179 << 24 | 6 << 16)
#define LXDBR_ZOPC (unsigned int)(179 << 24 | 5 << 16)
#define LXR_ZOPC (unsigned int)(179 << 24 | 101 << 16)
#define LTEBR_ZOPC (unsigned int)(179 << 24 | 2 << 16)
#define LTDBR_ZOPC (unsigned int)(179 << 24 | 18 << 16)
#define LTXBR_ZOPC (unsigned int)(179 << 24 | 66 << 16)
#define LRVR_ZOPC (unsigned int)(0xb91f << 16)
#define LRVGR_ZOPC (unsigned int)(0xb90f << 16)
#define LDGR_ZOPC (unsigned int)(0xb3c1 << 16) // z10
#define LGDR_ZOPC (unsigned int)(0xb3cd << 16) // z10
#define LOCR_ZOPC (unsigned int)(0xb9f2 << 16) // z196
#define LOCGR_ZOPC (unsigned int)(0xb9e2 << 16) // z196
// immediate to register transfer
#define IIHH_ZOPC (unsigned int)(165 << 24)
#define IIHL_ZOPC (unsigned int)(165 << 24 | 1 << 16)
#define IILH_ZOPC (unsigned int)(165 << 24 | 2 << 16)
#define IILL_ZOPC (unsigned int)(165 << 24 | 3 << 16)
#define IIHF_ZOPC (unsigned long)(0xc0L << 40 | 8L << 32)
#define IILF_ZOPC (unsigned long)(0xc0L << 40 | 9L << 32)
#define LLIHH_ZOPC (unsigned int)(165 << 24 | 12 << 16)
#define LLIHL_ZOPC (unsigned int)(165 << 24 | 13 << 16)
#define LLILH_ZOPC (unsigned int)(165 << 24 | 14 << 16)
#define LLILL_ZOPC (unsigned int)(165 << 24 | 15 << 16)
#define LLIHF_ZOPC (unsigned long)(0xc0L << 40 | 14L << 32)
#define LLILF_ZOPC (unsigned long)(0xc0L << 40 | 15L << 32)
#define LHI_ZOPC (unsigned int)(167 << 24 | 8 << 16)
#define LGHI_ZOPC (unsigned int)(167 << 24 | 9 << 16)
#define LGFI_ZOPC (unsigned long)(0xc0L << 40 | 1L << 32)
#define LZER_ZOPC (unsigned int)(0xb374 << 16)
#define LZDR_ZOPC (unsigned int)(0xb375 << 16)
// LOAD: memory to register transfer
#define LB_ZOPC (unsigned long)(227L << 40 | 118L)
#define LH_ZOPC (unsigned int)(72 << 24)
#define LHY_ZOPC (unsigned long)(227L << 40 | 120L)
#define L_ZOPC (unsigned int)(88 << 24)
#define LY_ZOPC (unsigned long)(227L << 40 | 88L)
#define LT_ZOPC (unsigned long)(0xe3L << 40 | 0x12L)
#define LGB_ZOPC (unsigned long)(227L << 40 | 119L)
#define LGH_ZOPC (unsigned long)(227L << 40 | 21L)
#define LGF_ZOPC (unsigned long)(227L << 40 | 20L)
#define LG_ZOPC (unsigned long)(227L << 40 | 4L)
#define LTG_ZOPC (unsigned long)(0xe3L << 40 | 0x02L)
#define LTGF_ZOPC (unsigned long)(0xe3L << 40 | 0x32L)
#define LLC_ZOPC (unsigned long)(0xe3L << 40 | 0x94L)
#define LLH_ZOPC (unsigned long)(0xe3L << 40 | 0x95L)
#define LLGT_ZOPC (unsigned long)(227L << 40 | 23L)
#define LLGC_ZOPC (unsigned long)(227L << 40 | 144L)
#define LLGH_ZOPC (unsigned long)(227L << 40 | 145L)
#define LLGF_ZOPC (unsigned long)(227L << 40 | 22L)
#define IC_ZOPC (unsigned int)(0x43 << 24)
#define ICY_ZOPC (unsigned long)(0xe3L << 40 | 0x73L)
#define ICM_ZOPC (unsigned int)(0xbf << 24)
#define ICMY_ZOPC (unsigned long)(0xebL << 40 | 0x81L)
#define ICMH_ZOPC (unsigned long)(0xebL << 40 | 0x80L)
#define LRVH_ZOPC (unsigned long)(0xe3L << 40 | 0x1fL)
#define LRV_ZOPC (unsigned long)(0xe3L << 40 | 0x1eL)
#define LRVG_ZOPC (unsigned long)(0xe3L << 40 | 0x0fL)
// LOAD relative: memory to register transfer
#define LHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x05L << 32) // z10
#define LRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0dL << 32) // z10
#define LGHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x04L << 32) // z10
#define LGFRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0cL << 32) // z10
#define LGRL_ZOPC (unsigned long)(0xc4L << 40 | 0x08L << 32) // z10
#define LLHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x02L << 32) // z10
#define LLGHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x06L << 32) // z10
#define LLGFRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0eL << 32) // z10
#define LOC_ZOPC (unsigned long)(0xebL << 40 | 0xf2L) // z196
#define LOCG_ZOPC (unsigned long)(0xebL << 40 | 0xe2L) // z196
// LOAD multiple registers at once
#define LM_ZOPC (unsigned int)(0x98 << 24)
#define LMY_ZOPC (unsigned long)(0xebL << 40 | 0x98L)
#define LMG_ZOPC (unsigned long)(0xebL << 40 | 0x04L)
#define LE_ZOPC (unsigned int)(0x78 << 24)
#define LEY_ZOPC (unsigned long)(237L << 40 | 100L)
#define LDEB_ZOPC (unsigned long)(237L << 40 | 4)
#define LD_ZOPC (unsigned int)(0x68 << 24)
#define LDY_ZOPC (unsigned long)(237L << 40 | 101L)
#define LXEB_ZOPC (unsigned long)(237L << 40 | 6)
#define LXDB_ZOPC (unsigned long)(237L << 40 | 5)
// STORE: register to memory transfer
#define STC_ZOPC (unsigned int)(0x42 << 24)
#define STCY_ZOPC (unsigned long)(227L << 40 | 114L)
#define STH_ZOPC (unsigned int)(64 << 24)
#define STHY_ZOPC (unsigned long)(227L << 40 | 112L)
#define ST_ZOPC (unsigned int)(80 << 24)
#define STY_ZOPC (unsigned long)(227L << 40 | 80L)
#define STG_ZOPC (unsigned long)(227L << 40 | 36L)
#define STCM_ZOPC (unsigned long)(0xbeL << 24)
#define STCMY_ZOPC (unsigned long)(0xebL << 40 | 0x2dL)
#define STCMH_ZOPC (unsigned long)(0xebL << 40 | 0x2cL)
// STORE relative: memory to register transfer
#define STHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x07L << 32) // z10
#define STRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0fL << 32) // z10
#define STGRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0bL << 32) // z10
#define STOC_ZOPC (unsigned long)(0xebL << 40 | 0xf3L) // z196
#define STOCG_ZOPC (unsigned long)(0xebL << 40 | 0xe3L) // z196
// STORE multiple registers at once
#define STM_ZOPC (unsigned int)(0x90 << 24)
#define STMY_ZOPC (unsigned long)(0xebL << 40 | 0x90L)
#define STMG_ZOPC (unsigned long)(0xebL << 40 | 0x24L)
#define STE_ZOPC (unsigned int)(0x70 << 24)
#define STEY_ZOPC (unsigned long)(237L << 40 | 102L)
#define STD_ZOPC (unsigned int)(0x60 << 24)
#define STDY_ZOPC (unsigned long)(237L << 40 | 103L)
// MOVE: immediate to memory transfer
#define MVHHI_ZOPC (unsigned long)(0xe5L << 40 | 0x44L << 32) // z10
#define MVHI_ZOPC (unsigned long)(0xe5L << 40 | 0x4cL << 32) // z10
#define MVGHI_ZOPC (unsigned long)(0xe5L << 40 | 0x48L << 32) // z10
// ALU operations
// Load Positive
#define LPR_ZOPC (unsigned int)(16 << 8)
#define LPGFR_ZOPC (unsigned int)(185 << 24 | 16 << 16)
#define LPGR_ZOPC (unsigned int)(185 << 24)
#define LPEBR_ZOPC (unsigned int)(179 << 24)
#define LPDBR_ZOPC (unsigned int)(179 << 24 | 16 << 16)
#define LPXBR_ZOPC (unsigned int)(179 << 24 | 64 << 16)
// Load Negative
#define LNR_ZOPC (unsigned int)(17 << 8)
#define LNGFR_ZOPC (unsigned int)(185 << 24 | 17 << 16)
#define LNGR_ZOPC (unsigned int)(185 << 24 | 1 << 16)
#define LNEBR_ZOPC (unsigned int)(179 << 24 | 1 << 16)
#define LNDBR_ZOPC (unsigned int)(179 << 24 | 17 << 16)
#define LNXBR_ZOPC (unsigned int)(179 << 24 | 65 << 16)
// Load Complement
#define LCR_ZOPC (unsigned int)(19 << 8)
#define LCGFR_ZOPC (unsigned int)(185 << 24 | 19 << 16)
#define LCGR_ZOPC (unsigned int)(185 << 24 | 3 << 16)
#define LCEBR_ZOPC (unsigned int)(179 << 24 | 3 << 16)
#define LCDBR_ZOPC (unsigned int)(179 << 24 | 19 << 16)
#define LCXBR_ZOPC (unsigned int)(179 << 24 | 67 << 16)
// Add
// RR, signed
#define AR_ZOPC (unsigned int)(26 << 8)
#define AGFR_ZOPC (unsigned int)(0xb9 << 24 | 0x18 << 16)
#define AGR_ZOPC (unsigned int)(0xb9 << 24 | 0x08 << 16)
// RRF, signed
#define ARK_ZOPC (unsigned int)(0xb9 << 24 | 0x00f8 << 16)
#define AGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00e8 << 16)
// RI, signed
#define AHI_ZOPC (unsigned int)(167 << 24 | 10 << 16)
#define AFI_ZOPC (unsigned long)(0xc2L << 40 | 9L << 32)
#define AGHI_ZOPC (unsigned int)(167 << 24 | 11 << 16)
#define AGFI_ZOPC (unsigned long)(0xc2L << 40 | 8L << 32)
// RIE, signed
#define AHIK_ZOPC (unsigned long)(0xecL << 40 | 0x00d8L)
#define AGHIK_ZOPC (unsigned long)(0xecL << 40 | 0x00d9L)
#define AIH_ZOPC (unsigned long)(0xccL << 40 | 0x08L << 32)
// RM, signed
#define AHY_ZOPC (unsigned long)(227L << 40 | 122L)
#define A_ZOPC (unsigned int)(90 << 24)
#define AY_ZOPC (unsigned long)(227L << 40 | 90L)
#define AGF_ZOPC (unsigned long)(227L << 40 | 24L)
#define AG_ZOPC (unsigned long)(227L << 40 | 8L)
// In-memory arithmetic (add signed, add logical with signed immediate).
// MI, signed
#define ASI_ZOPC (unsigned long)(0xebL << 40 | 0x6aL)
#define AGSI_ZOPC (unsigned long)(0xebL << 40 | 0x7aL)
// RR, Logical
#define ALR_ZOPC (unsigned int)(30 << 8)
#define ALGFR_ZOPC (unsigned int)(185 << 24 | 26 << 16)
#define ALGR_ZOPC (unsigned int)(185 << 24 | 10 << 16)
#define ALCGR_ZOPC (unsigned int)(185 << 24 | 136 << 16)
// RRF, Logical
#define ALRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00fa << 16)
#define ALGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00ea << 16)
// RI, Logical
#define ALFI_ZOPC (unsigned long)(0xc2L << 40 | 0x0bL << 32)
#define ALGFI_ZOPC (unsigned long)(0xc2L << 40 | 0x0aL << 32)
// RIE, Logical
#define ALHSIK_ZOPC (unsigned long)(0xecL << 40 | 0x00daL)
#define ALGHSIK_ZOPC (unsigned long)(0xecL << 40 | 0x00dbL)
// RM, Logical
#define AL_ZOPC (unsigned int)(0x5e << 24)
#define ALY_ZOPC (unsigned long)(227L << 40 | 94L)
#define ALGF_ZOPC (unsigned long)(227L << 40 | 26L)
#define ALG_ZOPC (unsigned long)(227L << 40 | 10L)
// In-memory arithmetic (add signed, add logical with signed immediate).
// MI, Logical
#define ALSI_ZOPC (unsigned long)(0xebL << 40 | 0x6eL)
#define ALGSI_ZOPC (unsigned long)(0xebL << 40 | 0x7eL)
// RR, BFP
#define AEBR_ZOPC (unsigned int)(179 << 24 | 10 << 16)
#define ADBR_ZOPC (unsigned int)(179 << 24 | 26 << 16)
#define AXBR_ZOPC (unsigned int)(179 << 24 | 74 << 16)
// RM, BFP
#define AEB_ZOPC (unsigned long)(237L << 40 | 10)
#define ADB_ZOPC (unsigned long)(237L << 40 | 26)
// Subtract
// RR, signed
#define SR_ZOPC (unsigned int)(27 << 8)
#define SGFR_ZOPC (unsigned int)(185 << 24 | 25 << 16)
#define SGR_ZOPC (unsigned int)(185 << 24 | 9 << 16)
// RRF, signed
#define SRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00f9 << 16)
#define SGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00e9 << 16)
// RM, signed
#define SH_ZOPC (unsigned int)(0x4b << 24)
#define SHY_ZOPC (unsigned long)(227L << 40 | 123L)
#define S_ZOPC (unsigned int)(0x5B << 24)
#define SY_ZOPC (unsigned long)(227L << 40 | 91L)
#define SGF_ZOPC (unsigned long)(227L << 40 | 25)
#define SG_ZOPC (unsigned long)(227L << 40 | 9)
// RR, Logical
#define SLR_ZOPC (unsigned int)(31 << 8)
#define SLGFR_ZOPC (unsigned int)(185 << 24 | 27 << 16)
#define SLGR_ZOPC (unsigned int)(185 << 24 | 11 << 16)
// RIL, Logical
#define SLFI_ZOPC (unsigned long)(0xc2L << 40 | 0x05L << 32)
#define SLGFI_ZOPC (unsigned long)(0xc2L << 40 | 0x04L << 32)
// RRF, Logical
#define SLRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00fb << 16)
#define SLGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00eb << 16)
// RM, Logical
#define SLY_ZOPC (unsigned long)(227L << 40 | 95L)
#define SLGF_ZOPC (unsigned long)(227L << 40 | 27L)
#define SLG_ZOPC (unsigned long)(227L << 40 | 11L)
// RR, BFP
#define SEBR_ZOPC (unsigned int)(179 << 24 | 11 << 16)
#define SDBR_ZOPC (unsigned int)(179 << 24 | 27 << 16)
#define SXBR_ZOPC (unsigned int)(179 << 24 | 75 << 16)
// RM, BFP
#define SEB_ZOPC (unsigned long)(237L << 40 | 11)
#define SDB_ZOPC (unsigned long)(237L << 40 | 27)
// Multiply
// RR, signed
#define MR_ZOPC (unsigned int)(28 << 8)
#define MSR_ZOPC (unsigned int)(178 << 24 | 82 << 16)
#define MSGFR_ZOPC (unsigned int)(185 << 24 | 28 << 16)
#define MSGR_ZOPC (unsigned int)(185 << 24 | 12 << 16)
// RI, signed
#define MHI_ZOPC (unsigned int)(167 << 24 | 12 << 16)
#define MGHI_ZOPC (unsigned int)(167 << 24 | 13 << 16)
#define MSFI_ZOPC (unsigned long)(0xc2L << 40 | 0x01L << 32) // z10
#define MSGFI_ZOPC (unsigned long)(0xc2L << 40 | 0x00L << 32) // z10
// RM, signed
#define M_ZOPC (unsigned int)(92 << 24)
#define MS_ZOPC (unsigned int)(0x71 << 24)
#define MHY_ZOPC (unsigned long)(0xe3L<< 40 | 0x7cL)
#define MSY_ZOPC (unsigned long)(227L << 40 | 81L)
#define MSGF_ZOPC (unsigned long)(227L << 40 | 28L)
#define MSG_ZOPC (unsigned long)(227L << 40 | 12L)
// RR, unsigned
#define MLR_ZOPC (unsigned int)(185 << 24 | 150 << 16)
#define MLGR_ZOPC (unsigned int)(185 << 24 | 134 << 16)
// RM, unsigned
#define ML_ZOPC (unsigned long)(227L << 40 | 150L)
#define MLG_ZOPC (unsigned long)(227L << 40 | 134L)
// RR, BFP
#define MEEBR_ZOPC (unsigned int)(179 << 24 | 23 << 16)
#define MDEBR_ZOPC (unsigned int)(179 << 24 | 12 << 16)
#define MDBR_ZOPC (unsigned int)(179 << 24 | 28 << 16)
#define MXDBR_ZOPC (unsigned int)(179 << 24 | 7 << 16)
#define MXBR_ZOPC (unsigned int)(179 << 24 | 76 << 16)
// RM, BFP
#define MEEB_ZOPC (unsigned long)(237L << 40 | 23)
#define MDEB_ZOPC (unsigned long)(237L << 40 | 12)
#define MDB_ZOPC (unsigned long)(237L << 40 | 28)
#define MXDB_ZOPC (unsigned long)(237L << 40 | 7)
// Multiply-Add
#define MAEBR_ZOPC (unsigned int)(179 << 24 | 14 << 16)
#define MADBR_ZOPC (unsigned int)(179 << 24 | 30 << 16)
#define MSEBR_ZOPC (unsigned int)(179 << 24 | 15 << 16)
#define MSDBR_ZOPC (unsigned int)(179 << 24 | 31 << 16)
#define MAEB_ZOPC (unsigned long)(237L << 40 | 14)
#define MADB_ZOPC (unsigned long)(237L << 40 | 30)
#define MSEB_ZOPC (unsigned long)(237L << 40 | 15)
#define MSDB_ZOPC (unsigned long)(237L << 40 | 31)
// Divide
// RR, signed
#define DSGFR_ZOPC (unsigned int)(0xb91d << 16)
#define DSGR_ZOPC (unsigned int)(0xb90d << 16)
// RM, signed
#define D_ZOPC (unsigned int)(93 << 24)
#define DSGF_ZOPC (unsigned long)(227L << 40 | 29L)
#define DSG_ZOPC (unsigned long)(227L << 40 | 13L)
// RR, unsigned
#define DLR_ZOPC (unsigned int)(185 << 24 | 151 << 16)
#define DLGR_ZOPC (unsigned int)(185 << 24 | 135 << 16)
// RM, unsigned
#define DL_ZOPC (unsigned long)(227L << 40 | 151L)
#define DLG_ZOPC (unsigned long)(227L << 40 | 135L)
// RR, BFP
#define DEBR_ZOPC (unsigned int)(179 << 24 | 13 << 16)
#define DDBR_ZOPC (unsigned int)(179 << 24 | 29 << 16)
#define DXBR_ZOPC (unsigned int)(179 << 24 | 77 << 16)
// RM, BFP
#define DEB_ZOPC (unsigned long)(237L << 40 | 13)
#define DDB_ZOPC (unsigned long)(237L << 40 | 29)
// Square Root
// RR, BFP
#define SQEBR_ZOPC (unsigned int)(0xb314 << 16)
#define SQDBR_ZOPC (unsigned int)(0xb315 << 16)
#define SQXBR_ZOPC (unsigned int)(0xb316 << 16)
// RM, BFP
#define SQEB_ZOPC (unsigned long)(237L << 40 | 20)
#define SQDB_ZOPC (unsigned long)(237L << 40 | 21)
// Compare and Test
// RR, signed
#define CR_ZOPC (unsigned int)(25 << 8)
#define CGFR_ZOPC (unsigned int)(185 << 24 | 48 << 16)
#define CGR_ZOPC (unsigned int)(185 << 24 | 32 << 16)
// RI, signed
#define CHI_ZOPC (unsigned int)(167 << 24 | 14 << 16)
#define CFI_ZOPC (unsigned long)(0xc2L << 40 | 0xdL << 32)
#define CGHI_ZOPC (unsigned int)(167 << 24 | 15 << 16)
#define CGFI_ZOPC (unsigned long)(0xc2L << 40 | 0xcL << 32)
// RM, signed
#define CH_ZOPC (unsigned int)(0x49 << 24)
#define CHY_ZOPC (unsigned long)(227L << 40 | 121L)
#define C_ZOPC (unsigned int)(0x59 << 24)
#define CY_ZOPC (unsigned long)(227L << 40 | 89L)
#define CGF_ZOPC (unsigned long)(227L << 40 | 48L)
#define CG_ZOPC (unsigned long)(227L << 40 | 32L)
// RR, unsigned
#define CLR_ZOPC (unsigned int)(21 << 8)
#define CLGFR_ZOPC (unsigned int)(185 << 24 | 49 << 16)
#define CLGR_ZOPC (unsigned int)(185 << 24 | 33 << 16)
// RIL, unsigned
#define CLFI_ZOPC (unsigned long)(0xc2L << 40 | 0xfL << 32)
#define CLGFI_ZOPC (unsigned long)(0xc2L << 40 | 0xeL << 32)
// RM, unsigned
#define CL_ZOPC (unsigned int)(0x55 << 24)
#define CLY_ZOPC (unsigned long)(227L << 40 | 85L)
#define CLGF_ZOPC (unsigned long)(227L << 40 | 49L)
#define CLG_ZOPC (unsigned long)(227L << 40 | 33L)
// RI, unsigned
#define TMHH_ZOPC (unsigned int)(167 << 24 | 2 << 16)
#define TMHL_ZOPC (unsigned int)(167 << 24 | 3 << 16)
#define TMLH_ZOPC (unsigned int)(167 << 24)
#define TMLL_ZOPC (unsigned int)(167 << 24 | 1 << 16)
// RR, BFP
#define CEBR_ZOPC (unsigned int)(179 << 24 | 9 << 16)
#define CDBR_ZOPC (unsigned int)(179 << 24 | 25 << 16)
#define CXBR_ZOPC (unsigned int)(179 << 24 | 73 << 16)
// RM, BFP
#define CEB_ZOPC (unsigned long)(237L << 40 | 9)
#define CDB_ZOPC (unsigned long)(237L << 40 | 25)
// Shift
// arithmetic
#define SLA_ZOPC (unsigned int)(0x8b << 24)
#define SLAK_ZOPC (unsigned long)(0xebL << 40 | 0xddL)
#define SLAG_ZOPC (unsigned long)(0xebL << 40 | 0x0bL)
#define SRA_ZOPC (unsigned int)(0x8a << 24)
#define SRAK_ZOPC (unsigned long)(0xebL << 40 | 0xdcL)
#define SRAG_ZOPC (unsigned long)(0xebL << 40 | 0x0aL)
// logical
#define SLL_ZOPC (unsigned int)(0x89 << 24)
#define SLLK_ZOPC (unsigned long)(0xebL << 40 | 0xdfL)
#define SLLG_ZOPC (unsigned long)(0xebL << 40 | 0x0dL)
#define SRL_ZOPC (unsigned int)(0x88 << 24)
#define SRLK_ZOPC (unsigned long)(0xebL << 40 | 0xdeL)
#define SRLG_ZOPC (unsigned long)(0xebL << 40 | 0x0cL)
// Rotate, then AND/XOR/OR/insert
// rotate
#define RLL_ZOPC (unsigned long)(0xebL << 40 | 0x1dL) // z10
#define RLLG_ZOPC (unsigned long)(0xebL << 40 | 0x1cL) // z10
// rotate and {AND|XOR|OR|INS}
#define RNSBG_ZOPC (unsigned long)(0xecL << 40 | 0x54L) // z196
#define RXSBG_ZOPC (unsigned long)(0xecL << 40 | 0x57L) // z196
#define ROSBG_ZOPC (unsigned long)(0xecL << 40 | 0x56L) // z196
#define RISBG_ZOPC (unsigned long)(0xecL << 40 | 0x55L) // z196
// AND
// RR, signed
#define NR_ZOPC (unsigned int)(20 << 8)
#define NGR_ZOPC (unsigned int)(185 << 24 | 128 << 16)
// RRF, signed
#define NRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00f4 << 16)
#define NGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00e4 << 16)
// RI, signed
#define NIHH_ZOPC (unsigned int)(165 << 24 | 4 << 16)
#define NIHL_ZOPC (unsigned int)(165 << 24 | 5 << 16)
#define NILH_ZOPC (unsigned int)(165 << 24 | 6 << 16)
#define NILL_ZOPC (unsigned int)(165 << 24 | 7 << 16)
#define NIHF_ZOPC (unsigned long)(0xc0L << 40 | 10L << 32)
#define NILF_ZOPC (unsigned long)(0xc0L << 40 | 11L << 32)
// RM, signed
#define N_ZOPC (unsigned int)(0x54 << 24)
#define NY_ZOPC (unsigned long)(227L << 40 | 84L)
#define NG_ZOPC (unsigned long)(227L << 40 | 128L)
// OR
// RR, signed
#define OR_ZOPC (unsigned int)(22 << 8)
#define OGR_ZOPC (unsigned int)(185 << 24 | 129 << 16)
// RRF, signed
#define ORK_ZOPC (unsigned int)(0xb9 << 24 | 0x00f6 << 16)
#define OGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00e6 << 16)
// RI, signed
#define OIHH_ZOPC (unsigned int)(165 << 24 | 8 << 16)
#define OIHL_ZOPC (unsigned int)(165 << 24 | 9 << 16)
#define OILH_ZOPC (unsigned int)(165 << 24 | 10 << 16)
#define OILL_ZOPC (unsigned int)(165 << 24 | 11 << 16)
#define OIHF_ZOPC (unsigned long)(0xc0L << 40 | 12L << 32)
#define OILF_ZOPC (unsigned long)(0xc0L << 40 | 13L << 32)
// RM, signed
#define O_ZOPC (unsigned int)(0x56 << 24)
#define OY_ZOPC (unsigned long)(227L << 40 | 86L)
#define OG_ZOPC (unsigned long)(227L << 40 | 129L)
// XOR
// RR, signed
#define XR_ZOPC (unsigned int)(23 << 8)
#define XGR_ZOPC (unsigned int)(185 << 24 | 130 << 16)
// RRF, signed
#define XRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00f7 << 16)
#define XGRK_ZOPC (unsigned int)(0xb9 << 24 | 0x00e7 << 16)
// RI, signed
#define XIHF_ZOPC (unsigned long)(0xc0L << 40 | 6L << 32)
#define XILF_ZOPC (unsigned long)(0xc0L << 40 | 7L << 32)
// RM, signed
#define X_ZOPC (unsigned int)(0x57 << 24)
#define XY_ZOPC (unsigned long)(227L << 40 | 87L)
#define XG_ZOPC (unsigned long)(227L << 40 | 130L)
// Data Conversion
// INT to BFP
#define CEFBR_ZOPC (unsigned int)(179 << 24 | 148 << 16)
#define CDFBR_ZOPC (unsigned int)(179 << 24 | 149 << 16)
#define CXFBR_ZOPC (unsigned int)(179 << 24 | 150 << 16)
#define CEGBR_ZOPC (unsigned int)(179 << 24 | 164 << 16)
#define CDGBR_ZOPC (unsigned int)(179 << 24 | 165 << 16)
#define CXGBR_ZOPC (unsigned int)(179 << 24 | 166 << 16)
// BFP to INT
#define CFEBR_ZOPC (unsigned int)(179 << 24 | 152 << 16)
#define CFDBR_ZOPC (unsigned int)(179 << 24 | 153 << 16)
#define CFXBR_ZOPC (unsigned int)(179 << 24 | 154 << 16)
#define CGEBR_ZOPC (unsigned int)(179 << 24 | 168 << 16)
#define CGDBR_ZOPC (unsigned int)(179 << 24 | 169 << 16)
#define CGXBR_ZOPC (unsigned int)(179 << 24 | 170 << 16)
// INT to DEC
#define CVD_ZOPC (unsigned int)(0x4e << 24)
#define CVDY_ZOPC (unsigned long)(0xe3L << 40 | 0x26L)
#define CVDG_ZOPC (unsigned long)(0xe3L << 40 | 0x2eL)
// BFP Control
#define SRNM_ZOPC (unsigned int)(178 << 24 | 153 << 16)
#define EFPC_ZOPC (unsigned int)(179 << 24 | 140 << 16)
#define SFPC_ZOPC (unsigned int)(179 << 24 | 132 << 16)
#define STFPC_ZOPC (unsigned int)(178 << 24 | 156 << 16)
#define LFPC_ZOPC (unsigned int)(178 << 24 | 157 << 16)
// Branch Instructions
// Register
#define BCR_ZOPC (unsigned int)(7 << 8)
#define BALR_ZOPC (unsigned int)(5 << 8)
#define BASR_ZOPC (unsigned int)(13 << 8)
#define BCTGR_ZOPC (unsigned long)(0xb946 << 16)
// Absolute
#define BC_ZOPC (unsigned int)(71 << 24)
#define BAL_ZOPC (unsigned int)(69 << 24)
#define BAS_ZOPC (unsigned int)(77 << 24)
#define BXH_ZOPC (unsigned int)(134 << 24)
#define BXHG_ZOPC (unsigned long)(235L << 40 | 68)
// Relative
#define BRC_ZOPC (unsigned int)(167 << 24 | 4 << 16)
#define BRCL_ZOPC (unsigned long)(192L << 40 | 4L << 32)
#define BRAS_ZOPC (unsigned int)(167 << 24 | 5 << 16)
#define BRASL_ZOPC (unsigned long)(192L << 40 | 5L << 32)
#define BRCT_ZOPC (unsigned int)(167 << 24 | 6 << 16)
#define BRCTG_ZOPC (unsigned int)(167 << 24 | 7 << 16)
#define BRXH_ZOPC (unsigned int)(132 << 24)
#define BRXHG_ZOPC (unsigned long)(236L << 40 | 68)
#define BRXLE_ZOPC (unsigned int)(133 << 24)
#define BRXLG_ZOPC (unsigned long)(236L << 40 | 69)
// Compare and Branch Instructions
// signed comp reg/reg, branch Absolute
#define CRB_ZOPC (unsigned long)(0xecL << 40 | 0xf6L) // z10
#define CGRB_ZOPC (unsigned long)(0xecL << 40 | 0xe4L) // z10
// signed comp reg/reg, branch Relative
#define CRJ_ZOPC (unsigned long)(0xecL << 40 | 0x76L) // z10
#define CGRJ_ZOPC (unsigned long)(0xecL << 40 | 0x64L) // z10
// signed comp reg/imm, branch absolute
#define CIB_ZOPC (unsigned long)(0xecL << 40 | 0xfeL) // z10
#define CGIB_ZOPC (unsigned long)(0xecL << 40 | 0xfcL) // z10
// signed comp reg/imm, branch relative
#define CIJ_ZOPC (unsigned long)(0xecL << 40 | 0x7eL) // z10
#define CGIJ_ZOPC (unsigned long)(0xecL << 40 | 0x7cL) // z10
// unsigned comp reg/reg, branch Absolute
#define CLRB_ZOPC (unsigned long)(0xecL << 40 | 0xf7L) // z10
#define CLGRB_ZOPC (unsigned long)(0xecL << 40 | 0xe5L) // z10
// unsigned comp reg/reg, branch Relative
#define CLRJ_ZOPC (unsigned long)(0xecL << 40 | 0x77L) // z10
#define CLGRJ_ZOPC (unsigned long)(0xecL << 40 | 0x65L) // z10
// unsigned comp reg/imm, branch absolute
#define CLIB_ZOPC (unsigned long)(0xecL << 40 | 0xffL) // z10
#define CLGIB_ZOPC (unsigned long)(0xecL << 40 | 0xfdL) // z10
// unsigned comp reg/imm, branch relative
#define CLIJ_ZOPC (unsigned long)(0xecL << 40 | 0x7fL) // z10
#define CLGIJ_ZOPC (unsigned long)(0xecL << 40 | 0x7dL) // z10
// comp reg/reg, trap
#define CRT_ZOPC (unsigned int)(0xb972 << 16) // z10
#define CGRT_ZOPC (unsigned int)(0xb960 << 16) // z10
#define CLRT_ZOPC (unsigned int)(0xb973 << 16) // z10
#define CLGRT_ZOPC (unsigned int)(0xb961 << 16) // z10
// comp reg/imm, trap
#define CIT_ZOPC (unsigned long)(0xecL << 40 | 0x72L) // z10
#define CGIT_ZOPC (unsigned long)(0xecL << 40 | 0x70L) // z10
#define CLFIT_ZOPC (unsigned long)(0xecL << 40 | 0x73L) // z10
#define CLGIT_ZOPC (unsigned long)(0xecL << 40 | 0x71L) // z10
// Direct Memory Operations
// Compare
#define CLI_ZOPC (unsigned int)(0x95 << 24)
#define CLIY_ZOPC (unsigned long)(0xebL << 40 | 0x55L)
#define CLC_ZOPC (unsigned long)(0xd5L << 40)
#define CLCL_ZOPC (unsigned int)(0x0f << 8)
#define CLCLE_ZOPC (unsigned int)(0xa9 << 24)
#define CLCLU_ZOPC (unsigned long)(0xebL << 40 | 0x8fL)
// Move
#define MVI_ZOPC (unsigned int)(0x92 << 24)
#define MVIY_ZOPC (unsigned long)(0xebL << 40 | 0x52L)
#define MVC_ZOPC (unsigned long)(0xd2L << 40)
#define MVCL_ZOPC (unsigned int)(0x0e << 8)
#define MVCLE_ZOPC (unsigned int)(0xa8 << 24)
// Test
#define TM_ZOPC (unsigned int)(0x91 << 24)
#define TMY_ZOPC (unsigned long)(0xebL << 40 | 0x51L)
// AND
#define NI_ZOPC (unsigned int)(0x94 << 24)
#define NIY_ZOPC (unsigned long)(0xebL << 40 | 0x54L)
#define NC_ZOPC (unsigned long)(0xd4L << 40)
// OR
#define OI_ZOPC (unsigned int)(0x96 << 24)
#define OIY_ZOPC (unsigned long)(0xebL << 40 | 0x56L)
#define OC_ZOPC (unsigned long)(0xd6L << 40)
// XOR
#define XI_ZOPC (unsigned int)(0x97 << 24)
#define XIY_ZOPC (unsigned long)(0xebL << 40 | 0x57L)
#define XC_ZOPC (unsigned long)(0xd7L << 40)
// Search String
#define SRST_ZOPC (unsigned int)(178 << 24 | 94 << 16)
#define SRSTU_ZOPC (unsigned int)(185 << 24 | 190 << 16)
// Translate characters
#define TROO_ZOPC (unsigned int)(0xb9 << 24 | 0x93 << 16)
#define TROT_ZOPC (unsigned int)(0xb9 << 24 | 0x92 << 16)
#define TRTO_ZOPC (unsigned int)(0xb9 << 24 | 0x91 << 16)
#define TRTT_ZOPC (unsigned int)(0xb9 << 24 | 0x90 << 16)
//---------------------------
//-- Vector Instructions --
//---------------------------
//---< Vector Support Instructions >---
//--- Load (memory) ---
#define VLM_ZOPC (unsigned long)(0xe7L << 40 | 0x36L << 0) // load full vreg range (n * 128 bit)
#define VL_ZOPC (unsigned long)(0xe7L << 40 | 0x06L << 0) // load full vreg (128 bit)
#define VLEB_ZOPC (unsigned long)(0xe7L << 40 | 0x00L << 0) // load vreg element (8 bit)
#define VLEH_ZOPC (unsigned long)(0xe7L << 40 | 0x01L << 0) // load vreg element (16 bit)
#define VLEF_ZOPC (unsigned long)(0xe7L << 40 | 0x03L << 0) // load vreg element (32 bit)
#define VLEG_ZOPC (unsigned long)(0xe7L << 40 | 0x02L << 0) // load vreg element (64 bit)
#define VLREP_ZOPC (unsigned long)(0xe7L << 40 | 0x05L << 0) // load and replicate into all vector elements
#define VLLEZ_ZOPC (unsigned long)(0xe7L << 40 | 0x04L << 0) // load logical element and zero.
// vector register gather
#define VGEF_ZOPC (unsigned long)(0xe7L << 40 | 0x13L << 0) // gather element (32 bit), V1(M3) = [D2(V2(M3),B2)]
#define VGEG_ZOPC (unsigned long)(0xe7L << 40 | 0x12L << 0) // gather element (64 bit), V1(M3) = [D2(V2(M3),B2)]
// vector register scatter
#define VSCEF_ZOPC (unsigned long)(0xe7L << 40 | 0x1bL << 0) // vector scatter element FW
#define VSCEG_ZOPC (unsigned long)(0xe7L << 40 | 0x1aL << 0) // vector scatter element DW
#define VLBB_ZOPC (unsigned long)(0xe7L << 40 | 0x07L << 0) // load vreg to block boundary (load to alignment).
#define VLL_ZOPC (unsigned long)(0xe7L << 40 | 0x37L << 0) // load vreg with length.
//--- Load (register) ---
#define VLR_ZOPC (unsigned long)(0xe7L << 40 | 0x56L << 0) // copy full vreg (128 bit)
#define VLGV_ZOPC (unsigned long)(0xe7L << 40 | 0x21L << 0) // copy vreg element -> GR
#define VLVG_ZOPC (unsigned long)(0xe7L << 40 | 0x22L << 0) // copy GR -> vreg element
#define VLVGP_ZOPC (unsigned long)(0xe7L << 40 | 0x62L << 0) // copy GR2, GR3 (disjoint pair) -> vreg
// vector register pack: cut in half the size the source vector elements
#define VPK_ZOPC (unsigned long)(0xe7L << 40 | 0x94L << 0) // just cut
#define VPKS_ZOPC (unsigned long)(0xe7L << 40 | 0x97L << 0) // saturate as signed values
#define VPKLS_ZOPC (unsigned long)(0xe7L << 40 | 0x95L << 0) // saturate as unsigned values
// vector register unpack: double in size the source vector elements
#define VUPH_ZOPC (unsigned long)(0xe7L << 40 | 0xd7L << 0) // signed, left half of the source vector elements
#define VUPLH_ZOPC (unsigned long)(0xe7L << 40 | 0xd5L << 0) // unsigned, left half of the source vector elements
#define VUPL_ZOPC (unsigned long)(0xe7L << 40 | 0xd6L << 0) // signed, right half of the source vector elements
#define VUPLL_ZOPC (unsigned long)(0xe7L << 40 | 0xd4L << 0) // unsigned, right half of the source vector element
// vector register merge
#define VMRH_ZOPC (unsigned long)(0xe7L << 40 | 0x61L << 0) // register merge high (left half of source registers)
#define VMRL_ZOPC (unsigned long)(0xe7L << 40 | 0x60L << 0) // register merge low (right half of source registers)
// vector register permute
#define VPERM_ZOPC (unsigned long)(0xe7L << 40 | 0x8cL << 0) // vector permute
#define VPDI_ZOPC (unsigned long)(0xe7L << 40 | 0x84L << 0) // vector permute DW immediate
// vector register replicate
#define VREP_ZOPC (unsigned long)(0xe7L << 40 | 0x4dL << 0) // vector replicate
#define VREPI_ZOPC (unsigned long)(0xe7L << 40 | 0x45L << 0) // vector replicate immediate
#define VSEL_ZOPC (unsigned long)(0xe7L << 40 | 0x8dL << 0) // vector select
#define VSEG_ZOPC (unsigned long)(0xe7L << 40 | 0x5fL << 0) // vector sign-extend to DW (rightmost element in each DW).
//--- Load (immediate) ---
#define VLEIB_ZOPC (unsigned long)(0xe7L << 40 | 0x40L << 0) // load vreg element (16 bit imm to 8 bit)
#define VLEIH_ZOPC (unsigned long)(0xe7L << 40 | 0x41L << 0) // load vreg element (16 bit imm to 16 bit)
#define VLEIF_ZOPC (unsigned long)(0xe7L << 40 | 0x43L << 0) // load vreg element (16 bit imm to 32 bit)
#define VLEIG_ZOPC (unsigned long)(0xe7L << 40 | 0x42L << 0) // load vreg element (16 bit imm to 64 bit)
//--- Store ---
#define VSTM_ZOPC (unsigned long)(0xe7L << 40 | 0x3eL << 0) // store full vreg range (n * 128 bit)
#define VST_ZOPC (unsigned long)(0xe7L << 40 | 0x0eL << 0) // store full vreg (128 bit)
#define VSTEB_ZOPC (unsigned long)(0xe7L << 40 | 0x08L << 0) // store vreg element (8 bit)
#define VSTEH_ZOPC (unsigned long)(0xe7L << 40 | 0x09L << 0) // store vreg element (16 bit)
#define VSTEF_ZOPC (unsigned long)(0xe7L << 40 | 0x0bL << 0) // store vreg element (32 bit)
#define VSTEG_ZOPC (unsigned long)(0xe7L << 40 | 0x0aL << 0) // store vreg element (64 bit)
#define VSTL_ZOPC (unsigned long)(0xe7L << 40 | 0x3fL << 0) // store vreg with length.
//--- Misc ---
#define VGM_ZOPC (unsigned long)(0xe7L << 40 | 0x46L << 0) // generate bit mask, [start..end] = '1', else '0'
#define VGBM_ZOPC (unsigned long)(0xe7L << 40 | 0x44L << 0) // generate byte mask, bits(imm16) -> bytes
//---< Vector Arithmetic Instructions >---
// Load
#define VLC_ZOPC (unsigned long)(0xe7L << 40 | 0xdeL << 0) // V1 := -V2, element size = 2**m
#define VLP_ZOPC (unsigned long)(0xe7L << 40 | 0xdfL << 0) // V1 := |V2|, element size = 2**m
// ADD
#define VA_ZOPC (unsigned long)(0xe7L << 40 | 0xf3L << 0) // V1 := V2 + V3, element size = 2**m
#define VACC_ZOPC (unsigned long)(0xe7L << 40 | 0xf1L << 0) // V1 := carry(V2 + V3), element size = 2**m
// SUB
#define VS_ZOPC (unsigned long)(0xe7L << 40 | 0xf7L << 0) // V1 := V2 - V3, element size = 2**m
#define VSCBI_ZOPC (unsigned long)(0xe7L << 40 | 0xf5L << 0) // V1 := borrow(V2 - V3), element size = 2**m
// MUL
#define VML_ZOPC (unsigned long)(0xe7L << 40 | 0xa2L << 0) // V1 := V2 * V3, element size = 2**m
#define VMH_ZOPC (unsigned long)(0xe7L << 40 | 0xa3L << 0) // V1 := V2 * V3, element size = 2**m
#define VMLH_ZOPC (unsigned long)(0xe7L << 40 | 0xa1L << 0) // V1 := V2 * V3, element size = 2**m, unsigned
#define VME_ZOPC (unsigned long)(0xe7L << 40 | 0xa6L << 0) // V1 := V2 * V3, element size = 2**m
#define VMLE_ZOPC (unsigned long)(0xe7L << 40 | 0xa4L << 0) // V1 := V2 * V3, element size = 2**m, unsigned
#define VMO_ZOPC (unsigned long)(0xe7L << 40 | 0xa7L << 0) // V1 := V2 * V3, element size = 2**m
#define VMLO_ZOPC (unsigned long)(0xe7L << 40 | 0xa5L << 0) // V1 := V2 * V3, element size = 2**m, unsigned
// MUL & ADD
#define VMAL_ZOPC (unsigned long)(0xe7L << 40 | 0xaaL << 0) // V1 := V2 * V3 + V4, element size = 2**m
#define VMAH_ZOPC (unsigned long)(0xe7L << 40 | 0xabL << 0) // V1 := V2 * V3 + V4, element size = 2**m
#define VMALH_ZOPC (unsigned long)(0xe7L << 40 | 0xa9L << 0) // V1 := V2 * V3 + V4, element size = 2**m, unsigned
#define VMAE_ZOPC (unsigned long)(0xe7L << 40 | 0xaeL << 0) // V1 := V2 * V3 + V4, element size = 2**m
#define VMALE_ZOPC (unsigned long)(0xe7L << 40 | 0xacL << 0) // V1 := V2 * V3 + V4, element size = 2**m, unsigned
#define VMAO_ZOPC (unsigned long)(0xe7L << 40 | 0xafL << 0) // V1 := V2 * V3 + V4, element size = 2**m
#define VMALO_ZOPC (unsigned long)(0xe7L << 40 | 0xadL << 0) // V1 := V2 * V3 + V4, element size = 2**m, unsigned
// Vector SUM
#define VSUM_ZOPC (unsigned long)(0xe7L << 40 | 0x64L << 0) // V1[j] := toFW(sum(V2[i]) + V3[j]), subelements: byte or HW
#define VSUMG_ZOPC (unsigned long)(0xe7L << 40 | 0x65L << 0) // V1[j] := toDW(sum(V2[i]) + V3[j]), subelements: HW or FW
#define VSUMQ_ZOPC (unsigned long)(0xe7L << 40 | 0x67L << 0) // V1[j] := toQW(sum(V2[i]) + V3[j]), subelements: FW or DW
// Average
#define VAVG_ZOPC (unsigned long)(0xe7L << 40 | 0xf2L << 0) // V1 := (V2+V3+1)/2, signed, element size = 2**m
#define VAVGL_ZOPC (unsigned long)(0xe7L << 40 | 0xf0L << 0) // V1 := (V2+V3+1)/2, unsigned, element size = 2**m
// VECTOR Galois Field Multiply Sum
#define VGFM_ZOPC (unsigned long)(0xe7L << 40 | 0xb4L << 0)
#define VGFMA_ZOPC (unsigned long)(0xe7L << 40 | 0xbcL << 0)
//---< Vector Logical Instructions >---
// AND
#define VN_ZOPC (unsigned long)(0xe7L << 40 | 0x68L << 0) // V1 := V2 & V3, element size = 2**m
#define VNC_ZOPC (unsigned long)(0xe7L << 40 | 0x69L << 0) // V1 := V2 & ~V3, element size = 2**m
// XOR
#define VX_ZOPC (unsigned long)(0xe7L << 40 | 0x6dL << 0) // V1 := V2 ^ V3, element size = 2**m
// NOR
#define VNO_ZOPC (unsigned long)(0xe7L << 40 | 0x6bL << 0) // V1 := !(V2 | V3), element size = 2**m
// OR
#define VO_ZOPC (unsigned long)(0xe7L << 40 | 0x6aL << 0) // V1 := V2 | V3, element size = 2**m
// Comparison (element-wise)
#define VCEQ_ZOPC (unsigned long)(0xe7L << 40 | 0xf8L << 0) // V1 := (V2 == V3) ? 0xffff : 0x0000, element size = 2**m
#define VCH_ZOPC (unsigned long)(0xe7L << 40 | 0xfbL << 0) // V1 := (V2 > V3) ? 0xffff : 0x0000, element size = 2**m, signed
#define VCHL_ZOPC (unsigned long)(0xe7L << 40 | 0xf9L << 0) // V1 := (V2 > V3) ? 0xffff : 0x0000, element size = 2**m, unsigned
// Max/Min (element-wise)
#define VMX_ZOPC (unsigned long)(0xe7L << 40 | 0xffL << 0) // V1 := (V2 > V3) ? V2 : V3, element size = 2**m, signed
#define VMXL_ZOPC (unsigned long)(0xe7L << 40 | 0xfdL << 0) // V1 := (V2 > V3) ? V2 : V3, element size = 2**m, unsigned
#define VMN_ZOPC (unsigned long)(0xe7L << 40 | 0xfeL << 0) // V1 := (V2 < V3) ? V2 : V3, element size = 2**m, signed
#define VMNL_ZOPC (unsigned long)(0xe7L << 40 | 0xfcL << 0) // V1 := (V2 < V3) ? V2 : V3, element size = 2**m, unsigned
// Leading/Trailing Zeros, population count
#define VCLZ_ZOPC (unsigned long)(0xe7L << 40 | 0x53L << 0) // V1 := leadingzeros(V2), element size = 2**m
#define VCTZ_ZOPC (unsigned long)(0xe7L << 40 | 0x52L << 0) // V1 := trailingzeros(V2), element size = 2**m
#define VPOPCT_ZOPC (unsigned long)(0xe7L << 40 | 0x50L << 0) // V1 := popcount(V2), bytewise!!
// Rotate/Shift
#define VERLLV_ZOPC (unsigned long)(0xe7L << 40 | 0x73L << 0) // V1 := rotateleft(V2), rotate count in V3 element
#define VERLL_ZOPC (unsigned long)(0xe7L << 40 | 0x33L << 0) // V1 := rotateleft(V3), rotate count from d2(b2).
#define VERIM_ZOPC (unsigned long)(0xe7L << 40 | 0x72L << 0) // Rotate then insert under mask. Read Principles of Operation!!
#define VESLV_ZOPC (unsigned long)(0xe7L << 40 | 0x70L << 0) // V1 := SLL(V2, V3), unsigned, element-wise
#define VESL_ZOPC (unsigned long)(0xe7L << 40 | 0x30L << 0) // V1 := SLL(V3), unsigned, shift count from d2(b2).
#define VESRAV_ZOPC (unsigned long)(0xe7L << 40 | 0x7AL << 0) // V1 := SRA(V2, V3), signed, element-wise
#define VESRA_ZOPC (unsigned long)(0xe7L << 40 | 0x3AL << 0) // V1 := SRA(V3), signed, shift count from d2(b2).
#define VESRLV_ZOPC (unsigned long)(0xe7L << 40 | 0x78L << 0) // V1 := SRL(V2, V3), unsigned, element-wise
#define VESRL_ZOPC (unsigned long)(0xe7L << 40 | 0x38L << 0) // V1 := SRL(V3), unsigned, shift count from d2(b2).
#define VSL_ZOPC (unsigned long)(0xe7L << 40 | 0x74L << 0) // V1 := SLL(V2), unsigned, bit-count
#define VSLB_ZOPC (unsigned long)(0xe7L << 40 | 0x75L << 0) // V1 := SLL(V2), unsigned, byte-count
#define VSLDB_ZOPC (unsigned long)(0xe7L << 40 | 0x77L << 0) // V1 := SLL((V2,V3)), unsigned, byte-count
#define VSRA_ZOPC (unsigned long)(0xe7L << 40 | 0x7eL << 0) // V1 := SRA(V2), signed, bit-count
#define VSRAB_ZOPC (unsigned long)(0xe7L << 40 | 0x7fL << 0) // V1 := SRA(V2), signed, byte-count
#define VSRL_ZOPC (unsigned long)(0xe7L << 40 | 0x7cL << 0) // V1 := SRL(V2), unsigned, bit-count
#define VSRLB_ZOPC (unsigned long)(0xe7L << 40 | 0x7dL << 0) // V1 := SRL(V2), unsigned, byte-count
// Test under Mask
#define VTM_ZOPC (unsigned long)(0xe7L << 40 | 0xd8L << 0) // Like TM, set CC according to state of selected bits.
//---< Vector String Instructions >---
#define VFAE_ZOPC (unsigned long)(0xe7L << 40 | 0x82L << 0) // Find any element
#define VFEE_ZOPC (unsigned long)(0xe7L << 40 | 0x80L << 0) // Find element equal
#define VFENE_ZOPC (unsigned long)(0xe7L << 40 | 0x81L << 0) // Find element not equal
#define VSTRC_ZOPC (unsigned long)(0xe7L << 40 | 0x8aL << 0) // String range compare
#define VISTR_ZOPC (unsigned long)(0xe7L << 40 | 0x5cL << 0) // Isolate String
//--------------------------------
//-- Miscellaneous Operations --
//--------------------------------
// Execute
#define EX_ZOPC (unsigned int)(68L << 24)
#define EXRL_ZOPC (unsigned long)(0xc6L << 40 | 0x00L << 32) // z10
// Compare and Swap
#define CS_ZOPC (unsigned int)(0xba << 24)
#define CSY_ZOPC (unsigned long)(0xebL << 40 | 0x14L)
#define CSG_ZOPC (unsigned long)(0xebL << 40 | 0x30L)
// Interlocked-Update
#define LAA_ZOPC (unsigned long)(0xebL << 40 | 0xf8L) // z196
#define LAAG_ZOPC (unsigned long)(0xebL << 40 | 0xe8L) // z196
#define LAAL_ZOPC (unsigned long)(0xebL << 40 | 0xfaL) // z196
#define LAALG_ZOPC (unsigned long)(0xebL << 40 | 0xeaL) // z196
#define LAN_ZOPC (unsigned long)(0xebL << 40 | 0xf4L) // z196
#define LANG_ZOPC (unsigned long)(0xebL << 40 | 0xe4L) // z196
#define LAX_ZOPC (unsigned long)(0xebL << 40 | 0xf7L) // z196
#define LAXG_ZOPC (unsigned long)(0xebL << 40 | 0xe7L) // z196
#define LAO_ZOPC (unsigned long)(0xebL << 40 | 0xf6L) // z196
#define LAOG_ZOPC (unsigned long)(0xebL << 40 | 0xe6L) // z196
// System Functions
#define STCKF_ZOPC (unsigned int)(0xb2 << 24 | 0x7c << 16)
#define STFLE_ZOPC (unsigned int)(0xb2 << 24 | 0xb0 << 16)
#define ECTG_ZOPC (unsigned long)(0xc8L <<40 | 0x01L << 32) // z10
#define ECAG_ZOPC (unsigned long)(0xebL <<40 | 0x4cL) // z10
// Execution Prediction
#define PFD_ZOPC (unsigned long)(0xe3L <<40 | 0x36L) // z10
#define PFDRL_ZOPC (unsigned long)(0xc6L <<40 | 0x02L << 32) // z10
#define BPP_ZOPC (unsigned long)(0xc7L <<40) // branch prediction preload -- EC12
#define BPRP_ZOPC (unsigned long)(0xc5L <<40) // branch prediction preload -- EC12
// Transaction Control
#define TBEGIN_ZOPC (unsigned long)(0xe560L << 32) // tx begin -- EC12
#define TBEGINC_ZOPC (unsigned long)(0xe561L << 32) // tx begin (constrained) -- EC12
#define TEND_ZOPC (unsigned int)(0xb2f8 << 16) // tx end -- EC12
#define TABORT_ZOPC (unsigned int)(0xb2fc << 16) // tx abort -- EC12
#define ETND_ZOPC (unsigned int)(0xb2ec << 16) // tx nesting depth -- EC12
#define PPA_ZOPC (unsigned int)(0xb2e8 << 16) // tx processor assist -- EC12
// Crypto and Checksum
#define CKSM_ZOPC (unsigned int)(0xb2 << 24 | 0x41 << 16) // checksum. This is NOT CRC32
#define KM_ZOPC (unsigned int)(0xb9 << 24 | 0x2e << 16) // cipher
#define KMC_ZOPC (unsigned int)(0xb9 << 24 | 0x2f << 16) // cipher
#define KMA_ZOPC (unsigned int)(0xb9 << 24 | 0x29 << 16) // cipher
#define KMF_ZOPC (unsigned int)(0xb9 << 24 | 0x2a << 16) // cipher
#define KMCTR_ZOPC (unsigned int)(0xb9 << 24 | 0x2d << 16) // cipher
#define KMO_ZOPC (unsigned int)(0xb9 << 24 | 0x2b << 16) // cipher
#define KIMD_ZOPC (unsigned int)(0xb9 << 24 | 0x3e << 16) // SHA (msg digest)
#define KLMD_ZOPC (unsigned int)(0xb9 << 24 | 0x3f << 16) // SHA (msg digest)
#define KMAC_ZOPC (unsigned int)(0xb9 << 24 | 0x1e << 16) // Message Authentication Code
// Various
#define TCEB_ZOPC (unsigned long)(237L << 40 | 16)
#define TCDB_ZOPC (unsigned long)(237L << 40 | 17)
#define TAM_ZOPC (unsigned long)(267)
#define FLOGR_ZOPC (unsigned int)(0xb9 << 24 | 0x83 << 16)
#define POPCNT_ZOPC (unsigned int)(0xb9e1 << 16)
#define AHHHR_ZOPC (unsigned int)(0xb9c8 << 16)
#define AHHLR_ZOPC (unsigned int)(0xb9d8 << 16)
// OpCode field masks
#define RI_MASK (unsigned int)(0xff << 24 | 0x0f << 16)
#define RRE_MASK (unsigned int)(0xff << 24 | 0xff << 16)
#define RSI_MASK (unsigned int)(0xff << 24)
#define RIE_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define RIL_MASK (unsigned long)(0xffL << 40 | 0x0fL << 32)
#define BASR_MASK (unsigned int)(0xff << 8)
#define BCR_MASK (unsigned int)(0xff << 8)
#define BRC_MASK (unsigned int)(0xff << 24 | 0x0f << 16)
#define LGHI_MASK (unsigned int)(0xff << 24 | 0x0f << 16)
#define LLI_MASK (unsigned int)(0xff << 24 | 0x0f << 16)
#define II_MASK (unsigned int)(0xff << 24 | 0x0f << 16)
#define LLIF_MASK (unsigned long)(0xffL << 40 | 0x0fL << 32)
#define IIF_MASK (unsigned long)(0xffL << 40 | 0x0fL << 32)
#define BRASL_MASK (unsigned long)(0xffL << 40 | 0x0fL << 32)
#define TM_MASK (unsigned int)(0xff << 24)
#define TMY_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LB_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LH_MASK (unsigned int)(0xff << 24)
#define L_MASK (unsigned int)(0xff << 24)
#define LY_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LG_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LLGH_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LLGF_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define SLAG_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define LARL_MASK (unsigned long)(0xff0fL << 32)
#define LGRL_MASK (unsigned long)(0xff0fL << 32)
#define LE_MASK (unsigned int)(0xff << 24)
#define LD_MASK (unsigned int)(0xff << 24)
#define ST_MASK (unsigned int)(0xff << 24)
#define STC_MASK (unsigned int)(0xff << 24)
#define STG_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define STH_MASK (unsigned int)(0xff << 24)
#define STE_MASK (unsigned int)(0xff << 24)
#define STD_MASK (unsigned int)(0xff << 24)
#define CMPBRANCH_MASK (unsigned long)(0xffL << 40 | 0xffL)
#define REL_LONG_MASK (unsigned long)(0xff0fL << 32)
public:
// Condition code masks. Details:
// - Mask bit#3 must be zero for all compare and branch/trap instructions to ensure
// future compatibility.
// - For all arithmetic instructions which set the condition code, mask bit#3
// indicates overflow ("unordered" in float operations).
// - "unordered" float comparison results have to be treated as low.
// - When overflow/unordered is detected, none of the branch conditions is true,
// except for bcondOverflow/bcondNotOrdered and bcondAlways.
// - For INT comparisons, the inverse condition can be calculated as (14-cond).
// - For FLOAT comparisons, the inverse condition can be calculated as (15-cond).
enum branch_condition {
bcondNever = 0,
bcondAlways = 15,
// Specific names. Make use of lightweight sync.
// Full and lightweight sync operation.
bcondFullSync = 15,
bcondLightSync = 14,
bcondNop = 0,
// arithmetic compare instructions
// arithmetic load and test, insert instructions
// Mask bit#3 must be zero for future compatibility.
bcondEqual = 8,
bcondNotEqual = 6,
bcondLow = 4,
bcondNotLow = 10,
bcondHigh = 2,
bcondNotHigh = 12,
// arithmetic calculation instructions
// Mask bit#3 indicates overflow if detected by instr.
// Mask bit#3 = 0 (overflow is not handled by compiler).
bcondOverflow = 1,
bcondNotOverflow = 14,
bcondZero = bcondEqual,
bcondNotZero = bcondNotEqual,
bcondNegative = bcondLow,
bcondNotNegative = bcondNotLow,
bcondPositive = bcondHigh,
bcondNotPositive = bcondNotHigh,
bcondNotOrdered = 1, // float comparisons
bcondOrdered = 14, // float comparisons
bcondLowOrNotOrdered = bcondLow|bcondNotOrdered, // float comparisons
bcondHighOrNotOrdered = bcondHigh|bcondNotOrdered, // float comparisons
// unsigned arithmetic calculation instructions
// Mask bit#0 is not used by these instructions.
// There is no indication of overflow for these instr.
bcondLogZero_NoCarry = 8,
bcondLogZero_Carry = 2,
// bcondLogZero_Borrow = 8, // This CC is never generated.
bcondLogZero_NoBorrow = 2,
bcondLogZero = bcondLogZero_Carry | bcondLogZero_NoCarry,
bcondLogNotZero_NoCarry = 4,
bcondLogNotZero_Carry = 1,
bcondLogNotZero_Borrow = 4,
bcondLogNotZero_NoBorrow = 1,
bcondLogNotZero = bcondLogNotZero_Carry | bcondLogNotZero_NoCarry,
bcondLogCarry = bcondLogZero_Carry | bcondLogNotZero_Carry,
bcondLogBorrow = /* bcondLogZero_Borrow | */ bcondLogNotZero_Borrow,
// Vector compare instructions
bcondVAlltrue = 8, // All vector elements evaluate true
bcondVMixed = 4, // Some vector elements evaluate true, some false
bcondVAllfalse = 1, // All vector elements evaluate false
// string search instructions
bcondFound = 4,
bcondNotFound = 2,
bcondInterrupted = 1,
// bit test instructions
bcondAllZero = 8,
bcondMixed = 6,
bcondAllOne = 1,
bcondNotAllZero = 7 // for tmll
};
enum Condition {
// z/Architecture
negative = 0,
less = 0,
positive = 1,
greater = 1,
zero = 2,
equal = 2,
summary_overflow = 3,
};
// Rounding mode for float-2-int conversions.
enum RoundingMode {
current_mode = 0, // Mode taken from FPC register.
biased_to_nearest = 1,
to_nearest = 4,
to_zero = 5,
to_plus_infinity = 6,
to_minus_infinity = 7
};
// Vector Register Element Type.
enum VRegElemType {
VRET_BYTE = 0,
VRET_HW = 1,
VRET_FW = 2,
VRET_DW = 3,
VRET_QW = 4
};
// Vector Operation Result Control.
// This is a set of flags used in some vector instructions to control
// the result (side) effects of instruction execution.
enum VOpRC {
VOPRC_CCSET = 0b0001, // set the CC.
VOPRC_CCIGN = 0b0000, // ignore, don't set CC.
VOPRC_ZS = 0b0010, // Zero Search. Additional, elementwise, comparison against zero.
VOPRC_NOZS = 0b0000, // No Zero Search.
VOPRC_RTBYTEIX = 0b0100, // generate byte index to lowest element with true comparison.
VOPRC_RTBITVEC = 0b0000, // generate bit vector, all 1s for true, all 0s for false element comparisons.
VOPRC_INVERT = 0b1000, // invert comparison results.
VOPRC_NOINVERT = 0b0000 // use comparison results as is, do not invert.
};
// Inverse condition code, i.e. determine "15 - cc" for a given condition code cc.
static branch_condition inverse_condition(branch_condition cc);
static branch_condition inverse_float_condition(branch_condition cc);
//-----------------------------------------------
// instruction property getter methods
//-----------------------------------------------
// Calculate length of instruction.
static int instr_len(unsigned char *instr);
// Longest instructions are 6 bytes on z/Architecture.
static int instr_maxlen() { return 6; }
// Average instruction is 4 bytes on z/Architecture (just a guess).
static int instr_avglen() { return 4; }
// Shortest instructions are 2 bytes on z/Architecture.
static int instr_minlen() { return 2; }
// Move instruction at pc right-justified into passed long int.
// Return instr len in bytes as function result.
static unsigned int get_instruction(unsigned char *pc, unsigned long *instr);
// Move instruction in passed (long int) into storage at pc.
// This code is _NOT_ MT-safe!!
static void set_instruction(unsigned char *pc, unsigned long instr, unsigned int len) {
memcpy(pc, ((unsigned char *)&instr)+sizeof(unsigned long)-len, len);
}
//------------------------------------------
// instruction field test methods
//------------------------------------------
// Only used once in s390.ad to implement Matcher::is_short_branch_offset().
static bool is_within_range_of_RelAddr16(address target, address origin) {
return RelAddr::is_in_range_of_RelAddr16(target, origin);
}
//----------------------------------
// some diagnostic output
//----------------------------------
static void print_dbg_msg(outputStream* out, unsigned long inst, const char* msg, int ilen) PRODUCT_RETURN;
static void dump_code_range(outputStream* out, address pc, const unsigned int range, const char* msg = " ") PRODUCT_RETURN;
protected:
//-------------------------------------------------------
// instruction field helper methods (internal)
//-------------------------------------------------------
// Return a mask of 1s between hi_bit and lo_bit (inclusive).
static long fmask(unsigned int hi_bit, unsigned int lo_bit) {
assert(hi_bit >= lo_bit && hi_bit < 48, "bad bits");
return ((1L<<(hi_bit-lo_bit+1)) - 1) << lo_bit;
}
// extract u_field
// unsigned value
static long inv_u_field(long x, int hi_bit, int lo_bit) {
return (x & fmask(hi_bit, lo_bit)) >> lo_bit;
}
// extract s_field
// Signed value, may need sign extension.
static long inv_s_field(long x, int hi_bit, int lo_bit) {
x = inv_u_field(x, hi_bit, lo_bit);
// Highest extracted bit set -> sign extension.
return (x >= (1L<<(hi_bit-lo_bit)) ? x | ((-1L)<<(hi_bit-lo_bit)) : x);
}
// Extract primary opcode from instruction.
static int z_inv_op(int x) { return inv_u_field(x, 31, 24); }
static int z_inv_op(long x) { return inv_u_field(x, 47, 40); }
static int inv_reg( long x, int s, int len) { return inv_u_field(x, (len-s)-1, (len-s)-4); } // Regs are encoded in 4 bits.
static int inv_mask(long x, int s, int len) { return inv_u_field(x, (len-s)-1, (len-s)-8); } // Mask is 8 bits long.
static int inv_simm16_48(long x) { return (inv_s_field(x, 31, 16)); } // 6-byte instructions only
static int inv_simm16(long x) { return (inv_s_field(x, 15, 0)); } // 4-byte instructions only
static int inv_simm20(long x) { return (inv_u_field(x, 27, 16) | // 6-byte instructions only
inv_s_field(x, 15, 8)<<12); }
static int inv_simm32(long x) { return (inv_s_field(x, 31, 0)); } // 6-byte instructions only
static int inv_uimm12(long x) { return (inv_u_field(x, 11, 0)); } // 4-byte instructions only
// Encode u_field from long value.
static long u_field(long x, int hi_bit, int lo_bit) {
long r = x << lo_bit;
assert((r & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
return r;
}
static int64_t rsmask_48( Address a) { assert(a.is_RSform(), "bad address format"); return rsmask_48( a.disp12(), a.base()); }
static int64_t rxmask_48( Address a) { if (a.is_RXform()) { return rxmask_48( a.disp12(), a.index(), a.base()); }
else if (a.is_RSform()) { return rsmask_48( a.disp12(), a.base()); }
else { guarantee(false, "bad address format"); return 0; }
}
static int64_t rsymask_48(Address a) { assert(a.is_RSYform(), "bad address format"); return rsymask_48(a.disp20(), a.base()); }
static int64_t rxymask_48(Address a) { if (a.is_RXYform()) { return rxymask_48( a.disp20(), a.index(), a.base()); }
else if (a.is_RSYform()) { return rsymask_48( a.disp20(), a.base()); }
else { guarantee(false, "bad address format"); return 0; }
}
static int64_t rsmask_48( int64_t d2, Register b2) { return uimm12(d2, 20, 48) | regz(b2, 16, 48); }
static int64_t rxmask_48( int64_t d2, Register x2, Register b2) { return uimm12(d2, 20, 48) | reg(x2, 12, 48) | regz(b2, 16, 48); }
static int64_t rsymask_48(int64_t d2, Register b2) { return simm20(d2) | regz(b2, 16, 48); }
static int64_t rxymask_48(int64_t d2, Register x2, Register b2) { return simm20(d2) | reg(x2, 12, 48) | regz(b2, 16, 48); }
// Address calculated from d12(vx,b) - vx is vector index register.
static int64_t rvmask_48( int64_t d2, VectorRegister x2, Register b2) { return uimm12(d2, 20, 48) | vreg(x2, 12) | regz(b2, 16, 48); }
static int64_t vreg_mask(VectorRegister v, int pos) {
return vreg(v, pos) | v->RXB_mask(pos);
}
// Vector Element Size Control. 4-bit field which indicates the size of the vector elements.
static int64_t vesc_mask(int64_t size, int min_size, int max_size, int pos) {
// min_size - minimum element size. Not all instructions support element sizes beginning with "byte".
// max_size - maximum element size. Not all instructions support element sizes up to "QW".
assert((min_size <= size) && (size <= max_size), "element size control out of range");
return uimm4(size, pos, 48);
}
// Vector Element IndeX. 4-bit field which indexes the target vector element.
static int64_t veix_mask(int64_t ix, int el_size, int pos) {
// el_size - size of the vector element. This is a VRegElemType enum value.
// ix - vector element index.
int max_ix = -1;
switch (el_size) {
case VRET_BYTE: max_ix = 15; break;
case VRET_HW: max_ix = 7; break;
case VRET_FW: max_ix = 3; break;
case VRET_DW: max_ix = 1; break;
case VRET_QW: max_ix = 0; break;
default: guarantee(false, "bad vector element size %d", el_size); break;
}
assert((0 <= ix) && (ix <= max_ix), "element size out of range (0 <= %ld <= %d)", ix, max_ix);
return uimm4(ix, pos, 48);
}
// Vector Operation Result Control. 4-bit field.
static int64_t voprc_any(int64_t flags, int pos, int64_t allowed_flags = 0b1111) {
assert((flags & allowed_flags) == flags, "Invalid VOPRC_* flag combination: %d", (int)flags);
return uimm4(flags, pos, 48);
}
// Vector Operation Result Control. Condition code setting.
static int64_t voprc_ccmask(int64_t flags, int pos) {
return voprc_any(flags, pos, VOPRC_CCIGN | VOPRC_CCSET);
}
public:
//--------------------------------------------------
// instruction field construction methods
//--------------------------------------------------
// Compute relative address (32 bit) for branch.
// Only used once in nativeInst_s390.cpp.
static intptr_t z_pcrel_off(address dest, address pc) {
return RelAddr::pcrel_off32(dest, pc);
}
// Extract 20-bit signed displacement.
// Only used in disassembler_s390.cpp for temp enhancements.
static int inv_simm20_xx(address iLoc) {
unsigned long instr = 0;
unsigned long iLen = get_instruction(iLoc, &instr);
return inv_simm20(instr);
}
// unsigned immediate, in low bits, nbits long
static long uimm(long x, int nbits) {
assert(Immediate::is_uimm(x, nbits), "unsigned constant out of range");
return x & fmask(nbits - 1, 0);
}
// Cast '1' to long to avoid sign extension if nbits = 32.
// signed immediate, in low bits, nbits long
static long simm(long x, int nbits) {
assert(Immediate::is_simm(x, nbits), "value out of range");
return x & fmask(nbits - 1, 0);
}
static long imm(int64_t x, int nbits) {
// Assert that x can be represented with nbits bits ignoring the sign bits,
// i.e. the more higher bits should all be 0 or 1.
assert((x >> nbits) == 0 || (x >> nbits) == -1, "value out of range");
return x & fmask(nbits-1, 0);
}
// A 20-bit displacement is only in instructions of the
// RSY, RXY, or SIY format. In these instructions, the D
// field consists of a DL (low) field in bit positions 20-31
// and of a DH (high) field in bit positions 32-39. The
// value of the displacement is formed by appending the
// contents of the DH field to the left of the contents of
// the DL field.
static long simm20(int64_t ui20) {
assert(Immediate::is_simm(ui20, 20), "value out of range");
return ( ((ui20 & 0xfffL) << (48-32)) | // DL
(((ui20 >> 12) & 0xffL) << (48-40))); // DH
}
static long reg(Register r, int s, int len) { return u_field(r->encoding(), (len-s)-1, (len-s)-4); }
static long reg(int r, int s, int len) { return u_field(r, (len-s)-1, (len-s)-4); }
static long regt(Register r, int s, int len) { return reg(r, s, len); }
static long regz(Register r, int s, int len) { assert(r != Z_R0, "cannot use register R0 in memory access"); return reg(r, s, len); }
static long uimm4( int64_t ui4, int s, int len) { return uimm(ui4, 4) << (len-s-4); }
static long uimm6( int64_t ui6, int s, int len) { return uimm(ui6, 6) << (len-s-6); }
static long uimm8( int64_t ui8, int s, int len) { return uimm(ui8, 8) << (len-s-8); }
static long uimm12(int64_t ui12, int s, int len) { return uimm(ui12, 12) << (len-s-12); }
static long uimm16(int64_t ui16, int s, int len) { return uimm(ui16, 16) << (len-s-16); }
static long uimm32(int64_t ui32, int s, int len) { return uimm((unsigned)ui32, 32) << (len-s-32); } // prevent sign extension
static long simm8( int64_t si8, int s, int len) { return simm(si8, 8) << (len-s-8); }
static long simm12(int64_t si12, int s, int len) { return simm(si12, 12) << (len-s-12); }
static long simm16(int64_t si16, int s, int len) { return simm(si16, 16) << (len-s-16); }
static long simm24(int64_t si24, int s, int len) { return simm(si24, 24) << (len-s-24); }
static long simm32(int64_t si32, int s, int len) { return simm(si32, 32) << (len-s-32); }
static long imm8( int64_t i8, int s, int len) { return imm(i8, 8) << (len-s-8); }
static long imm12(int64_t i12, int s, int len) { return imm(i12, 12) << (len-s-12); }
static long imm16(int64_t i16, int s, int len) { return imm(i16, 16) << (len-s-16); }
static long imm24(int64_t i24, int s, int len) { return imm(i24, 24) << (len-s-24); }
static long imm32(int64_t i32, int s, int len) { return imm(i32, 32) << (len-s-32); }
static long vreg(VectorRegister v, int pos) { const int len = 48; return u_field(v->encoding()&0x0f, (len-pos)-1, (len-pos)-4) | v->RXB_mask(pos); }
static long fregt(FloatRegister r, int s, int len) { return freg(r,s,len); }
static long freg( FloatRegister r, int s, int len) { return u_field(r->encoding(), (len-s)-1, (len-s)-4); }
// Rounding mode for float-2-int conversions.
static long rounding_mode(RoundingMode m, int s, int len) {
assert(m != 2 && m != 3, "invalid mode");
return uimm(m, 4) << (len-s-4);
}
//--------------------------------------------
// instruction field getter methods
//--------------------------------------------
static int get_imm32(address a, int instruction_number) {
int imm;
int *p =((int *)(a + 2 + 6 * instruction_number));
imm = *p;
return imm;
}
static short get_imm16(address a, int instruction_number) {
short imm;
short *p =((short *)a) + 2 * instruction_number + 1;
imm = *p;
return imm;
}
//--------------------------------------------
// instruction field setter methods
//--------------------------------------------
static void set_imm32(address a, int64_t s) {
assert(Immediate::is_simm32(s) || Immediate::is_uimm32(s), "to big");
int* p = (int *) (a + 2);
*p = s;
}
static void set_imm16(int* instr, int64_t s) {
assert(Immediate::is_simm16(s) || Immediate::is_uimm16(s), "to big");
short* p = ((short *)instr) + 1;
*p = s;
}
public:
static unsigned int align(unsigned int x, unsigned int a) { return ((x + (a - 1)) & ~(a - 1)); }
static bool is_aligned(unsigned int x, unsigned int a) { return (0 == x % a); }
inline void emit_16(int x);
inline void emit_32(int x);
inline void emit_48(long x);
// Compare and control flow instructions
// =====================================
// See also commodity routines compare64_and_branch(), compare32_and_branch().
// compare instructions
// compare register
inline void z_cr( Register r1, Register r2); // compare (r1, r2) ; int32
inline void z_cgr( Register r1, Register r2); // compare (r1, r2) ; int64
inline void z_cgfr(Register r1, Register r2); // compare (r1, r2) ; int64 <--> int32
// compare immediate
inline void z_chi( Register r1, int64_t i2); // compare (r1, i2_imm16) ; int32
inline void z_cfi( Register r1, int64_t i2); // compare (r1, i2_imm32) ; int32
inline void z_cghi(Register r1, int64_t i2); // compare (r1, i2_imm16) ; int64
inline void z_cgfi(Register r1, int64_t i2); // compare (r1, i2_imm32) ; int64
// compare memory
inline void z_ch( Register r1, const Address &a); // compare (r1, *(a)) ; int32 <--> int16
inline void z_ch( Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm12+x2+b2)) ; int32 <--> int16
inline void z_c( Register r1, const Address &a); // compare (r1, *(a)) ; int32
inline void z_c( Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm12+x2+b2)) ; int32
inline void z_cy( Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm20+x2+b2)) ; int32
inline void z_cy( Register r1, int64_t d2, Register b2); // compare (r1, *(d2_uimm20+x2+b2)) ; int32
inline void z_cy( Register r1, const Address& a); // compare (r1, *(a)) ; int32
//inline void z_cgf(Register r1,const Address &a); // compare (r1, *(a)) ; int64 <--> int32
//inline void z_cgf(Register r1,int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm12+x2+b2)) ; int64 <--> int32
inline void z_cg( Register r1, const Address &a); // compare (r1, *(a)) ; int64
inline void z_cg( Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_imm20+x2+b2)) ; int64
// compare logical instructions
// compare register
inline void z_clr( Register r1, Register r2); // compare (r1, r2) ; uint32
inline void z_clgr( Register r1, Register r2); // compare (r1, r2) ; uint64
// compare immediate
inline void z_clfi( Register r1, int64_t i2); // compare (r1, i2_uimm32) ; uint32
inline void z_clgfi(Register r1, int64_t i2); // compare (r1, i2_uimm32) ; uint64
inline void z_cl( Register r1, const Address &a); // compare (r1, *(a) ; uint32
inline void z_cl( Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm12+x2+b2) ; uint32
inline void z_cly( Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm20+x2+b2)) ; uint32
inline void z_cly( Register r1, int64_t d2, Register b2); // compare (r1, *(d2_uimm20+x2+b2)) ; uint32
inline void z_cly( Register r1, const Address& a); // compare (r1, *(a)) ; uint32
inline void z_clg( Register r1, const Address &a); // compare (r1, *(a) ; uint64
inline void z_clg( Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_imm20+x2+b2) ; uint64
// test under mask
inline void z_tmll(Register r1, int64_t i2); // test under mask, see docu
inline void z_tmlh(Register r1, int64_t i2); // test under mask, see docu
inline void z_tmhl(Register r1, int64_t i2); // test under mask, see docu
inline void z_tmhh(Register r1, int64_t i2); // test under mask, see docu
// branch instructions
inline void z_bc( branch_condition m1, int64_t d2, Register x2, Register b2);// branch m1 ? pc = (d2_uimm12+x2+b2)
inline void z_bcr( branch_condition m1, Register r2); // branch (m1 && r2!=R0) ? pc = r2
inline void z_brc( branch_condition i1, int64_t i2); // branch i1 ? pc = pc + i2_imm16
inline void z_brc( branch_condition i1, address a); // branch i1 ? pc = a
inline void z_brc( branch_condition i1, Label& L); // branch i1 ? pc = Label
//inline void z_brcl(branch_condition i1, int64_t i2); // branch i1 ? pc = pc + i2_imm32
inline void z_brcl(branch_condition i1, address a); // branch i1 ? pc = a
inline void z_brcl(branch_condition i1, Label& L); // branch i1 ? pc = Label
inline void z_bctgr(Register r1, Register r2); // branch on count r1 -= 1; (r1!=0) ? pc = r2 ; r1 is int64
// branch unconditional / always
inline void z_br(Register r2); // branch to r2, nop if r2 == Z_R0
// See also commodity routines compare64_and_branch(), compare32_and_branch().
// signed comparison and branch
inline void z_crb( Register r1, Register r2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 r2) ? goto b4+d4 ; int32 -- z10
inline void z_cgrb(Register r1, Register r2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 r2) ? goto b4+d4 ; int64 -- z10
inline void z_crj( Register r1, Register r2, branch_condition m3, Label& L); // (r1 m3 r2) ? goto L ; int32 -- z10
inline void z_crj( Register r1, Register r2, branch_condition m3, address a4); // (r1 m3 r2) ? goto (pc+a4<<1) ; int32 -- z10
inline void z_cgrj(Register r1, Register r2, branch_condition m3, Label& L); // (r1 m3 r2) ? goto L ; int64 -- z10
inline void z_cgrj(Register r1, Register r2, branch_condition m3, address a4); // (r1 m3 r2) ? goto (pc+a4<<1) ; int64 -- z10
inline void z_cib( Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_imm8) ? goto b4+d4 ; int32 -- z10
inline void z_cgib(Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_imm8) ? goto b4+d4 ; int64 -- z10
inline void z_cij( Register r1, int64_t i2, branch_condition m3, Label& L); // (r1 m3 i2_imm8) ? goto L ; int32 -- z10
inline void z_cij( Register r1, int64_t i2, branch_condition m3, address a4); // (r1 m3 i2_imm8) ? goto (pc+a4<<1) ; int32 -- z10
inline void z_cgij(Register r1, int64_t i2, branch_condition m3, Label& L); // (r1 m3 i2_imm8) ? goto L ; int64 -- z10
inline void z_cgij(Register r1, int64_t i2, branch_condition m3, address a4); // (r1 m3 i2_imm8) ? goto (pc+a4<<1) ; int64 -- z10
// unsigned comparison and branch
inline void z_clrb( Register r1, Register r2, branch_condition m3, int64_t d4, Register b4);// (r1 m3 r2) ? goto b4+d4 ; uint32 -- z10
inline void z_clgrb(Register r1, Register r2, branch_condition m3, int64_t d4, Register b4);// (r1 m3 r2) ? goto b4+d4 ; uint64 -- z10
inline void z_clrj( Register r1, Register r2, branch_condition m3, Label& L); // (r1 m3 r2) ? goto L ; uint32 -- z10
inline void z_clrj( Register r1, Register r2, branch_condition m3, address a4); // (r1 m3 r2) ? goto (pc+a4<<1) ; uint32 -- z10
inline void z_clgrj(Register r1, Register r2, branch_condition m3, Label& L); // (r1 m3 r2) ? goto L ; uint64 -- z10
inline void z_clgrj(Register r1, Register r2, branch_condition m3, address a4); // (r1 m3 r2) ? goto (pc+a4<<1) ; uint64 -- z10
inline void z_clib( Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_uimm8) ? goto b4+d4 ; uint32 -- z10
inline void z_clgib(Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_uimm8) ? goto b4+d4 ; uint64 -- z10
inline void z_clij( Register r1, int64_t i2, branch_condition m3, Label& L); // (r1 m3 i2_uimm8) ? goto L ; uint32 -- z10
inline void z_clij( Register r1, int64_t i2, branch_condition m3, address a4); // (r1 m3 i2_uimm8) ? goto (pc+a4<<1) ; uint32 -- z10
inline void z_clgij(Register r1, int64_t i2, branch_condition m3, Label& L); // (r1 m3 i2_uimm8) ? goto L ; uint64 -- z10
inline void z_clgij(Register r1, int64_t i2, branch_condition m3, address a4); // (r1 m3 i2_uimm8) ? goto (pc+a4<<1) ; uint64 -- z10
// Compare and trap instructions.
// signed comparison
inline void z_crt(Register r1, Register r2, int64_t m3); // (r1 m3 r2) ? trap ; int32 -- z10
inline void z_cgrt(Register r1, Register r2, int64_t m3); // (r1 m3 r2) ? trap ; int64 -- z10
inline void z_cit(Register r1, int64_t i2, int64_t m3); // (r1 m3 i2_imm16) ? trap ; int32 -- z10
inline void z_cgit(Register r1, int64_t i2, int64_t m3); // (r1 m3 i2_imm16) ? trap ; int64 -- z10
// unsigned comparison
inline void z_clrt(Register r1, Register r2, int64_t m3); // (r1 m3 r2) ? trap ; uint32 -- z10
inline void z_clgrt(Register r1, Register r2, int64_t m3); // (r1 m3 r2) ? trap ; uint64 -- z10
inline void z_clfit(Register r1, int64_t i2, int64_t m3); // (r1 m3 i2_uimm16) ? trap ; uint32 -- z10
inline void z_clgit(Register r1, int64_t i2, int64_t m3); // (r1 m3 i2_uimm16) ? trap ; uint64 -- z10
inline void z_illtrap();
inline void z_illtrap(int id);
inline void z_illtrap_eyecatcher(unsigned short xpattern, unsigned short pattern);
// load address, add for addresses
// ===============================
// The versions without suffix z assert that the base reg is != Z_R0.
// Z_R0 is interpreted as constant '0'. The variants with Address operand
// check this automatically, so no two versions are needed.
inline void z_layz(Register r1, int64_t d2, Register x2, Register b2); // Special version. Allows Z_R0 as base reg.
inline void z_lay(Register r1, const Address &a); // r1 = a
inline void z_lay(Register r1, int64_t d2, Register x2, Register b2); // r1 = d2_imm20+x2+b2
inline void z_laz(Register r1, int64_t d2, Register x2, Register b2); // Special version. Allows Z_R0 as base reg.
inline void z_la(Register r1, const Address &a); // r1 = a ; unsigned immediate!
inline void z_la(Register r1, int64_t d2, Register x2, Register b2); // r1 = d2_uimm12+x2+b2 ; unsigned immediate!
inline void z_larl(Register r1, int64_t i2); // r1 = pc + i2_imm32<<1;
inline void z_larl(Register r1, address a2); // r1 = pc + i2_imm32<<1;
// Load instructions for integers
// ==============================
// Address as base + index + offset
inline void z_lb( Register r1, const Address &a); // load r1 = *(a) ; int32 <- int8
inline void z_lb( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32 <- int8
inline void z_lh( Register r1, const Address &a); // load r1 = *(a) ; int32 <- int16
inline void z_lh( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2); int32 <- int16
inline void z_lhy(Register r1, const Address &a); // load r1 = *(a) ; int32 <- int16
inline void z_lhy(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32 <- int16
inline void z_l( Register r1, const Address& a); // load r1 = *(a) ; int32
inline void z_l( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2); int32
inline void z_ly( Register r1, const Address& a); // load r1 = *(a) ; int32
inline void z_ly( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32
inline void z_lgb(Register r1, const Address &a); // load r1 = *(a) ; int64 <- int8
inline void z_lgb(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int8
inline void z_lgh(Register r1, const Address &a); // load r1 = *(a) ; int64 <- int16
inline void z_lgh(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm12+x2+b2) ; int64 <- int16
inline void z_lgf(Register r1, const Address &a); // load r1 = *(a) ; int64 <- int32
inline void z_lgf(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int32
inline void z_lg( Register r1, const Address& a); // load r1 = *(a) ; int64 <- int64
inline void z_lg( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int64
// load and test
inline void z_lt( Register r1, const Address &a); // load and test r1 = *(a) ; int32
inline void z_lt( Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int32
inline void z_ltg( Register r1, const Address &a); // load and test r1 = *(a) ; int64
inline void z_ltg( Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int64
inline void z_ltgf(Register r1, const Address &a); // load and test r1 = *(a) ; int64 <- int32
inline void z_ltgf(Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int64 <- int32
// load unsigned integer - zero extended
inline void z_llc( Register r1, const Address& a); // load r1 = *(a) ; uint32 <- uint8
inline void z_llc( Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint32 <- uint8
inline void z_llh( Register r1, const Address& a); // load r1 = *(a) ; uint32 <- uint16
inline void z_llh( Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint32 <- uint16
inline void z_llgc(Register r1, const Address& a); // load r1 = *(a) ; uint64 <- uint8
inline void z_llgc(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint8
inline void z_llgc( Register r1, int64_t d2, Register b2); // load r1 = *(d2_imm20+b2) ; uint64 <- uint8
inline void z_llgh(Register r1, const Address& a); // load r1 = *(a) ; uint64 <- uint16
inline void z_llgh(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint16
inline void z_llgf(Register r1, const Address& a); // load r1 = *(a) ; uint64 <- uint32
inline void z_llgf(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint32
// pc relative addressing
inline void z_lhrl( Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; int32 <- int16 -- z10
inline void z_lrl( Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; int32 -- z10
inline void z_lghrl(Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; int64 <- int16 -- z10
inline void z_lgfrl(Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; int64 <- int32 -- z10
inline void z_lgrl( Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; int64 -- z10
inline void z_llhrl( Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; uint32 <- uint16 -- z10
inline void z_llghrl(Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; uint64 <- uint16 -- z10
inline void z_llgfrl(Register r1, int64_t i2); // load r1 = *(pc + i2_imm32<<1) ; uint64 <- uint32 -- z10
// Store instructions for integers
// ===============================
// Address as base + index + offset
inline void z_stc( Register r1, const Address &d); // store *(a) = r1 ; int8
inline void z_stc( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; int8
inline void z_stcy(Register r1, const Address &d); // store *(a) = r1 ; int8
inline void z_stcy(Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2) = r1 ; int8
inline void z_sth( Register r1, const Address &d); // store *(a) = r1 ; int16
inline void z_sth( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; int16
inline void z_sthy(Register r1, const Address &d); // store *(a) = r1 ; int16
inline void z_sthy(Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2) = r1 ; int16
inline void z_st( Register r1, const Address &d); // store *(a) = r1 ; int32
inline void z_st( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; int32
inline void z_sty( Register r1, const Address &d); // store *(a) = r1 ; int32
inline void z_sty( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2) = r1 ; int32
inline void z_stg( Register r1, const Address &d); // store *(a) = r1 ; int64
inline void z_stg( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; int64
inline void z_stcm( Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
inline void z_stcmy(Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
inline void z_stcmh(Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
// pc relative addressing
inline void z_sthrl(Register r1, int64_t i2); // store *(pc + i2_imm32<<1) = r1 ; int16 -- z10
inline void z_strl( Register r1, int64_t i2); // store *(pc + i2_imm32<<1) = r1 ; int32 -- z10
inline void z_stgrl(Register r1, int64_t i2); // store *(pc + i2_imm32<<1) = r1 ; int64 -- z10
// Load and store immediates
// =========================
// load immediate
inline void z_lhi( Register r1, int64_t i2); // r1 = i2_imm16 ; int32 <- int16
inline void z_lghi(Register r1, int64_t i2); // r1 = i2_imm16 ; int64 <- int16
inline void z_lgfi(Register r1, int64_t i2); // r1 = i2_imm32 ; int64 <- int32
inline void z_llihf(Register r1, int64_t i2); // r1 = i2_imm32 ; uint64 <- (uint32<<32)
inline void z_llilf(Register r1, int64_t i2); // r1 = i2_imm32 ; uint64 <- uint32
inline void z_llihh(Register r1, int64_t i2); // r1 = i2_imm16 ; uint64 <- (uint16<<48)
inline void z_llihl(Register r1, int64_t i2); // r1 = i2_imm16 ; uint64 <- (uint16<<32)
inline void z_llilh(Register r1, int64_t i2); // r1 = i2_imm16 ; uint64 <- (uint16<<16)
inline void z_llill(Register r1, int64_t i2); // r1 = i2_imm16 ; uint64 <- uint16
// insert immediate
inline void z_ic( Register r1, int64_t d2, Register x2, Register b2); // insert character
inline void z_icy( Register r1, int64_t d2, Register x2, Register b2); // insert character
inline void z_icm( Register r1, int64_t m3, int64_t d2, Register b2); // insert character under mask
inline void z_icmy(Register r1, int64_t m3, int64_t d2, Register b2); // insert character under mask
inline void z_icmh(Register r1, int64_t m3, int64_t d2, Register b2); // insert character under mask
inline void z_iihh(Register r1, int64_t i2); // insert immediate r1[ 0-15] = i2_imm16
inline void z_iihl(Register r1, int64_t i2); // insert immediate r1[16-31] = i2_imm16
inline void z_iilh(Register r1, int64_t i2); // insert immediate r1[32-47] = i2_imm16
inline void z_iill(Register r1, int64_t i2); // insert immediate r1[48-63] = i2_imm16
inline void z_iihf(Register r1, int64_t i2); // insert immediate r1[32-63] = i2_imm32
inline void z_iilf(Register r1, int64_t i2); // insert immediate r1[ 0-31] = i2_imm32
// store immediate
inline void z_mvhhi(const Address &d, int64_t i2); // store *(d) = i2_imm16 ; int16
inline void z_mvhhi(int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) = i2_imm16 ; int16
inline void z_mvhi( const Address &d, int64_t i2); // store *(d) = i2_imm16 ; int32
inline void z_mvhi( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) = i2_imm16 ; int32
inline void z_mvghi(const Address &d, int64_t i2); // store *(d) = i2_imm16 ; int64
inline void z_mvghi(int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) = i2_imm16 ; int64
// Move and Convert instructions
// =============================
// move, sign extend
inline void z_lbr(Register r1, Register r2); // move r1 = r2 ; int32 <- int8
inline void z_lhr( Register r1, Register r2); // move r1 = r2 ; int32 <- int16
inline void z_lr(Register r1, Register r2); // move r1 = r2 ; int32, no sign extension
inline void z_lgbr(Register r1, Register r2); // move r1 = r2 ; int64 <- int8
inline void z_lghr(Register r1, Register r2); // move r1 = r2 ; int64 <- int16
inline void z_lgfr(Register r1, Register r2); // move r1 = r2 ; int64 <- int32
inline void z_lgr(Register r1, Register r2); // move r1 = r2 ; int64
// move, zero extend
inline void z_llhr( Register r1, Register r2); // move r1 = r2 ; uint32 <- uint16
inline void z_llgcr(Register r1, Register r2); // move r1 = r2 ; uint64 <- uint8
inline void z_llghr(Register r1, Register r2); // move r1 = r2 ; uint64 <- uint16
inline void z_llgfr(Register r1, Register r2); // move r1 = r2 ; uint64 <- uint32
// move and test register
inline void z_ltr(Register r1, Register r2); // load/move and test r1 = r2; int32
inline void z_ltgr(Register r1, Register r2); // load/move and test r1 = r2; int64
inline void z_ltgfr(Register r1, Register r2); // load/move and test r1 = r2; int64 <-- int32
// move and byte-reverse
inline void z_lrvr( Register r1, Register r2); // move and reverse byte order r1 = r2; int32
inline void z_lrvgr(Register r1, Register r2); // move and reverse byte order r1 = r2; int64
// Arithmetic instructions (Integer only)
// ======================================
// For float arithmetic instructions scroll further down
// Add logical differs in the condition codes set!
// add registers
inline void z_ar( Register r1, Register r2); // add r1 = r1 + r2 ; int32
inline void z_agr( Register r1, Register r2); // add r1 = r1 + r2 ; int64
inline void z_agfr( Register r1, Register r2); // add r1 = r1 + r2 ; int64 <- int32
inline void z_ark( Register r1, Register r2, Register r3); // add r1 = r2 + r3 ; int32
inline void z_agrk( Register r1, Register r2, Register r3); // add r1 = r2 + r3 ; int64
inline void z_alr( Register r1, Register r2); // add logical r1 = r1 + r2 ; int32
inline void z_algr( Register r1, Register r2); // add logical r1 = r1 + r2 ; int64
inline void z_algfr(Register r1, Register r2); // add logical r1 = r1 + r2 ; int64 <- int32
inline void z_alrk( Register r1, Register r2, Register r3); // add logical r1 = r2 + r3 ; int32
inline void z_algrk(Register r1, Register r2, Register r3); // add logical r1 = r2 + r3 ; int64
inline void z_alcgr(Register r1, Register r2); // add logical with carry r1 = r1 + r2 + c ; int64
// add immediate
inline void z_ahi( Register r1, int64_t i2); // add r1 = r1 + i2_imm16 ; int32
inline void z_afi( Register r1, int64_t i2); // add r1 = r1 + i2_imm32 ; int32
inline void z_alfi( Register r1, int64_t i2); // add r1 = r1 + i2_imm32 ; int32
inline void z_aghi( Register r1, int64_t i2); // add logical r1 = r1 + i2_imm16 ; int64
inline void z_agfi( Register r1, int64_t i2); // add r1 = r1 + i2_imm32 ; int64
inline void z_algfi(Register r1, int64_t i2); // add logical r1 = r1 + i2_imm32 ; int64
inline void z_ahik( Register r1, Register r3, int64_t i2); // add r1 = r3 + i2_imm16 ; int32
inline void z_aghik(Register r1, Register r3, int64_t i2); // add r1 = r3 + i2_imm16 ; int64
inline void z_aih( Register r1, int64_t i2); // add r1 = r1 + i2_imm32 ; int32 (HiWord)
// add memory
inline void z_a( Register r1, int64_t d2, Register x2, Register b2); // add r1 = r1 + *(d2_uimm12+s2+b2) ; int32
inline void z_ay( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+s2+b2) ; int32
inline void z_ag( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+s2+b2) ; int64
inline void z_agf( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2) ; int64 <- int32
inline void z_al( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_uimm12+x2+b2) ; int32
inline void z_aly( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2) ; int32
inline void z_alg( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2) ; int64
inline void z_algf(Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2) ; int64 <- int32
inline void z_a( Register r1, const Address& a); // add r1 = r1 + *(a) ; int32
inline void z_ay( Register r1, const Address& a); // add r1 = r1 + *(a) ; int32
inline void z_al( Register r1, const Address& a); // add r1 = r1 + *(a) ; int32
inline void z_aly( Register r1, const Address& a); // add r1 = r1 + *(a) ; int32
inline void z_ag( Register r1, const Address& a); // add r1 = r1 + *(a) ; int64
inline void z_agf( Register r1, const Address& a); // add r1 = r1 + *(a) ; int64 <- int32
inline void z_alg( Register r1, const Address& a); // add r1 = r1 + *(a) ; int64
inline void z_algf(Register r1, const Address& a); // add r1 = r1 + *(a) ; int64 <- int32
inline void z_alhsik( Register r1, Register r3, int64_t i2); // add logical r1 = r3 + i2_imm16 ; int32
inline void z_alghsik(Register r1, Register r3, int64_t i2); // add logical r1 = r3 + i2_imm16 ; int64
inline void z_asi( int64_t d1, Register b1, int64_t i2); // add *(d1_imm20+b1) += i2_imm8 ; int32 -- z10
inline void z_agsi( int64_t d1, Register b1, int64_t i2); // add *(d1_imm20+b1) += i2_imm8 ; int64 -- z10
inline void z_alsi( int64_t d1, Register b1, int64_t i2); // add logical *(d1_imm20+b1) += i2_imm8 ; uint32 -- z10
inline void z_algsi(int64_t d1, Register b1, int64_t i2); // add logical *(d1_imm20+b1) += i2_imm8 ; uint64 -- z10
inline void z_asi( const Address& d, int64_t i2); // add *(d) += i2_imm8 ; int32 -- z10
inline void z_agsi( const Address& d, int64_t i2); // add *(d) += i2_imm8 ; int64 -- z10
inline void z_alsi( const Address& d, int64_t i2); // add logical *(d) += i2_imm8 ; uint32 -- z10
inline void z_algsi(const Address& d, int64_t i2); // add logical *(d) += i2_imm8 ; uint64 -- z10
// sign adjustment
inline void z_lcr( Register r1, Register r2 = noreg); // neg r1 = -r2 ; int32
inline void z_lcgr( Register r1, Register r2 = noreg); // neg r1 = -r2 ; int64
inline void z_lcgfr(Register r1, Register r2); // neg r1 = -r2 ; int64 <- int32
inline void z_lnr( Register r1, Register r2 = noreg); // neg r1 = -|r2| ; int32
inline void z_lngr( Register r1, Register r2 = noreg); // neg r1 = -|r2| ; int64
inline void z_lngfr(Register r1, Register r2); // neg r1 = -|r2| ; int64 <- int32
inline void z_lpr( Register r1, Register r2 = noreg); // r1 = |r2| ; int32
inline void z_lpgr( Register r1, Register r2 = noreg); // r1 = |r2| ; int64
inline void z_lpgfr(Register r1, Register r2); // r1 = |r2| ; int64 <- int32
// subtract intstructions
// sub registers
inline void z_sr( Register r1, Register r2); // sub r1 = r1 - r2 ; int32
inline void z_sgr( Register r1, Register r2); // sub r1 = r1 - r2 ; int64
inline void z_sgfr( Register r1, Register r2); // sub r1 = r1 - r2 ; int64 <- int32
inline void z_srk( Register r1, Register r2, Register r3); // sub r1 = r2 - r3 ; int32
inline void z_sgrk( Register r1, Register r2, Register r3); // sub r1 = r2 - r3 ; int64
inline void z_slr( Register r1, Register r2); // sub logical r1 = r1 - r2 ; int32
inline void z_slgr( Register r1, Register r2); // sub logical r1 = r1 - r2 ; int64
inline void z_slgfr(Register r1, Register r2); // sub logical r1 = r1 - r2 ; int64 <- int32
inline void z_slrk( Register r1, Register r2, Register r3); // sub logical r1 = r2 - r3 ; int32
inline void z_slgrk(Register r1, Register r2, Register r3); // sub logical r1 = r2 - r3 ; int64
inline void z_slfi( Register r1, int64_t i2); // sub logical r1 = r1 - i2_uimm32 ; int32
inline void z_slgfi(Register r1, int64_t i2); // add logical r1 = r1 - i2_uimm32 ; int64
// sub memory
inline void z_s( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 - *(d2_imm12+x2+b2) ; int32
inline void z_sy( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 + *(d2_imm20+s2+b2) ; int32
inline void z_sg( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 - *(d2_imm12+x2+b2) ; int64
inline void z_sgf( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 - *(d2_imm12+x2+b2) ; int64 - int32
inline void z_slg( Register r1, int64_t d2, Register x2, Register b2); // sub logical r1 = r1 - *(d2_imm20+x2+b2) ; uint64
inline void z_slgf(Register r1, int64_t d2, Register x2, Register b2); // sub logical r1 = r1 - *(d2_imm20+x2+b2) ; uint64 - uint32
inline void z_s( Register r1, const Address& a); // sub r1 = r1 - *(a) ; int32
inline void z_sy( Register r1, const Address& a); // sub r1 = r1 - *(a) ; int32
inline void z_sg( Register r1, const Address& a); // sub r1 = r1 - *(a) ; int64
inline void z_sgf( Register r1, const Address& a); // sub r1 = r1 - *(a) ; int64 - int32
inline void z_slg( Register r1, const Address& a); // sub r1 = r1 - *(a) ; uint64
inline void z_slgf(Register r1, const Address& a); // sub r1 = r1 - *(a) ; uint64 - uint32
inline void z_sh( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 - *(d2_imm12+x2+b2) ; int32 - int16
inline void z_shy( Register r1, int64_t d2, Register x2, Register b2); // sub r1 = r1 - *(d2_imm20+x2+b2) ; int32 - int16
inline void z_sh( Register r1, const Address &a); // sub r1 = r1 - *(d2_imm12+x2+b2) ; int32 - int16
inline void z_shy( Register r1, const Address &a); // sub r1 = r1 - *(d2_imm20+x2+b2) ; int32 - int16
// Multiplication instructions
// mul registers
inline void z_msr( Register r1, Register r2); // mul r1 = r1 * r2 ; int32
inline void z_msgr( Register r1, Register r2); // mul r1 = r1 * r2 ; int64
inline void z_msgfr(Register r1, Register r2); // mul r1 = r1 * r2 ; int64 <- int32
inline void z_mlr( Register r1, Register r2); // mul r1 = r1 * r2 ; int32 unsigned
inline void z_mlgr( Register r1, Register r2); // mul r1 = r1 * r2 ; int64 unsigned
// mul register - memory
inline void z_mhy( Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_msy( Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_msg( Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_msgf(Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_ml( Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_mlg( Register r1, int64_t d2, Register x2, Register b2); // mul r1 = r1 * *(d2+x2+b2)
inline void z_mhy( Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_msy( Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_msg( Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_msgf(Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_ml( Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_mlg( Register r1, const Address& a); // mul r1 = r1 * *(a)
inline void z_msfi( Register r1, int64_t i2); // mult r1 = r1 * i2_imm32; int32 -- z10
inline void z_msgfi(Register r1, int64_t i2); // mult r1 = r1 * i2_imm32; int64 -- z10
inline void z_mhi( Register r1, int64_t i2); // mult r1 = r1 * i2_imm16; int32
inline void z_mghi( Register r1, int64_t i2); // mult r1 = r1 * i2_imm16; int64
// Division instructions
inline void z_dsgr( Register r1, Register r2); // div r1 = r1 / r2 ; int64/int32 needs reg pair!
inline void z_dsgfr(Register r1, Register r2); // div r1 = r1 / r2 ; int64/int32 needs reg pair!
// Logic instructions
// ===================
// and
inline void z_n( Register r1, int64_t d2, Register x2, Register b2);
inline void z_ny( Register r1, int64_t d2, Register x2, Register b2);
inline void z_ng( Register r1, int64_t d2, Register x2, Register b2);
inline void z_n( Register r1, const Address& a);
inline void z_ny( Register r1, const Address& a);
inline void z_ng( Register r1, const Address& a);
inline void z_nr( Register r1, Register r2); // and r1 = r1 & r2 ; int32
inline void z_ngr( Register r1, Register r2); // and r1 = r1 & r2 ; int64
inline void z_nrk( Register r1, Register r2, Register r3); // and r1 = r2 & r3 ; int32
inline void z_ngrk(Register r1, Register r2, Register r3); // and r1 = r2 & r3 ; int64
inline void z_nihh(Register r1, int64_t i2); // and r1 = r1 & i2_imm16 ; and only for bits 0-15
inline void z_nihl(Register r1, int64_t i2); // and r1 = r1 & i2_imm16 ; and only for bits 16-31
inline void z_nilh(Register r1, int64_t i2); // and r1 = r1 & i2_imm16 ; and only for bits 32-47
inline void z_nill(Register r1, int64_t i2); // and r1 = r1 & i2_imm16 ; and only for bits 48-63
inline void z_nihf(Register r1, int64_t i2); // and r1 = r1 & i2_imm32 ; and only for bits 0-31
inline void z_nilf(Register r1, int64_t i2); // and r1 = r1 & i2_imm32 ; and only for bits 32-63 see also MacroAssembler::nilf.
// or
inline void z_o( Register r1, int64_t d2, Register x2, Register b2);
inline void z_oy( Register r1, int64_t d2, Register x2, Register b2);
inline void z_og( Register r1, int64_t d2, Register x2, Register b2);
inline void z_o( Register r1, const Address& a);
inline void z_oy( Register r1, const Address& a);
inline void z_og( Register r1, const Address& a);
inline void z_or( Register r1, Register r2); // or r1 = r1 | r2; int32
inline void z_ogr( Register r1, Register r2); // or r1 = r1 | r2; int64
inline void z_ork( Register r1, Register r2, Register r3); // or r1 = r2 | r3 ; int32
inline void z_ogrk(Register r1, Register r2, Register r3); // or r1 = r2 | r3 ; int64
inline void z_oihh(Register r1, int64_t i2); // or r1 = r1 | i2_imm16 ; or only for bits 0-15
inline void z_oihl(Register r1, int64_t i2); // or r1 = r1 | i2_imm16 ; or only for bits 16-31
inline void z_oilh(Register r1, int64_t i2); // or r1 = r1 | i2_imm16 ; or only for bits 32-47
inline void z_oill(Register r1, int64_t i2); // or r1 = r1 | i2_imm16 ; or only for bits 48-63
inline void z_oihf(Register r1, int64_t i2); // or r1 = r1 | i2_imm32 ; or only for bits 0-31
inline void z_oilf(Register r1, int64_t i2); // or r1 = r1 | i2_imm32 ; or only for bits 32-63
// xor
inline void z_x( Register r1, int64_t d2, Register x2, Register b2);
inline void z_xy( Register r1, int64_t d2, Register x2, Register b2);
inline void z_xg( Register r1, int64_t d2, Register x2, Register b2);
inline void z_x( Register r1, const Address& a);
inline void z_xy( Register r1, const Address& a);
inline void z_xg( Register r1, const Address& a);
inline void z_xr( Register r1, Register r2); // xor r1 = r1 ^ r2 ; int32
inline void z_xgr( Register r1, Register r2); // xor r1 = r1 ^ r2 ; int64
inline void z_xrk( Register r1, Register r2, Register r3); // xor r1 = r2 ^ r3 ; int32
inline void z_xgrk(Register r1, Register r2, Register r3); // xor r1 = r2 ^ r3 ; int64
inline void z_xihf(Register r1, int64_t i2); // xor r1 = r1 ^ i2_imm32 ; or only for bits 0-31
inline void z_xilf(Register r1, int64_t i2); // xor r1 = r1 ^ i2_imm32 ; or only for bits 32-63
// shift
inline void z_sla( Register r1, int64_t d2, Register b2=Z_R0); // shift left r1 = r1 << ((d2+b2)&0x3f) ; int32, only 31 bits shifted, sign preserved!
inline void z_slak(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left r1 = r3 << ((d2+b2)&0x3f) ; int32, only 31 bits shifted, sign preserved!
inline void z_slag(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left r1 = r3 << ((d2+b2)&0x3f) ; int64, only 63 bits shifted, sign preserved!
inline void z_sra( Register r1, int64_t d2, Register b2=Z_R0); // shift right r1 = r1 >> ((d2+b2)&0x3f) ; int32, sign extended
inline void z_srak(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int32, sign extended
inline void z_srag(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int64, sign extended
inline void z_sll( Register r1, int64_t d2, Register b2=Z_R0); // shift left r1 = r1 << ((d2+b2)&0x3f) ; int32, zeros added
inline void z_sllk(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left r1 = r3 << ((d2+b2)&0x3f) ; int32, zeros added
inline void z_sllg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left r1 = r3 << ((d2+b2)&0x3f) ; int64, zeros added
inline void z_srl( Register r1, int64_t d2, Register b2=Z_R0); // shift right r1 = r1 >> ((d2+b2)&0x3f) ; int32, zero extended
inline void z_srlk(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int32, zero extended
inline void z_srlg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int64, zero extended
// rotate
inline void z_rll( Register r1, Register r3, int64_t d2, Register b2=Z_R0); // rot r1 = r3 << (d2+b2 & 0x3f) ; int32 -- z10
inline void z_rllg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // rot r1 = r3 << (d2+b2 & 0x3f) ; int64 -- z10
// rotate the AND/XOR/OR/insert
inline void z_rnsbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then AND selected bits -- z196
inline void z_rxsbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then XOR selected bits -- z196
inline void z_rosbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then OR selected bits -- z196
inline void z_risbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool zero_rest = false); // rotate then INS selected bits -- z196
// memory-immediate instructions (8-bit immediate)
// ===============================================
inline void z_cli( int64_t d1, Register b1, int64_t i2); // compare *(d1_imm12+b1) ^= i2_imm8 ; int8
inline void z_mvi( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) = i2_imm8 ; int8
inline void z_tm( int64_t d1, Register b1, int64_t i2); // test *(d1_imm12+b1) against mask i2_imm8 ; int8
inline void z_ni( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) &= i2_imm8 ; int8
inline void z_oi( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) |= i2_imm8 ; int8
inline void z_xi( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) ^= i2_imm8 ; int8
inline void z_cliy(int64_t d1, Register b1, int64_t i2); // compare *(d1_imm12+b1) ^= i2_imm8 ; int8
inline void z_mviy(int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) = i2_imm8 ; int8
inline void z_tmy( int64_t d1, Register b1, int64_t i2); // test *(d1_imm12+b1) against mask i2_imm8 ; int8
inline void z_niy( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) &= i2_imm8 ; int8
inline void z_oiy( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) |= i2_imm8 ; int8
inline void z_xiy( int64_t d1, Register b1, int64_t i2); // store *(d1_imm12+b1) ^= i2_imm8 ; int8
inline void z_cli( const Address& a, int64_t imm8); // compare *(a) ^= imm8 ; int8
inline void z_mvi( const Address& a, int64_t imm8); // store *(a) = imm8 ; int8
inline void z_tm( const Address& a, int64_t imm8); // test *(a) against mask imm8 ; int8
inline void z_ni( const Address& a, int64_t imm8); // store *(a) &= imm8 ; int8
inline void z_oi( const Address& a, int64_t imm8); // store *(a) |= imm8 ; int8
inline void z_xi( const Address& a, int64_t imm8); // store *(a) ^= imm8 ; int8
inline void z_cliy(const Address& a, int64_t imm8); // compare *(a) ^= imm8 ; int8
inline void z_mviy(const Address& a, int64_t imm8); // store *(a) = imm8 ; int8
inline void z_tmy( const Address& a, int64_t imm8); // test *(a) against mask imm8 ; int8
inline void z_niy( const Address& a, int64_t imm8); // store *(a) &= imm8 ; int8
inline void z_oiy( const Address& a, int64_t imm8); // store *(a) |= imm8 ; int8
inline void z_xiy( const Address& a, int64_t imm8); // store *(a) ^= imm8 ; int8
//------------------------------
// Interlocked-Update
//------------------------------
inline void z_laa( Register r1, Register r3, int64_t d2, Register b2); // load and add int32, signed -- z196
inline void z_laag( Register r1, Register r3, int64_t d2, Register b2); // load and add int64, signed -- z196
inline void z_laal( Register r1, Register r3, int64_t d2, Register b2); // load and add int32, unsigned -- z196
inline void z_laalg(Register r1, Register r3, int64_t d2, Register b2); // load and add int64, unsigned -- z196
inline void z_lan( Register r1, Register r3, int64_t d2, Register b2); // load and and int32 -- z196
inline void z_lang( Register r1, Register r3, int64_t d2, Register b2); // load and and int64 -- z196
inline void z_lax( Register r1, Register r3, int64_t d2, Register b2); // load and xor int32 -- z196
inline void z_laxg( Register r1, Register r3, int64_t d2, Register b2); // load and xor int64 -- z196
inline void z_lao( Register r1, Register r3, int64_t d2, Register b2); // load and or int32 -- z196
inline void z_laog( Register r1, Register r3, int64_t d2, Register b2); // load and or int64 -- z196
inline void z_laa( Register r1, Register r3, const Address& a); // load and add int32, signed -- z196
inline void z_laag( Register r1, Register r3, const Address& a); // load and add int64, signed -- z196
inline void z_laal( Register r1, Register r3, const Address& a); // load and add int32, unsigned -- z196
inline void z_laalg(Register r1, Register r3, const Address& a); // load and add int64, unsigned -- z196
inline void z_lan( Register r1, Register r3, const Address& a); // load and and int32 -- z196
inline void z_lang( Register r1, Register r3, const Address& a); // load and and int64 -- z196
inline void z_lax( Register r1, Register r3, const Address& a); // load and xor int32 -- z196
inline void z_laxg( Register r1, Register r3, const Address& a); // load and xor int64 -- z196
inline void z_lao( Register r1, Register r3, const Address& a); // load and or int32 -- z196
inline void z_laog( Register r1, Register r3, const Address& a); // load and or int64 -- z196
//--------------------------------
// Execution Prediction
//--------------------------------
inline void z_pfd( int64_t m1, int64_t d2, Register x2, Register b2); // prefetch
inline void z_pfd( int64_t m1, Address a);
inline void z_pfdrl(int64_t m1, int64_t i2); // prefetch
inline void z_bpp( int64_t m1, int64_t i2, int64_t d3, Register b3); // branch prediction -- EC12
inline void z_bprp( int64_t m1, int64_t i2, int64_t i3); // branch prediction -- EC12
//-------------------------------
// Transaction Control
//-------------------------------
inline void z_tbegin(int64_t d1, Register b1, int64_t i2); // begin transaction -- EC12
inline void z_tbeginc(int64_t d1, Register b1, int64_t i2); // begin transaction (constrained) -- EC12
inline void z_tend(); // end transaction -- EC12
inline void z_tabort(int64_t d2, Register b2); // abort transaction -- EC12
inline void z_etnd(Register r1); // extract tx nesting depth -- EC12
inline void z_ppa(Register r1, Register r2, int64_t m3); // perform processor assist -- EC12
//---------------------------------
// Conditional Execution
//---------------------------------
inline void z_locr( Register r1, Register r2, branch_condition cc); // if (cc) load r1 = r2 ; int32 -- z196
inline void z_locgr(Register r1, Register r2, branch_condition cc); // if (cc) load r1 = r2 ; int64 -- z196
inline void z_loc( Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) load r1 = *(d2_simm20+b2) ; int32 -- z196
inline void z_locg( Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) load r1 = *(d2_simm20+b2) ; int64 -- z196
inline void z_loc( Register r1, const Address& a, branch_condition cc); // if (cc) load r1 = *(a) ; int32 -- z196
inline void z_locg( Register r1, const Address& a, branch_condition cc); // if (cc) load r1 = *(a) ; int64 -- z196
inline void z_stoc( Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) store *(d2_simm20+b2) = r1 ; int32 -- z196
inline void z_stocg(Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) store *(d2_simm20+b2) = r1 ; int64 -- z196
// Complex CISC instructions
// ==========================
inline void z_cksm( Register r1, Register r2); // checksum. This is NOT CRC32
inline void z_km( Register r1, Register r2); // cipher message
inline void z_kmc( Register r1, Register r2); // cipher message with chaining
inline void z_kma( Register r1, Register r3, Register r2); // cipher message with authentication
inline void z_kmf( Register r1, Register r2); // cipher message with cipher feedback
inline void z_kmctr(Register r1, Register r3, Register r2); // cipher message with counter
inline void z_kmo( Register r1, Register r2); // cipher message with output feedback
inline void z_kimd( Register r1, Register r2); // msg digest (SHA)
inline void z_klmd( Register r1, Register r2); // msg digest (SHA)
inline void z_kmac( Register r1, Register r2); // msg authentication code
inline void z_ex(Register r1, int64_t d2, Register x2, Register b2);// execute
inline void z_exrl(Register r1, int64_t i2); // execute relative long -- z10
inline void z_exrl(Register r1, address a2); // execute relative long -- z10
inline void z_ectg(int64_t d1, Register b1, int64_t d2, Register b2, Register r3); // extract cpu time
inline void z_ecag(Register r1, Register r3, int64_t d2, Register b2); // extract CPU attribute
inline void z_srst(Register r1, Register r2); // search string
inline void z_srstu(Register r1, Register r2); // search string unicode
inline void z_mvc(const Address& d, const Address& s, int64_t l); // move l bytes
inline void z_mvc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2); // move l+1 bytes
inline void z_mvcle(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // move region of memory
inline void z_stfle(int64_t d2, Register b2); // store facility list extended
inline void z_nc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);// and *(d1+b1) = *(d1+l+b1) & *(d2+b2) ; d1, d2: uimm12, ands l+1 bytes
inline void z_oc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);// or *(d1+b1) = *(d1+l+b1) | *(d2+b2) ; d1, d2: uimm12, ors l+1 bytes
inline void z_xc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);// xor *(d1+b1) = *(d1+l+b1) ^ *(d2+b2) ; d1, d2: uimm12, xors l+1 bytes
inline void z_nc(Address dst, int64_t len, Address src2); // and *dst = *dst & *src2, ands len bytes in memory
inline void z_oc(Address dst, int64_t len, Address src2); // or *dst = *dst | *src2, ors len bytes in memory
inline void z_xc(Address dst, int64_t len, Address src2); // xor *dst = *dst ^ *src2, xors len bytes in memory
// compare instructions
inline void z_clc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2); // compare (*(d1_uimm12+b1), *(d1_uimm12+b1)) ; compare l bytes
inline void z_clcle(Register r1, Register r3, int64_t d2, Register b2); // compare logical long extended, see docu
inline void z_clclu(Register r1, Register r3, int64_t d2, Register b2); // compare logical long unicode, see docu
// Translate characters
inline void z_troo(Register r1, Register r2, int64_t m3);
inline void z_trot(Register r1, Register r2, int64_t m3);
inline void z_trto(Register r1, Register r2, int64_t m3);
inline void z_trtt(Register r1, Register r2, int64_t m3);
//---------------------------
//-- Vector Instructions --
//---------------------------
//---< Vector Support Instructions >---
// Load (transfer from memory)
inline void z_vlm( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vl( VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vleb( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vleh( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vlef( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vleg( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
// Gather/Scatter
inline void z_vgef( VectorRegister v1, int64_t d2, VectorRegister vx2, Register b2, int64_t m3);
inline void z_vgeg( VectorRegister v1, int64_t d2, VectorRegister vx2, Register b2, int64_t m3);
inline void z_vscef( VectorRegister v1, int64_t d2, VectorRegister vx2, Register b2, int64_t m3);
inline void z_vsceg( VectorRegister v1, int64_t d2, VectorRegister vx2, Register b2, int64_t m3);
// load and replicate
inline void z_vlrep( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vlrepb(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vlreph(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vlrepf(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vlrepg(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vllez( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vllezb(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vllezh(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vllezf(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vllezg(VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vlbb( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vll( VectorRegister v1, Register r3, int64_t d2, Register b2);
// Load (register to register)
inline void z_vlr( VectorRegister v1, VectorRegister v2);
inline void z_vlgv( Register r1, VectorRegister v3, int64_t d2, Register b2, int64_t m4);
inline void z_vlgvb( Register r1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vlgvh( Register r1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vlgvf( Register r1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vlgvg( Register r1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vlvg( VectorRegister v1, Register r3, int64_t d2, Register b2, int64_t m4);
inline void z_vlvgb( VectorRegister v1, Register r3, int64_t d2, Register b2);
inline void z_vlvgh( VectorRegister v1, Register r3, int64_t d2, Register b2);
inline void z_vlvgf( VectorRegister v1, Register r3, int64_t d2, Register b2);
inline void z_vlvgg( VectorRegister v1, Register r3, int64_t d2, Register b2);
inline void z_vlvgp( VectorRegister v1, Register r2, Register r3);
// vector register pack
inline void z_vpk( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vpkh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpkf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpkg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpks( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4, int64_t cc5);
inline void z_vpksh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpksf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpksg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpkshs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpksfs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpksgs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpkls( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4, int64_t cc5);
inline void z_vpklsh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpklsf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpklsg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpklshs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpklsfs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vpklsgs(VectorRegister v1, VectorRegister v2, VectorRegister v3);
// vector register unpack (sign-extended)
inline void z_vuph( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vuphb( VectorRegister v1, VectorRegister v2);
inline void z_vuphh( VectorRegister v1, VectorRegister v2);
inline void z_vuphf( VectorRegister v1, VectorRegister v2);
inline void z_vupl( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vuplb( VectorRegister v1, VectorRegister v2);
inline void z_vuplh( VectorRegister v1, VectorRegister v2);
inline void z_vuplf( VectorRegister v1, VectorRegister v2);
// vector register unpack (zero-extended)
inline void z_vuplh( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vuplhb( VectorRegister v1, VectorRegister v2);
inline void z_vuplhh( VectorRegister v1, VectorRegister v2);
inline void z_vuplhf( VectorRegister v1, VectorRegister v2);
inline void z_vupll( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vupllb( VectorRegister v1, VectorRegister v2);
inline void z_vupllh( VectorRegister v1, VectorRegister v2);
inline void z_vupllf( VectorRegister v1, VectorRegister v2);
// vector register merge high/low
inline void z_vmrh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmrhb(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrhh(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrhf(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrhg(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrl( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmrlb(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrlh(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrlf(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmrlg(VectorRegister v1, VectorRegister v2, VectorRegister v3);
// vector register permute
inline void z_vperm( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
inline void z_vpdi( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
// vector register replicate
inline void z_vrep( VectorRegister v1, VectorRegister v3, int64_t imm2, int64_t m4);
inline void z_vrepb( VectorRegister v1, VectorRegister v3, int64_t imm2);
inline void z_vreph( VectorRegister v1, VectorRegister v3, int64_t imm2);
inline void z_vrepf( VectorRegister v1, VectorRegister v3, int64_t imm2);
inline void z_vrepg( VectorRegister v1, VectorRegister v3, int64_t imm2);
inline void z_vrepi( VectorRegister v1, int64_t imm2, int64_t m3);
inline void z_vrepib(VectorRegister v1, int64_t imm2);
inline void z_vrepih(VectorRegister v1, int64_t imm2);
inline void z_vrepif(VectorRegister v1, int64_t imm2);
inline void z_vrepig(VectorRegister v1, int64_t imm2);
inline void z_vsel( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
inline void z_vseg( VectorRegister v1, VectorRegister v2, int64_t imm3);
// Load (immediate)
inline void z_vleib( VectorRegister v1, int64_t imm2, int64_t m3);
inline void z_vleih( VectorRegister v1, int64_t imm2, int64_t m3);
inline void z_vleif( VectorRegister v1, int64_t imm2, int64_t m3);
inline void z_vleig( VectorRegister v1, int64_t imm2, int64_t m3);
// Store
inline void z_vstm( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vst( VectorRegister v1, int64_t d2, Register x2, Register b2);
inline void z_vsteb( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vsteh( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vstef( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vsteg( VectorRegister v1, int64_t d2, Register x2, Register b2, int64_t m3);
inline void z_vstl( VectorRegister v1, Register r3, int64_t d2, Register b2);
// Misc
inline void z_vgm( VectorRegister v1, int64_t imm2, int64_t imm3, int64_t m4);
inline void z_vgmb( VectorRegister v1, int64_t imm2, int64_t imm3);
inline void z_vgmh( VectorRegister v1, int64_t imm2, int64_t imm3);
inline void z_vgmf( VectorRegister v1, int64_t imm2, int64_t imm3);
inline void z_vgmg( VectorRegister v1, int64_t imm2, int64_t imm3);
inline void z_vgbm( VectorRegister v1, int64_t imm2);
inline void z_vzero( VectorRegister v1); // preferred method to set vreg to all zeroes
inline void z_vone( VectorRegister v1); // preferred method to set vreg to all ones
//---< Vector Arithmetic Instructions >---
// Load
inline void z_vlc( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vlcb( VectorRegister v1, VectorRegister v2);
inline void z_vlch( VectorRegister v1, VectorRegister v2);
inline void z_vlcf( VectorRegister v1, VectorRegister v2);
inline void z_vlcg( VectorRegister v1, VectorRegister v2);
inline void z_vlp( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vlpb( VectorRegister v1, VectorRegister v2);
inline void z_vlph( VectorRegister v1, VectorRegister v2);
inline void z_vlpf( VectorRegister v1, VectorRegister v2);
inline void z_vlpg( VectorRegister v1, VectorRegister v2);
// ADD
inline void z_va( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vab( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vah( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vaf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vag( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vaq( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vacc( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vaccb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vacch( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vaccf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vaccg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vaccq( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// SUB
inline void z_vs( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vsb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsq( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vscbi( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vscbib( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vscbih( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vscbif( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vscbig( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vscbiq( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// MULTIPLY
inline void z_vml( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmlh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vme( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmle( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmo( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmlo( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
// MULTIPLY & ADD
inline void z_vmal( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmah( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmalh( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmae( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmale( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmao( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vmalo( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
// VECTOR SUM
inline void z_vsum( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vsumb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsumh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsumg( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vsumgh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsumgf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsumq( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vsumqf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsumqg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// Average
inline void z_vavg( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vavgb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavgh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavgf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavgg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavgl( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vavglb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavglh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavglf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vavglg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// VECTOR Galois Field Multiply Sum
inline void z_vgfm( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vgfmb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vgfmh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vgfmf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vgfmg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// VECTOR Galois Field Multiply Sum and Accumulate
inline void z_vgfma( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t m5);
inline void z_vgfmab( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
inline void z_vgfmah( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
inline void z_vgfmaf( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
inline void z_vgfmag( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4);
//---< Vector Logical Instructions >---
// AND
inline void z_vn( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vnc( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// XOR
inline void z_vx( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// NOR
inline void z_vno( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// OR
inline void z_vo( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// Comparison (element-wise)
inline void z_vceq( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4, int64_t cc5);
inline void z_vceqb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqbs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqhs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqfs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vceqgs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vch( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4, int64_t cc5);
inline void z_vchb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchbs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchhs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchfs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchgs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchl( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4, int64_t cc5);
inline void z_vchlb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlbs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlhs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlfs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vchlgs( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// Max/Min (element-wise)
inline void z_vmx( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmxb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxl( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmxlb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxlh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxlf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmxlg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmn( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmnb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmng( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnl( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vmnlb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnlh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnlf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vmnlg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// Leading/Trailing Zeros, population count
inline void z_vclz( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vclzb( VectorRegister v1, VectorRegister v2);
inline void z_vclzh( VectorRegister v1, VectorRegister v2);
inline void z_vclzf( VectorRegister v1, VectorRegister v2);
inline void z_vclzg( VectorRegister v1, VectorRegister v2);
inline void z_vctz( VectorRegister v1, VectorRegister v2, int64_t m3);
inline void z_vctzb( VectorRegister v1, VectorRegister v2);
inline void z_vctzh( VectorRegister v1, VectorRegister v2);
inline void z_vctzf( VectorRegister v1, VectorRegister v2);
inline void z_vctzg( VectorRegister v1, VectorRegister v2);
inline void z_vpopct( VectorRegister v1, VectorRegister v2, int64_t m3);
// Rotate/Shift
inline void z_verllv( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_verllvb(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_verllvh(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_verllvf(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_verllvg(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_verll( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2, int64_t m4);
inline void z_verllb( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_verllh( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_verllf( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_verllg( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_verim( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4, int64_t m5);
inline void z_verimb( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4);
inline void z_verimh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4);
inline void z_verimf( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4);
inline void z_verimg( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4);
inline void z_veslv( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_veslvb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_veslvh( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_veslvf( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_veslvg( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesl( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2, int64_t m4);
inline void z_veslb( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_veslh( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_veslf( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_veslg( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrav( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vesravb(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesravh(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesravf(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesravg(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesra( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2, int64_t m4);
inline void z_vesrab( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrah( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesraf( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrag( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrlv( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t m4);
inline void z_vesrlvb(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesrlvh(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesrlvf(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesrlvg(VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vesrl( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2, int64_t m4);
inline void z_vesrlb( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrlh( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrlf( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vesrlg( VectorRegister v1, VectorRegister v3, int64_t d2, Register b2);
inline void z_vsl( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vslb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsldb( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4);
inline void z_vsra( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsrab( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsrl( VectorRegister v1, VectorRegister v2, VectorRegister v3);
inline void z_vsrlb( VectorRegister v1, VectorRegister v2, VectorRegister v3);
// Test under Mask
inline void z_vtm( VectorRegister v1, VectorRegister v2);
//---< Vector String Instructions >---
inline void z_vfae( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4, int64_t cc5); // Find any element
inline void z_vfaeb( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfaeh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfaef( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfee( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4, int64_t cc5); // Find element equal
inline void z_vfeeb( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfeeh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfeef( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfene( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t imm4, int64_t cc5); // Find element not equal
inline void z_vfeneb( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfeneh( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vfenef( VectorRegister v1, VectorRegister v2, VectorRegister v3, int64_t cc5);
inline void z_vstrc( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t imm5, int64_t cc6); // String range compare
inline void z_vstrcb( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t cc6);
inline void z_vstrch( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t cc6);
inline void z_vstrcf( VectorRegister v1, VectorRegister v2, VectorRegister v3, VectorRegister v4, int64_t cc6);
inline void z_vistr( VectorRegister v1, VectorRegister v2, int64_t imm3, int64_t cc5); // Isolate String
inline void z_vistrb( VectorRegister v1, VectorRegister v2, int64_t cc5);
inline void z_vistrh( VectorRegister v1, VectorRegister v2, int64_t cc5);
inline void z_vistrf( VectorRegister v1, VectorRegister v2, int64_t cc5);
inline void z_vistrbs(VectorRegister v1, VectorRegister v2);
inline void z_vistrhs(VectorRegister v1, VectorRegister v2);
inline void z_vistrfs(VectorRegister v1, VectorRegister v2);
// Floatingpoint instructions
// ==========================
// compare instructions
inline void z_cebr(FloatRegister r1, FloatRegister r2); // compare (r1, r2) ; float
inline void z_ceb(FloatRegister r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_imm12+x2+b2)) ; float
inline void z_ceb(FloatRegister r1, const Address &a); // compare (r1, *(d2_imm12+x2+b2)) ; float
inline void z_cdbr(FloatRegister r1, FloatRegister r2); // compare (r1, r2) ; double
inline void z_cdb(FloatRegister r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_imm12+x2+b2)) ; double
inline void z_cdb(FloatRegister r1, const Address &a); // compare (r1, *(d2_imm12+x2+b2)) ; double
// load instructions
inline void z_le( FloatRegister r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2) ; float
inline void z_ley(FloatRegister r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; float
inline void z_ld( FloatRegister r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2) ; double
inline void z_ldy(FloatRegister r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; double
inline void z_le( FloatRegister r1, const Address &a); // load r1 = *(a) ; float
inline void z_ley(FloatRegister r1, const Address &a); // load r1 = *(a) ; float
inline void z_ld( FloatRegister r1, const Address &a); // load r1 = *(a) ; double
inline void z_ldy(FloatRegister r1, const Address &a); // load r1 = *(a) ; double
// store instructions
inline void z_ste( FloatRegister r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; float
inline void z_stey(FloatRegister r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2) = r1 ; float
inline void z_std( FloatRegister r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1 ; double
inline void z_stdy(FloatRegister r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2) = r1 ; double
inline void z_ste( FloatRegister r1, const Address &a); // store *(a) = r1 ; float
inline void z_stey(FloatRegister r1, const Address &a); // store *(a) = r1 ; float
inline void z_std( FloatRegister r1, const Address &a); // store *(a) = r1 ; double
inline void z_stdy(FloatRegister r1, const Address &a); // store *(a) = r1 ; double
// load and store immediates
inline void z_lzer(FloatRegister r1); // r1 = 0 ; single
inline void z_lzdr(FloatRegister r1); // r1 = 0 ; double
// Move and Convert instructions
inline void z_ler(FloatRegister r1, FloatRegister r2); // move r1 = r2 ; float
inline void z_ldr(FloatRegister r1, FloatRegister r2); // move r1 = r2 ; double
inline void z_ledbr(FloatRegister r1, FloatRegister r2); // conv / round r1 = r2 ; float <- double
inline void z_ldebr(FloatRegister r1, FloatRegister r2); // conv r1 = r2 ; double <- float
// move between integer and float registers
inline void z_cefbr( FloatRegister r1, Register r2); // r1 = r2; float <-- int32
inline void z_cdfbr( FloatRegister r1, Register r2); // r1 = r2; double <-- int32
inline void z_cegbr( FloatRegister r1, Register r2); // r1 = r2; float <-- int64
inline void z_cdgbr( FloatRegister r1, Register r2); // r1 = r2; double <-- int64
// rounding mode for float-2-int conversions
inline void z_cfebr(Register r1, FloatRegister r2, RoundingMode m); // conv r1 = r2 ; int32 <-- float
inline void z_cfdbr(Register r1, FloatRegister r2, RoundingMode m); // conv r1 = r2 ; int32 <-- double
inline void z_cgebr(Register r1, FloatRegister r2, RoundingMode m); // conv r1 = r2 ; int64 <-- float
inline void z_cgdbr(Register r1, FloatRegister r2, RoundingMode m); // conv r1 = r2 ; int64 <-- double
inline void z_ldgr(FloatRegister r1, Register r2); // fr1 = r2 ; what kind of conversion? -- z10
inline void z_lgdr(Register r1, FloatRegister r2); // r1 = fr2 ; what kind of conversion? -- z10
// ADD
inline void z_aebr(FloatRegister f1, FloatRegister f2); // f1 = f1 + f2 ; float
inline void z_adbr(FloatRegister f1, FloatRegister f2); // f1 = f1 + f2 ; double
inline void z_aeb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 + *(d2+x2+b2) ; float
inline void z_adb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 + *(d2+x2+b2) ; double
inline void z_aeb( FloatRegister f1, const Address& a); // f1 = f1 + *(a) ; float
inline void z_adb( FloatRegister f1, const Address& a); // f1 = f1 + *(a) ; double
// SUB
inline void z_sebr(FloatRegister f1, FloatRegister f2); // f1 = f1 - f2 ; float
inline void z_sdbr(FloatRegister f1, FloatRegister f2); // f1 = f1 - f2 ; double
inline void z_seb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 - *(d2+x2+b2) ; float
inline void z_sdb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 - *(d2+x2+b2) ; double
inline void z_seb( FloatRegister f1, const Address& a); // f1 = f1 - *(a) ; float
inline void z_sdb( FloatRegister f1, const Address& a); // f1 = f1 - *(a) ; double
// negate
inline void z_lcebr(FloatRegister r1, FloatRegister r2); // neg r1 = -r2 ; float
inline void z_lcdbr(FloatRegister r1, FloatRegister r2); // neg r1 = -r2 ; double
// Absolute value, monadic if fr2 == noreg.
inline void z_lpdbr( FloatRegister fr1, FloatRegister fr2 = fnoreg); // fr1 = |fr2|
// MUL
inline void z_meebr(FloatRegister f1, FloatRegister f2); // f1 = f1 * f2 ; float
inline void z_mdbr( FloatRegister f1, FloatRegister f2); // f1 = f1 * f2 ; double
inline void z_meeb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 * *(d2+x2+b2) ; float
inline void z_mdb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 * *(d2+x2+b2) ; double
inline void z_meeb( FloatRegister f1, const Address& a);
inline void z_mdb( FloatRegister f1, const Address& a);
// MUL-ADD
inline void z_maebr(FloatRegister f1, FloatRegister f3, FloatRegister f2); // f1 = f3 * f2 + f1 ; float
inline void z_madbr(FloatRegister f1, FloatRegister f3, FloatRegister f2); // f1 = f3 * f2 + f1 ; double
inline void z_msebr(FloatRegister f1, FloatRegister f3, FloatRegister f2); // f1 = f3 * f2 - f1 ; float
inline void z_msdbr(FloatRegister f1, FloatRegister f3, FloatRegister f2); // f1 = f3 * f2 - f1 ; double
inline void z_maeb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) + f1 ; float
inline void z_madb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) + f1 ; double
inline void z_mseb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) - f1 ; float
inline void z_msdb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) - f1 ; double
inline void z_maeb(FloatRegister f1, FloatRegister f3, const Address& a);
inline void z_madb(FloatRegister f1, FloatRegister f3, const Address& a);
inline void z_mseb(FloatRegister f1, FloatRegister f3, const Address& a);
inline void z_msdb(FloatRegister f1, FloatRegister f3, const Address& a);
// DIV
inline void z_debr( FloatRegister f1, FloatRegister f2); // f1 = f1 / f2 ; float
inline void z_ddbr( FloatRegister f1, FloatRegister f2); // f1 = f1 / f2 ; double
inline void z_deb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 / *(d2+x2+b2) ; float
inline void z_ddb( FloatRegister f1, int64_t d2, Register x2, Register b2); // f1 = f1 / *(d2+x2+b2) ; double
inline void z_deb( FloatRegister f1, const Address& a); // f1 = f1 / *(a) ; float
inline void z_ddb( FloatRegister f1, const Address& a); // f1 = f1 / *(a) ; double
// square root
inline void z_sqdbr(FloatRegister fr1, FloatRegister fr2); // fr1 = sqrt(fr2) ; double
inline void z_sqdb( FloatRegister fr1, int64_t d2, Register x2, Register b2); // fr1 = srqt( *(d2+x2+b2)
inline void z_sqdb( FloatRegister fr1, int64_t d2, Register b2); // fr1 = srqt( *(d2+b2)
// Nop instruction
// ===============
// branch never (nop)
inline void z_nop();
inline void nop(); // Used by shared code.
// ===============================================================================================
// Simplified emitters:
// ====================
// Some memory instructions without index register (just convenience).
inline void z_layz(Register r1, int64_t d2, Register b2 = Z_R0);
inline void z_lay(Register r1, int64_t d2, Register b2);
inline void z_laz(Register r1, int64_t d2, Register b2);
inline void z_la(Register r1, int64_t d2, Register b2);
inline void z_l(Register r1, int64_t d2, Register b2);
inline void z_ly(Register r1, int64_t d2, Register b2);
inline void z_lg(Register r1, int64_t d2, Register b2);
inline void z_st(Register r1, int64_t d2, Register b2);
inline void z_sty(Register r1, int64_t d2, Register b2);
inline void z_stg(Register r1, int64_t d2, Register b2);
inline void z_lgf(Register r1, int64_t d2, Register b2);
inline void z_lgh(Register r1, int64_t d2, Register b2);
inline void z_llgh(Register r1, int64_t d2, Register b2);
inline void z_llgf(Register r1, int64_t d2, Register b2);
inline void z_lgb(Register r1, int64_t d2, Register b2);
inline void z_cl( Register r1, int64_t d2, Register b2);
inline void z_c(Register r1, int64_t d2, Register b2);
inline void z_cg(Register r1, int64_t d2, Register b2);
inline void z_sh(Register r1, int64_t d2, Register b2);
inline void z_shy(Register r1, int64_t d2, Register b2);
inline void z_ste(FloatRegister r1, int64_t d2, Register b2);
inline void z_std(FloatRegister r1, int64_t d2, Register b2);
inline void z_stdy(FloatRegister r1, int64_t d2, Register b2);
inline void z_stey(FloatRegister r1, int64_t d2, Register b2);
inline void z_ld(FloatRegister r1, int64_t d2, Register b2);
inline void z_ldy(FloatRegister r1, int64_t d2, Register b2);
inline void z_le(FloatRegister r1, int64_t d2, Register b2);
inline void z_ley(FloatRegister r1, int64_t d2, Register b2);
inline void z_agf(Register r1, int64_t d2, Register b2);
inline void z_exrl(Register r1, Label& L);
inline void z_larl(Register r1, Label& L);
inline void z_bru( Label& L);
inline void z_brul(Label& L);
inline void z_brul(address a);
inline void z_brh( Label& L);
inline void z_brl( Label& L);
inline void z_bre( Label& L);
inline void z_brnh(Label& L);
inline void z_brnl(Label& L);
inline void z_brne(Label& L);
inline void z_brz( Label& L);
inline void z_brnz(Label& L);
inline void z_brnaz(Label& L);
inline void z_braz(Label& L);
inline void z_brnp(Label& L);
inline void z_btrue( Label& L);
inline void z_bfalse(Label& L);
inline void z_bvat(Label& L); // all true
inline void z_bvnt(Label& L); // not all true (mixed or all false)
inline void z_bvmix(Label& L); // mixed true and false
inline void z_bvnf(Label& L); // not all false (mixed or all true)
inline void z_bvaf(Label& L); // all false
inline void z_brno( Label& L);
inline void z_basr(Register r1, Register r2);
inline void z_brasl(Register r1, address a);
inline void z_brct(Register r1, address a);
inline void z_brct(Register r1, Label& L);
inline void z_brxh(Register r1, Register r3, address a);
inline void z_brxh(Register r1, Register r3, Label& L);
inline void z_brxle(Register r1, Register r3, address a);
inline void z_brxle(Register r1, Register r3, Label& L);
inline void z_brxhg(Register r1, Register r3, address a);
inline void z_brxhg(Register r1, Register r3, Label& L);
inline void z_brxlg(Register r1, Register r3, address a);
inline void z_brxlg(Register r1, Register r3, Label& L);
// Ppopulation count intrinsics.
inline void z_flogr(Register r1, Register r2); // find leftmost one
inline void z_popcnt(Register r1, Register r2); // population count
inline void z_ahhhr(Register r1, Register r2, Register r3); // ADD halfword high high
inline void z_ahhlr(Register r1, Register r2, Register r3); // ADD halfword high low
inline void z_tam();
inline void z_stckf(int64_t d2, Register b2);
inline void z_stm( Register r1, Register r3, int64_t d2, Register b2);
inline void z_stmy(Register r1, Register r3, int64_t d2, Register b2);
inline void z_stmg(Register r1, Register r3, int64_t d2, Register b2);
inline void z_lm( Register r1, Register r3, int64_t d2, Register b2);
inline void z_lmy(Register r1, Register r3, int64_t d2, Register b2);
inline void z_lmg(Register r1, Register r3, int64_t d2, Register b2);
inline void z_cs( Register r1, Register r3, int64_t d2, Register b2);
inline void z_csy(Register r1, Register r3, int64_t d2, Register b2);
inline void z_csg(Register r1, Register r3, int64_t d2, Register b2);
inline void z_cs( Register r1, Register r3, const Address& a);
inline void z_csy(Register r1, Register r3, const Address& a);
inline void z_csg(Register r1, Register r3, const Address& a);
inline void z_cvd(Register r1, int64_t d2, Register x2, Register b2);
inline void z_cvdg(Register r1, int64_t d2, Register x2, Register b2);
inline void z_cvd(Register r1, int64_t d2, Register b2);
inline void z_cvdg(Register r1, int64_t d2, Register b2);
// Instruction queries:
// instruction properties and recognize emitted instructions
// ===========================================================
static int nop_size() { return 2; }
static int z_brul_size() { return 6; }
static bool is_z_basr(short x) {
return (BASR_ZOPC == (x & BASR_MASK));
}
static bool is_z_algr(long x) {
return (ALGR_ZOPC == (x & RRE_MASK));
}
static bool is_z_lb(long x) {
return (LB_ZOPC == (x & LB_MASK));
}
static bool is_z_lh(int x) {
return (LH_ZOPC == (x & LH_MASK));
}
static bool is_z_l(int x) {
return (L_ZOPC == (x & L_MASK));
}
static bool is_z_lgr(long x) {
return (LGR_ZOPC == (x & RRE_MASK));
}
static bool is_z_ly(long x) {
return (LY_ZOPC == (x & LY_MASK));
}
static bool is_z_lg(long x) {
return (LG_ZOPC == (x & LG_MASK));
}
static bool is_z_llgh(long x) {
return (LLGH_ZOPC == (x & LLGH_MASK));
}
static bool is_z_llgf(long x) {
return (LLGF_ZOPC == (x & LLGF_MASK));
}
static bool is_z_le(int x) {
return (LE_ZOPC == (x & LE_MASK));
}
static bool is_z_ld(int x) {
return (LD_ZOPC == (x & LD_MASK));
}
static bool is_z_st(int x) {
return (ST_ZOPC == (x & ST_MASK));
}
static bool is_z_stc(int x) {
return (STC_ZOPC == (x & STC_MASK));
}
static bool is_z_stg(long x) {
return (STG_ZOPC == (x & STG_MASK));
}
static bool is_z_sth(int x) {
return (STH_ZOPC == (x & STH_MASK));
}
static bool is_z_ste(int x) {
return (STE_ZOPC == (x & STE_MASK));
}
static bool is_z_std(int x) {
return (STD_ZOPC == (x & STD_MASK));
}
static bool is_z_slag(long x) {
return (SLAG_ZOPC == (x & SLAG_MASK));
}
static bool is_z_tmy(long x) {
return (TMY_ZOPC == (x & TMY_MASK));
}
static bool is_z_tm(long x) {
return ((unsigned int)TM_ZOPC == (x & (unsigned int)TM_MASK));
}
static bool is_z_bcr(long x) {
return (BCR_ZOPC == (x & BCR_MASK));
}
static bool is_z_nop(long x) {
return is_z_bcr(x) && ((x & 0x00ff) == 0);
}
static bool is_z_nop(address x) {
return is_z_nop(* (short *) x);
}
static bool is_z_br(long x) {
return is_z_bcr(x) && ((x & 0x00f0) == 0x00f0);
}
static bool is_z_brc(long x, int cond) {
return ((unsigned int)BRC_ZOPC == (x & BRC_MASK)) && ((cond<<20) == (x & 0x00f00000U));
}
// Make use of lightweight sync.
static bool is_z_sync_full(long x) {
return is_z_bcr(x) && (((x & 0x00f0)>>4)==bcondFullSync) && ((x & 0x000f)==0x0000);
}
static bool is_z_sync_light(long x) {
return is_z_bcr(x) && (((x & 0x00f0)>>4)==bcondLightSync) && ((x & 0x000f)==0x0000);
}
static bool is_z_sync(long x) {
return is_z_sync_full(x) || is_z_sync_light(x);
}
static bool is_z_brasl(long x) {
return (BRASL_ZOPC == (x & BRASL_MASK));
}
static bool is_z_brasl(address a) {
long x = (*((long *)a))>>16;
return is_z_brasl(x);
}
static bool is_z_larl(long x) {
return (LARL_ZOPC == (x & LARL_MASK));
}
static bool is_z_lgrl(long x) {
return (LGRL_ZOPC == (x & LGRL_MASK));
}
static bool is_z_lgrl(address a) {
long x = (*((long *)a))>>16;
return is_z_lgrl(x);
}
static bool is_z_lghi(unsigned long x) {
return (unsigned int)LGHI_ZOPC == (x & (unsigned int)LGHI_MASK);
}
static bool is_z_llill(unsigned long x) {
return (unsigned int)LLILL_ZOPC == (x & (unsigned int)LLI_MASK);
}
static bool is_z_llilh(unsigned long x) {
return (unsigned int)LLILH_ZOPC == (x & (unsigned int)LLI_MASK);
}
static bool is_z_llihl(unsigned long x) {
return (unsigned int)LLIHL_ZOPC == (x & (unsigned int)LLI_MASK);
}
static bool is_z_llihh(unsigned long x) {
return (unsigned int)LLIHH_ZOPC == (x & (unsigned int)LLI_MASK);
}
static bool is_z_llilf(unsigned long x) {
return LLILF_ZOPC == (x & LLIF_MASK);
}
static bool is_z_llihf(unsigned long x) {
return LLIHF_ZOPC == (x & LLIF_MASK);
}
static bool is_z_iill(unsigned long x) {
return (unsigned int)IILL_ZOPC == (x & (unsigned int)II_MASK);
}
static bool is_z_iilh(unsigned long x) {
return (unsigned int)IILH_ZOPC == (x & (unsigned int)II_MASK);
}
static bool is_z_iihl(unsigned long x) {
return (unsigned int)IIHL_ZOPC == (x & (unsigned int)II_MASK);
}
static bool is_z_iihh(unsigned long x) {
return (unsigned int)IIHH_ZOPC == (x & (unsigned int)II_MASK);
}
static bool is_z_iilf(unsigned long x) {
return IILF_ZOPC == (x & IIF_MASK);
}
static bool is_z_iihf(unsigned long x) {
return IIHF_ZOPC == (x & IIF_MASK);
}
static inline bool is_equal(unsigned long inst, unsigned long idef);
static inline bool is_equal(unsigned long inst, unsigned long idef, unsigned long imask);
static inline bool is_equal(address iloc, unsigned long idef);
static inline bool is_equal(address iloc, unsigned long idef, unsigned long imask);
static inline bool is_sigtrap_range_check(address pc);
static inline bool is_sigtrap_zero_check(address pc);
//-----------------
// memory barriers
//-----------------
// machine barrier instructions:
//
// - z_sync Two-way memory barrier, aka fence.
// Only load-after-store-order is not guaranteed in the
// z/Architecture memory model, i.e. only 'fence' is needed.
//
// semantic barrier instructions:
// (as defined in orderAccess.hpp)
//
// - z_release orders Store|Store, empty implementation
// Load|Store
// - z_acquire orders Load|Store, empty implementation
// Load|Load
// - z_fence orders Store|Store, implemented as z_sync.
// Load|Store,
// Load|Load,
// Store|Load
//
// For this implementation to be correct, we need H/W fixes on (very) old H/W:
// For z990, it is Driver-55: MCL232 in the J13484 (i390/ML) Stream.
// For z9, it is Driver-67: MCL065 in the G40963 (i390/ML) Stream.
// These drivers are a prereq. Otherwise, memory synchronization will not work.
inline void z_sync();
inline void z_release();
inline void z_acquire();
inline void z_fence();
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) { }
};
#endif // CPU_S390_VM_ASSEMBLER_S390_HPP