blob: 43da23b7fab8256da8707627431f086cfd7afeec [file] [log] [blame]
/*
* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "vm_version_arm.hpp"
#include <sys/auxv.h>
#include <asm/hwcap.h>
#ifndef HWCAP_AES
#define HWCAP_AES 1 << 3
#endif
bool VM_Version::_is_initialized = false;
bool VM_Version::_has_simd = false;
extern "C" {
typedef bool (*check_simd_t)();
}
#ifdef COMPILER2
#define __ _masm->
class VM_Version_StubGenerator: public StubCodeGenerator {
public:
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
address generate_check_simd() {
StubCodeMark mark(this, "VM_Version", "check_simd");
address start = __ pc();
__ vcnt(Stemp, Stemp);
__ mov(R0, 1);
__ ret(LR);
return start;
};
};
#undef __
#endif
extern "C" address check_simd_fault_instr;
void VM_Version::initialize() {
ResourceMark rm;
// Making this stub must be FIRST use of assembler
const int stub_size = 128;
BufferBlob* stub_blob = BufferBlob::create("get_cpu_info", stub_size);
if (stub_blob == NULL) {
vm_exit_during_initialization("Unable to allocate get_cpu_info stub");
}
if (UseFMA) {
warning("FMA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseFMA, false);
}
if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (UseCRC32Intrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
warning("CRC32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
}
if (UseCRC32CIntrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics))
warning("CRC32C intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (UseAdler32Intrinsics) {
warning("Adler32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
if (UseVectorizedMismatchIntrinsic) {
warning("vectorizedMismatch intrinsic is not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
CodeBuffer c(stub_blob);
#ifdef COMPILER2
VM_Version_StubGenerator g(&c);
address check_simd_pc = g.generate_check_simd();
if (check_simd_pc != NULL) {
check_simd_t check_simd = CAST_TO_FN_PTR(check_simd_t, check_simd_pc);
check_simd_fault_instr = (address)check_simd;
_has_simd = check_simd();
} else {
assert(! _has_simd, "default _has_simd value must be 'false'");
}
#endif
unsigned long auxv = getauxval(AT_HWCAP);
char buf[512];
jio_snprintf(buf, sizeof(buf), "AArch64%s",
((auxv & HWCAP_AES) ? ", aes" : ""));
_features_string = os::strdup(buf);
#ifdef COMPILER2
if (auxv & HWCAP_AES) {
if (FLAG_IS_DEFAULT(UseAES)) {
FLAG_SET_DEFAULT(UseAES, true);
}
if (!UseAES) {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} else {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
}
}
} else
#endif
if (UseAES || UseAESIntrinsics) {
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
_supports_cx8 = true;
_supports_atomic_getset4 = true;
_supports_atomic_getadd4 = true;
_supports_atomic_getset8 = true;
_supports_atomic_getadd8 = true;
// TODO-AARCH64 revise C2 flags
if (has_simd()) {
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
}
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 128);
}
#ifdef COMPILER2
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
if (FLAG_IS_DEFAULT(MaxVectorSize)) {
// FLAG_SET_DEFAULT(MaxVectorSize, has_simd() ? 16 : 8);
// SIMD/NEON can use 16, but default is 8 because currently
// larger than 8 will disable instruction scheduling
FLAG_SET_DEFAULT(MaxVectorSize, 8);
}
if (MaxVectorSize > 16) {
FLAG_SET_DEFAULT(MaxVectorSize, 8);
}
#endif
if (FLAG_IS_DEFAULT(Tier4CompileThreshold)) {
Tier4CompileThreshold = 10000;
}
if (FLAG_IS_DEFAULT(Tier3InvocationThreshold)) {
Tier3InvocationThreshold = 1000;
}
if (FLAG_IS_DEFAULT(Tier3CompileThreshold)) {
Tier3CompileThreshold = 5000;
}
if (FLAG_IS_DEFAULT(Tier3MinInvocationThreshold)) {
Tier3MinInvocationThreshold = 500;
}
FLAG_SET_DEFAULT(TypeProfileLevel, 0); // unsupported
// This machine does not allow unaligned memory accesses
if (UseUnalignedAccesses) {
if (!FLAG_IS_DEFAULT(UseUnalignedAccesses))
warning("Unaligned memory access is not available on this CPU");
FLAG_SET_DEFAULT(UseUnalignedAccesses, false);
}
_is_initialized = true;
}
bool VM_Version::use_biased_locking() {
// TODO-AARCH64 measure performance and revise
// The cost of CAS on uniprocessor ARM v6 and later is low compared to the
// overhead related to slightly longer Biased Locking execution path.
// Testing shows no improvement when running with Biased Locking enabled
// on an ARMv6 and higher uniprocessor systems. The situation is different on
// ARMv5 and MP systems.
//
// Therefore the Biased Locking is enabled on ARMv5 and ARM MP only.
//
return os::is_MP();
}