blob: 424d862404c5db006370acc9ee158bf16cdbd146 [file] [log] [blame]
/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ARM_VM_NATIVEINST_ARM_64_HPP
#define CPU_ARM_VM_NATIVEINST_ARM_64_HPP
#include "asm/macroAssembler.hpp"
#include "code/codeCache.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
// -------------------------------------------------------------------
// Some experimental projects extend the ARM back-end by implementing
// what the front-end usually assumes is a single native instruction
// with a sequence of instructions.
//
// The 'Raw' variants are the low level initial code (usually one
// instruction wide but some of them were already composed
// instructions). They should be used only by the back-end.
//
// The non-raw classes are the front-end entry point, hiding potential
// back-end extensions or the actual instructions size.
class NativeInstruction;
class RawNativeInstruction {
public:
enum ARM_specific {
instruction_size = Assembler::InstructionSize,
instruction_size_in_bits = instruction_size * BitsPerByte,
};
// illegal instruction used by NativeJump::patch_verified_entry
static const int zombie_illegal_instruction = 0xd4000542; // hvc #42
address addr_at(int offset) const { return (address)this + offset; }
address instruction_address() const { return addr_at(0); }
address next_raw_instruction_address() const { return addr_at(instruction_size); }
static RawNativeInstruction* at(address address) {
return (RawNativeInstruction*)address;
}
RawNativeInstruction* next_raw() const {
return at(next_raw_instruction_address());
}
int encoding() const {
return *(int*)this;
}
void set_encoding(int value) {
int old = encoding();
if (old != value) {
*(int*)this = value;
ICache::invalidate_word((address)this);
}
}
bool is_nop() const { return encoding() == (int)0xd503201f; }
bool is_b() const { return (encoding() & 0xfc000000) == 0x14000000; } // unconditional branch
bool is_b_cond() const { return (encoding() & 0xff000010) == 0x54000000; } // conditional branch
bool is_bl() const { return (encoding() & 0xfc000000) == 0x94000000; }
bool is_br() const { return (encoding() & 0xfffffc1f) == 0xd61f0000; }
bool is_blr() const { return (encoding() & 0xfffffc1f) == 0xd63f0000; }
bool is_ldr_literal() const { return (encoding() & 0xff000000) == 0x58000000; }
bool is_adr_aligned() const { return (encoding() & 0xff000000) == 0x10000000; } // adr Xn, <label>, where label is aligned to 4 bytes (address of instruction).
bool is_adr_aligned_lr() const { return (encoding() & 0xff00001f) == 0x1000001e; } // adr LR, <label>, where label is aligned to 4 bytes (address of instruction).
bool is_ldr_str_gp_reg_unsigned_imm() const { return (encoding() & 0x3f000000) == 0x39000000; } // ldr/str{b, sb, h, sh, _w, sw} Rt, [Rn, #imm]
bool is_ldr_str_fp_reg_unsigned_imm() const { return (encoding() & 0x3f000000) == 0x3D000000; } // ldr/str Rt(SIMD), [Rn, #imm]
bool is_ldr_str_reg_unsigned_imm() const { return is_ldr_str_gp_reg_unsigned_imm() || is_ldr_str_fp_reg_unsigned_imm(); }
bool is_stp_preindex() const { return (encoding() & 0xffc00000) == 0xa9800000; } // stp Xt1, Xt2, [Xn, #imm]!
bool is_ldp_postindex() const { return (encoding() & 0xffc00000) == 0xa8c00000; } // ldp Xt1, Xt2, [Xn] #imm
bool is_mov_sp() const { return (encoding() & 0xfffffc00) == 0x91000000; } // mov <Xn|SP>, <Xm|SP>
bool is_movn() const { return (encoding() & 0x7f800000) == 0x12800000; }
bool is_movz() const { return (encoding() & 0x7f800000) == 0x52800000; }
bool is_movk() const { return (encoding() & 0x7f800000) == 0x72800000; }
bool is_orr_imm() const { return (encoding() & 0x7f800000) == 0x32000000; }
bool is_cmp_rr() const { return (encoding() & 0x7fe00000) == 0x6b000000; }
bool is_csel() const { return (encoding() & 0x7fe00000) == 0x1a800000; }
bool is_sub_shift() const { return (encoding() & 0x7f200000) == 0x4b000000; } // sub Rd, Rn, shift (Rm, imm)
bool is_mov() const { return (encoding() & 0x7fe0ffe0) == 0x2a0003e0; } // mov Rd, Rm (orr Rd, ZR, shift (Rm, 0))
bool is_tst() const { return (encoding() & 0x7f20001f) == 0x6a00001f; } // tst Rn, shift (Rm, imm) (ands ZR, Rn, shift(Rm, imm))
bool is_lsr_imm() const { return (encoding() & 0x7f807c00) == 0x53007c00; } // lsr Rd, Rn, imm (ubfm Rd, Rn, imm, 31/63)
bool is_far_jump() const { return is_ldr_literal() && next_raw()->is_br(); }
bool is_fat_call() const {
return
#ifdef COMPILER2
(is_blr() && next_raw()->is_b()) ||
#endif
(is_adr_aligned_lr() && next_raw()->is_br());
}
bool is_far_call() const {
return is_ldr_literal() && next_raw()->is_fat_call();
}
bool is_ic_near_call() const { return is_adr_aligned_lr() && next_raw()->is_b(); }
bool is_ic_far_call() const { return is_adr_aligned_lr() && next_raw()->is_ldr_literal() && next_raw()->next_raw()->is_br(); }
bool is_ic_call() const { return is_ic_near_call() || is_ic_far_call(); }
bool is_jump() const { return is_b() || is_far_jump(); }
bool is_call() const { return is_bl() || is_far_call() || is_ic_call(); }
bool is_branch() const { return is_b() || is_bl(); }
// c2 doesn't use fixed registers for safepoint poll address
bool is_safepoint_poll() const {
return true;
}
bool is_save_all_registers(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_stp_preindex()) return false; current = current->next_raw();
for (int i = 28; i >= 0; i -= 2) {
if (!current->is_stp_preindex()) return false; current = current->next_raw();
}
if (!current->is_adr_aligned()) return false; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
bool is_restore_all_registers(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
for (int i = 0; i <= 28; i += 2) {
if (!current->is_ldp_postindex()) return false; current = current->next_raw();
}
if (!current->is_ldp_postindex()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
const RawNativeInstruction* skip_bind_literal() const {
const RawNativeInstruction* current = this;
if (((uintptr_t)current) % wordSize != 0) {
assert(current->is_nop(), "should be");
current = current->next_raw();
}
assert(((uintptr_t)current) % wordSize == 0, "should be"); // bound literal should be aligned
current = current->next_raw()->next_raw();
return current;
}
bool is_stop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_save_all_registers(&current)) return false;
if (!current->is_ldr_literal()) return false; current = current->next_raw();
if (!current->is_mov_sp()) return false; current = current->next_raw();
if (!current->is_ldr_literal()) return false; current = current->next_raw();
if (!current->is_br()) return false; current = current->next_raw();
current = current->skip_bind_literal();
current = current->skip_bind_literal();
*next = (RawNativeInstruction*) current;
return true;
}
bool is_mov_slow(const RawNativeInstruction** next = NULL) const {
const RawNativeInstruction* current = this;
if (current->is_orr_imm()) {
current = current->next_raw();
} else if (current->is_movn() || current->is_movz()) {
current = current->next_raw();
int movkCount = 0;
while (current->is_movk()) {
movkCount++;
if (movkCount > 3) return false;
current = current->next_raw();
}
} else {
return false;
}
if (next != NULL) {
*next = (RawNativeInstruction*)current;
}
return true;
}
#ifdef ASSERT
void skip_verify_heapbase(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (CheckCompressedOops) {
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
if (!current->is_stp_preindex()) return; current = current->next_raw();
// NOTE: temporary workaround, remove with m6-01?
// skip saving condition flags
current = current->next_raw();
current = current->next_raw();
if (!current->is_mov_slow(&current)) return;
if (!current->is_cmp_rr()) return; current = current->next_raw();
if (!current->is_b_cond()) return; current = current->next_raw();
if (!current->is_stop(&current)) return;
#ifdef COMPILER2
if (current->is_nop()) current = current->next_raw();
#endif
// NOTE: temporary workaround, remove with m6-01?
// skip restoring condition flags
current = current->next_raw();
current = current->next_raw();
if (!current->is_ldp_postindex()) return; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
}
*next = (RawNativeInstruction*) current;
}
#endif // ASSERT
bool is_ldr_global_ptr(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_mov_slow(&current)) return false;
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
void skip_verify_oop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (VerifyOops) {
if (!current->is_save_all_registers(&current)) return;
if (current->is_mov()) {
current = current->next_raw();
}
if (!current->is_mov_sp()) return; current = current->next_raw();
if (!current->is_ldr_literal()) return; current = current->next_raw();
if (!current->is_ldr_global_ptr(&current)) return;
if (!current->is_blr()) return; current = current->next_raw();
if (!current->is_restore_all_registers(&current)) return;
if (!current->is_b()) return; current = current->next_raw();
current = current->skip_bind_literal();
}
*next = (RawNativeInstruction*) current;
}
void skip_encode_heap_oop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
assert (Universe::heap() != NULL, "java heap should be initialized");
#ifdef ASSERT
current->skip_verify_heapbase(&current);
#endif // ASSERT
current->skip_verify_oop(&current);
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
if (!current->is_lsr_imm()) return; current = current->next_raw();
} else {
if (current->is_mov()) {
current = current->next_raw();
}
}
} else {
if (!current->is_tst()) return; current = current->next_raw();
if (!current->is_csel()) return; current = current->next_raw();
if (!current->is_sub_shift()) return; current = current->next_raw();
if (Universe::narrow_oop_shift() != 0) {
if (!current->is_lsr_imm()) return; current = current->next_raw();
}
}
*next = (RawNativeInstruction*) current;
}
void verify();
// For unit tests
static void test() {}
private:
void check_bits_range(int bits, int scale, int low_bit) const {
assert((0 <= low_bit) && (0 < bits) && (low_bit + bits <= instruction_size_in_bits), "invalid bits range");
assert((0 <= scale) && (scale <= 4), "scale is out of range");
}
void set_imm(int imm_encoding, int bits, int low_bit) {
int imm_mask = right_n_bits(bits) << low_bit;
assert((imm_encoding & ~imm_mask) == 0, "invalid imm encoding");
set_encoding((encoding() & ~imm_mask) | imm_encoding);
}
protected:
// Returns signed immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
int get_signed_imm(int bits, int scale, int low_bit) const {
check_bits_range(bits, scale, low_bit);
int high_bits_to_clean = (instruction_size_in_bits - (low_bit + bits));
return encoding() << high_bits_to_clean >> (high_bits_to_clean + low_bit) << scale;
}
// Puts given signed immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
void set_signed_imm(int value, int bits, int scale, int low_bit) {
set_imm(Assembler::encode_imm(value, bits, scale, low_bit), bits, low_bit);
}
// Returns unsigned immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
int get_unsigned_imm(int bits, int scale, int low_bit) const {
check_bits_range(bits, scale, low_bit);
return ((encoding() >> low_bit) & right_n_bits(bits)) << scale;
}
// Puts given unsigned immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
void set_unsigned_imm(int value, int bits, int scale, int low_bit) {
set_imm(Assembler::encode_unsigned_imm(value, bits, scale, low_bit), bits, low_bit);
}
int get_signed_offset(int bits, int low_bit) const {
return get_signed_imm(bits, 2, low_bit);
}
void set_signed_offset(int offset, int bits, int low_bit) {
set_signed_imm(offset, bits, 2, low_bit);
}
};
inline RawNativeInstruction* rawNativeInstruction_at(address address) {
RawNativeInstruction* instr = RawNativeInstruction::at(address);
#ifdef ASSERT
instr->verify();
#endif // ASSERT
return instr;
}
// -------------------------------------------------------------------
// Load/store register (unsigned scaled immediate)
class NativeMovRegMem: public RawNativeInstruction {
private:
int get_offset_scale() const {
return get_unsigned_imm(2, 0, 30);
}
public:
int offset() const {
return get_unsigned_imm(12, get_offset_scale(), 10);
}
void set_offset(int x);
void add_offset_in_bytes(int add_offset) {
set_offset(offset() + add_offset);
}
};
inline NativeMovRegMem* nativeMovRegMem_at(address address) {
const RawNativeInstruction* instr = rawNativeInstruction_at(address);
#ifdef COMPILER1
// NOP required for C1 patching
if (instr->is_nop()) {
instr = instr->next_raw();
}
#endif
instr->skip_encode_heap_oop(&instr);
assert(instr->is_ldr_str_reg_unsigned_imm(), "must be");
return (NativeMovRegMem*)instr;
}
// -------------------------------------------------------------------
class NativeInstruction : public RawNativeInstruction {
public:
static NativeInstruction* at(address address) {
return (NativeInstruction*)address;
}
public:
// No need to consider indirections while parsing NativeInstruction
address next_instruction_address() const {
return next_raw_instruction_address();
}
// next() is no longer defined to avoid confusion.
//
// The front end and most classes except for those defined in nativeInst_arm
// or relocInfo_arm should only use next_instruction_address(), skipping
// over composed instruction and ignoring back-end extensions.
//
// The back-end can use next_raw() when it knows the instruction sequence
// and only wants to skip a single native instruction.
};
inline NativeInstruction* nativeInstruction_at(address address) {
NativeInstruction* instr = NativeInstruction::at(address);
#ifdef ASSERT
instr->verify();
#endif // ASSERT
return instr;
}
// -------------------------------------------------------------------
class NativeInstructionLdrLiteral: public NativeInstruction {
public:
address literal_address() {
address la = instruction_address() + get_signed_offset(19, 5);
assert(la != instruction_address(), "literal points to instruction");
return la;
}
address after_literal_address() {
return literal_address() + wordSize;
}
void set_literal_address(address addr, address pc) {
assert(is_ldr_literal(), "must be");
int opc = (encoding() >> 30) & 0x3;
assert (opc != 0b01 || addr == pc || ((uintx)addr & 7) == 0, "ldr target should be aligned");
set_signed_offset(addr - pc, 19, 5);
}
void set_literal_address(address addr) {
set_literal_address(addr, instruction_address());
}
address literal_value() {
return *(address*)literal_address();
}
void set_literal_value(address dest) {
*(address*)literal_address() = dest;
}
};
inline NativeInstructionLdrLiteral* nativeLdrLiteral_at(address address) {
assert(nativeInstruction_at(address)->is_ldr_literal(), "must be");
return (NativeInstructionLdrLiteral*)address;
}
// -------------------------------------------------------------------
// Common class for branch instructions with 26-bit immediate offset: B (unconditional) and BL
class NativeInstructionBranchImm26: public NativeInstruction {
public:
address destination(int adj = 0) const {
return instruction_address() + get_signed_offset(26, 0) + adj;
}
void set_destination(address dest) {
intptr_t offset = (intptr_t)(dest - instruction_address());
assert((offset & 0x3) == 0, "should be aligned");
set_signed_offset(offset, 26, 0);
}
};
inline NativeInstructionBranchImm26* nativeB_at(address address) {
assert(nativeInstruction_at(address)->is_b(), "must be");
return (NativeInstructionBranchImm26*)address;
}
inline NativeInstructionBranchImm26* nativeBL_at(address address) {
assert(nativeInstruction_at(address)->is_bl(), "must be");
return (NativeInstructionBranchImm26*)address;
}
// -------------------------------------------------------------------
class NativeInstructionAdrLR: public NativeInstruction {
public:
// Returns address which is loaded into LR by this instruction.
address target_lr_value() {
return instruction_address() + get_signed_offset(19, 5);
}
};
inline NativeInstructionAdrLR* nativeAdrLR_at(address address) {
assert(nativeInstruction_at(address)->is_adr_aligned_lr(), "must be");
return (NativeInstructionAdrLR*)address;
}
// -------------------------------------------------------------------
class RawNativeCall: public NativeInstruction {
public:
address return_address() const {
if (is_bl()) {
return next_raw_instruction_address();
} else if (is_far_call()) {
#ifdef COMPILER2
if (next_raw()->is_blr()) {
// ldr_literal; blr; ret_addr: b skip_literal;
return addr_at(2 * instruction_size);
}
#endif
assert(next_raw()->is_adr_aligned_lr() && next_raw()->next_raw()->is_br(), "must be");
return nativeLdrLiteral_at(instruction_address())->after_literal_address();
} else if (is_ic_call()) {
return nativeAdrLR_at(instruction_address())->target_lr_value();
} else {
ShouldNotReachHere();
return NULL;
}
}
address destination(int adj = 0) const {
if (is_bl()) {
return nativeBL_at(instruction_address())->destination(adj);
} else if (is_far_call()) {
return nativeLdrLiteral_at(instruction_address())->literal_value();
} else if (is_adr_aligned_lr()) {
RawNativeInstruction *next = next_raw();
if (next->is_b()) {
// ic_near_call
return nativeB_at(next->instruction_address())->destination(adj);
} else if (next->is_far_jump()) {
// ic_far_call
return nativeLdrLiteral_at(next->instruction_address())->literal_value();
}
}
ShouldNotReachHere();
return NULL;
}
void set_destination(address dest) {
if (is_bl()) {
nativeBL_at(instruction_address())->set_destination(dest);
return;
}
if (is_far_call()) {
nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
OrderAccess::storeload(); // overkill if caller holds lock?
return;
}
if (is_adr_aligned_lr()) {
RawNativeInstruction *next = next_raw();
if (next->is_b()) {
// ic_near_call
nativeB_at(next->instruction_address())->set_destination(dest);
return;
}
if (next->is_far_jump()) {
// ic_far_call
nativeLdrLiteral_at(next->instruction_address())->set_literal_value(dest);
OrderAccess::storeload(); // overkill if caller holds lock?
return;
}
}
ShouldNotReachHere();
}
void set_destination_mt_safe(address dest) {
assert(CodeCache::contains(dest), "call target should be from code cache (required by ic_call and patchable_call)");
set_destination(dest);
}
void verify() {
assert(RawNativeInstruction::is_call(), "should be");
}
void verify_alignment() {
// Nothing to do on ARM
}
};
inline RawNativeCall* rawNativeCall_at(address address) {
RawNativeCall * call = (RawNativeCall*)address;
call->verify();
return call;
}
class NativeCall: public RawNativeCall {
public:
// NativeCall::next_instruction_address() is used only to define the
// range where to look for the relocation information. We need not
// walk over composed instructions (as long as the relocation information
// is associated to the first instruction).
address next_instruction_address() const {
return next_raw_instruction_address();
}
static bool is_call_before(address return_address);
};
inline NativeCall* nativeCall_at(address address) {
NativeCall * call = (NativeCall*)address;
call->verify();
return call;
}
NativeCall* nativeCall_before(address return_address);
// -------------------------------------------------------------------
class NativeGeneralJump: public NativeInstruction {
public:
address jump_destination() const {
return nativeB_at(instruction_address())->destination();
}
static void replace_mt_safe(address instr_addr, address code_buffer);
static void insert_unconditional(address code_pos, address entry);
};
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
assert(nativeInstruction_at(address)->is_b(), "must be");
return (NativeGeneralJump*)address;
}
// -------------------------------------------------------------------
class RawNativeJump: public NativeInstruction {
public:
address jump_destination(int adj = 0) const {
if (is_b()) {
address a = nativeB_at(instruction_address())->destination(adj);
// Jump destination -1 is encoded as a jump to self
if (a == instruction_address()) {
return (address)-1;
}
return a;
} else {
assert(is_far_jump(), "should be");
return nativeLdrLiteral_at(instruction_address())->literal_value();
}
}
void set_jump_destination(address dest) {
if (is_b()) {
// Jump destination -1 is encoded as a jump to self
if (dest == (address)-1) {
dest = instruction_address();
}
nativeB_at(instruction_address())->set_destination(dest);
} else {
assert(is_far_jump(), "should be");
nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
}
}
};
inline RawNativeJump* rawNativeJump_at(address address) {
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
return (RawNativeJump*)address;
}
// -------------------------------------------------------------------
class NativeMovConstReg: public NativeInstruction {
NativeMovConstReg *adjust() const {
return (NativeMovConstReg *)adjust(this);
}
public:
static RawNativeInstruction *adjust(const RawNativeInstruction *ni) {
#ifdef COMPILER1
// NOP required for C1 patching
if (ni->is_nop()) {
return ni->next_raw();
}
#endif
return (RawNativeInstruction *)ni;
}
intptr_t _data() const;
void set_data(intptr_t x);
intptr_t data() const {
return adjust()->_data();
}
bool is_pc_relative() {
return adjust()->is_ldr_literal();
}
void _set_pc_relative_offset(address addr, address pc) {
assert(is_ldr_literal(), "must be");
nativeLdrLiteral_at(instruction_address())->set_literal_address(addr, pc);
}
void set_pc_relative_offset(address addr, address pc) {
NativeMovConstReg *ni = adjust();
int dest_adj = ni->instruction_address() - instruction_address();
ni->_set_pc_relative_offset(addr, pc + dest_adj);
}
address _next_instruction_address() const {
#ifdef COMPILER2
if (is_movz()) {
// narrow constant
RawNativeInstruction* ni = next_raw();
assert(ni->is_movk(), "movz;movk expected");
return ni->next_raw_instruction_address();
}
#endif
assert(is_ldr_literal(), "must be");
return NativeInstruction::next_raw_instruction_address();
}
address next_instruction_address() const {
return adjust()->_next_instruction_address();
}
};
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
RawNativeInstruction* ni = rawNativeInstruction_at(address);
ni = NativeMovConstReg::adjust(ni);
assert(ni->is_mov_slow() || ni->is_ldr_literal(), "must be");
return (NativeMovConstReg*)address;
}
// -------------------------------------------------------------------
class NativeJump: public RawNativeJump {
public:
static void check_verified_entry_alignment(address entry, address verified_entry);
static void patch_verified_entry(address entry, address verified_entry, address dest);
};
inline NativeJump* nativeJump_at(address address) {
assert(nativeInstruction_at(address)->is_jump(), "must be");
return (NativeJump*)address;
}
#endif // CPU_ARM_VM_NATIVEINST_ARM_64_HPP