blob: 77694f6bfc9094c2284cbe588b76a3cfabfc3bd6 [file] [log] [blame]
/*
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "assembler_arm.inline.hpp"
#include "code/codeCache.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_arm.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#include "code/icBuffer.hpp"
int NativeMovRegMem::offset() const {
switch (kind()) {
case instr_ldr_str:
return encoding() & 0xfff;
case instr_ldrh_strh:
return (encoding() & 0x0f) | ((encoding() >> 4) & 0xf0);
case instr_fld_fst:
return (encoding() & 0xff) << 2;
default:
ShouldNotReachHere();
return 0;
}
}
void NativeMovRegMem::set_offset(int x) {
assert(x >= 0 && x < 65536, "encoding constraint");
const int Rt = Rtemp->encoding();
// If offset is too large to be placed into single ldr/str instruction, we replace
// ldr Rd, [Rn, #offset]
// nop
// with
// add Rtemp, Rn, #offset_hi
// ldr Rd, [Rtemp, #offset_lo]
switch (kind()) {
case instr_ldr_str:
if (x < 4096) {
set_encoding((encoding() & 0xfffff000) | x);
} else {
NativeInstruction* next = nativeInstruction_at(next_raw_instruction_address());
assert(next->is_nop(), "must be");
next->set_encoding((encoding() & 0xfff0f000) | Rt << 16 | (x & 0xfff));
this->set_encoding((encoding() & 0x000f0000) | Rt << 12 | x >> 12 | 0xe2800a00);
}
break;
case instr_ldrh_strh:
if (x < 256) {
set_encoding((encoding() & 0xfffff0f0) | (x & 0x0f) | (x & 0xf0) << 4);
} else {
NativeInstruction* next = nativeInstruction_at(next_raw_instruction_address());
assert(next->is_nop(), "must be");
next->set_encoding((encoding() & 0xfff0f0f0) | Rt << 16 | (x & 0x0f) | (x & 0xf0) << 4);
this->set_encoding((encoding() & 0x000f0000) | Rt << 12 | x >> 8 | 0xe2800c00);
}
break;
case instr_fld_fst:
if (x < 1024) {
set_encoding((encoding() & 0xffffff00) | (x >> 2));
} else {
NativeInstruction* next = nativeInstruction_at(next_raw_instruction_address());
assert(next->is_nop(), "must be");
next->set_encoding((encoding() & 0xfff0ff00) | Rt << 16 | ((x >> 2) & 0xff));
this->set_encoding((encoding() & 0x000f0000) | Rt << 12 | x >> 10 | 0xe2800b00);
}
break;
default:
ShouldNotReachHere();
}
}
intptr_t NativeMovConstReg::data() const {
RawNativeInstruction* next = next_raw();
if (is_movw()) {
// Oop embedded in movw/movt instructions
assert(VM_Version::supports_movw(), "must be");
return (this->encoding() & 0x00000fff) | (this->encoding() & 0x000f0000) >> 4 |
(next->encoding() & 0x00000fff) << 16 | (next->encoding() & 0x000f0000) << 12;
} else {
// Oop is loaded from oops section or inlined in the code
int oop_offset;
if (is_ldr_literal()) {
// ldr Rd, [PC, #offset]
oop_offset = ldr_offset();
} else {
assert(next->is_ldr(), "must be");
oop_offset = (this->encoding() & 0xff) << 12 | (next->encoding() & 0xfff);
if (is_add_pc()) {
// add Rd, PC, #offset_hi
// ldr Rd, [Rd, #offset_lo]
assert(next->encoding() & (1 << 23), "sign mismatch");
// offset OK (both positive)
} else {
assert(is_sub_pc(), "must be");
// sub Rd, PC, #offset_hi
// ldr Rd, [Rd, -#offset_lo]
assert(!(next->encoding() & (1 << 23)), "sign mismatch");
// negative offsets
oop_offset = -oop_offset;
}
}
return *(int*)(instruction_address() + 8 + oop_offset);
}
}
void NativeMovConstReg::set_data(intptr_t x, address pc) {
// Find and replace the oop corresponding to this instruction in oops section
RawNativeInstruction* next = next_raw();
oop* oop_addr = NULL;
Metadata** metadata_addr = NULL;
CodeBlob* cb = CodeCache::find_blob(instruction_address());
if (cb != NULL) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next->instruction_address());
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_addr = iter.oop_reloc()->oop_addr();
*oop_addr = cast_to_oop(x);
break;
} else if (iter.type() == relocInfo::metadata_type) {
metadata_addr = iter.metadata_reloc()->metadata_addr();
*metadata_addr = (Metadata*)x;
break;
}
}
}
}
if (is_movw()) {
// data embedded in movw/movt instructions
assert(VM_Version::supports_movw(), "must be");
unsigned int lo = (unsigned int)x;
unsigned int hi = (unsigned int)(x >> 16);
this->set_encoding((this->encoding() & 0xfff0f000) | (lo & 0xf000) << 4 | (lo & 0xfff));
next->set_encoding((next->encoding() & 0xfff0f000) | (hi & 0xf000) << 4 | (hi & 0xfff));
} else if (oop_addr == NULL & metadata_addr == NULL) {
// A static ldr_literal (without oop or metadata relocation)
assert(is_ldr_literal(), "must be");
int offset = ldr_offset();
oop_addr = (oop*)(instruction_address() + 8 + offset);
*oop_addr = cast_to_oop(x);
} else {
// data is loaded from oop or metadata section
int offset;
address addr = oop_addr != NULL ? (address)oop_addr : (address)metadata_addr;
if(pc == 0) {
offset = addr - instruction_address() - 8;
} else {
offset = addr - pc - 8;
}
int sign = (offset >= 0) ? (1 << 23) : 0;
int delta = (offset >= 0) ? offset : (-offset);
assert(delta < 0x100000, "within accessible range");
if (is_ldr_literal()) {
// fix the ldr with the real offset to the oop/metadata table
assert(next->is_nop(), "must be");
if (delta < 4096) {
// ldr Rd, [PC, #offset]
set_encoding((encoding() & 0xff7ff000) | delta | sign);
assert(ldr_offset() == offset, "check encoding");
} else {
int cc = encoding() & 0xf0000000;
int Rd = (encoding() >> 12) & 0xf;
int Rt = Rd;
assert(Rt != 0xf, "Illegal destination register"); // or fix by using Rtemp
// move the ldr, fixing delta_lo and the source register
next->set_encoding((encoding() & 0xff70f000) | (Rt << 16) | (delta & 0xfff) | sign);
assert(next->is_ldr(), "must be");
if (offset > 0) {
// add Rt, PC, #delta_hi
// ldr Rd, [Rt, #delta_lo]
this->set_encoding((Rt << 12) | (delta >> 12) | 0x028f0a00 | cc);
assert(is_add_pc(), "must be");
} else {
// sub Rt, PC, #delta_hi
// ldr Rd, [Rt, -#delta_lo]
this->set_encoding((Rt << 12) | (delta >> 12) | 0x024f0a00 | cc);
assert(is_sub_pc(), "must be");
}
}
} else {
assert(is_pc_rel(), "must be");
assert(next->is_ldr(), "must be");
if (offset > 0) {
// add Rt, PC, #delta_hi
this->set_encoding((this->encoding() & 0xf00ff000) | 0x02800a00 | (delta >> 12));
assert(is_add_pc(), "must be");
} else {
// sub Rt, PC, #delta_hi
this->set_encoding((this->encoding() & 0xf00ff000) | 0x02400a00 | (delta >> 12));
assert(is_sub_pc(), "must be");
}
// ldr Rd, Rt, #delta_lo (or -#delta_lo)
next->set_encoding((next->encoding() & 0xff7ff000) | (delta & 0xfff) | sign);
}
}
}
void NativeMovConstReg::set_pc_relative_offset(address addr, address pc) {
int offset;
if (pc == 0) {
offset = addr - instruction_address() - 8;
} else {
offset = addr - pc - 8;
}
RawNativeInstruction* next = next_raw();
int sign = (offset >= 0) ? (1 << 23) : 0;
int delta = (offset >= 0) ? offset : (-offset);
assert(delta < 0x100000, "within accessible range");
if (is_ldr_literal()) {
if (delta < 4096) {
// ldr Rd, [PC, #offset]
set_encoding((encoding() & 0xff7ff000) | delta | sign);
assert(ldr_offset() == offset, "check encoding");
} else {
assert(next->is_nop(), "must be");
int cc = encoding() & 0xf0000000;
int Rd = (encoding() >> 12) & 0xf;
int Rt = Rd;
assert(Rt != 0xf, "Illegal destination register"); // or fix by using Rtemp
// move the ldr, fixing delta_lo and the source register
next->set_encoding((encoding() & 0xff70f000) | (Rt << 16) | (delta & 0xfff) | sign);
assert(next->is_ldr(), "must be");
if (offset > 0) {
// add Rt, PC, #delta_hi
// ldr Rd, [Rt, #delta_lo]
this->set_encoding((Rt << 12) | (delta >> 12) | 0x028f0a00 | cc);
assert(is_add_pc(), "must be");
} else {
// sub Rt, PC, #delta_hi
// ldr Rd, [Rt, -#delta_lo]
this->set_encoding((Rt << 12) | (delta >> 12) | 0x024f0a00 | cc);
assert(is_sub_pc(), "must be");
}
}
} else {
assert(is_pc_rel(), "must be");
assert(next->is_ldr(), "must be");
if (offset > 0) {
// add Rt, PC, #delta_hi
this->set_encoding((this->encoding() & 0xf00ff000) | 0x02800a00 | (delta >> 12));
assert(is_add_pc(), "must be");
} else {
// sub Rt, PC, #delta_hi
this->set_encoding((this->encoding() & 0xf00ff000) | 0x02400a00 | (delta >> 12));
assert(is_sub_pc(), "must be");
}
// ldr Rd, Rt, #delta_lo (or -#delta_lo)
next->set_encoding((next->encoding() & 0xff7ff000) | (delta & 0xfff) | sign);
}
}
void RawNativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
}
void RawNativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "should be");
int *a = (int *)verified_entry;
a[0] = zombie_illegal_instruction; // always illegal
ICache::invalidate_range((address)&a[0], sizeof a[0]);
}
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
int offset = (int)(entry - code_pos - 8);
assert(offset < 0x2000000 && offset > -0x2000000, "encoding constraint");
nativeInstruction_at(code_pos)->set_encoding(0xea000000 | ((unsigned int)offset << 6 >> 8));
}
static address raw_call_for(address return_address) {
CodeBlob* cb = CodeCache::find_blob(return_address);
nmethod* nm = cb->as_nmethod_or_null();
if (nm == NULL) {
ShouldNotReachHere();
return NULL;
}
// Look back 4 instructions, to allow for ic_call
address begin = MAX2(return_address - 4*NativeInstruction::instruction_size, nm->code_begin());
RelocIterator iter(nm, begin, return_address);
while (iter.next()) {
Relocation* reloc = iter.reloc();
if (reloc->is_call()) {
address call = reloc->addr();
if (nativeInstruction_at(call)->is_call()) {
if (nativeCall_at(call)->return_address() == return_address) {
return call;
}
} else {
// Some "calls" are really jumps
assert(nativeInstruction_at(call)->is_jump(), "must be call or jump");
}
}
}
return NULL;
}
bool RawNativeCall::is_call_before(address return_address) {
return (raw_call_for(return_address) != NULL);
}
NativeCall* rawNativeCall_before(address return_address) {
address call = raw_call_for(return_address);
assert(call != NULL, "must be");
return nativeCall_at(call);
}