blob: 5d5a6c871b36154600d04dac87a63667e68507b4 [file] [log] [blame]
//
// Copyright (c) 2008, 2014, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
// ARM Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding, vm name );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
// FIXME: above comment seems wrong. Spill done through MachSpillCopyNode
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// ----------------------------
// Integer/Long Registers
// ----------------------------
// TODO: would be nice to keep track of high-word state:
// zeroRegI --> RegL
// signedRegI --> RegL
// junkRegI --> RegL
// how to tell C2 to treak RegI as RegL, or RegL as RegI?
reg_def R_R0 (SOC, SOC, Op_RegI, 0, R0->as_VMReg());
reg_def R_R0x (SOC, SOC, Op_RegI, 255, R0->as_VMReg()->next());
reg_def R_R1 (SOC, SOC, Op_RegI, 1, R1->as_VMReg());
reg_def R_R1x (SOC, SOC, Op_RegI, 255, R1->as_VMReg()->next());
reg_def R_R2 (SOC, SOC, Op_RegI, 2, R2->as_VMReg());
reg_def R_R2x (SOC, SOC, Op_RegI, 255, R2->as_VMReg()->next());
reg_def R_R3 (SOC, SOC, Op_RegI, 3, R3->as_VMReg());
reg_def R_R3x (SOC, SOC, Op_RegI, 255, R3->as_VMReg()->next());
reg_def R_R4 (SOC, SOC, Op_RegI, 4, R4->as_VMReg());
reg_def R_R4x (SOC, SOC, Op_RegI, 255, R4->as_VMReg()->next());
reg_def R_R5 (SOC, SOC, Op_RegI, 5, R5->as_VMReg());
reg_def R_R5x (SOC, SOC, Op_RegI, 255, R5->as_VMReg()->next());
reg_def R_R6 (SOC, SOC, Op_RegI, 6, R6->as_VMReg());
reg_def R_R6x (SOC, SOC, Op_RegI, 255, R6->as_VMReg()->next());
reg_def R_R7 (SOC, SOC, Op_RegI, 7, R7->as_VMReg());
reg_def R_R7x (SOC, SOC, Op_RegI, 255, R7->as_VMReg()->next());
reg_def R_R8 (SOC, SOC, Op_RegI, 8, R8->as_VMReg());
reg_def R_R8x (SOC, SOC, Op_RegI, 255, R8->as_VMReg()->next());
reg_def R_R9 (SOC, SOC, Op_RegI, 9, R9->as_VMReg());
reg_def R_R9x (SOC, SOC, Op_RegI, 255, R9->as_VMReg()->next());
reg_def R_R10 (SOC, SOC, Op_RegI, 10, R10->as_VMReg());
reg_def R_R10x(SOC, SOC, Op_RegI, 255, R10->as_VMReg()->next());
reg_def R_R11 (SOC, SOC, Op_RegI, 11, R11->as_VMReg());
reg_def R_R11x(SOC, SOC, Op_RegI, 255, R11->as_VMReg()->next());
reg_def R_R12 (SOC, SOC, Op_RegI, 12, R12->as_VMReg());
reg_def R_R12x(SOC, SOC, Op_RegI, 255, R12->as_VMReg()->next());
reg_def R_R13 (SOC, SOC, Op_RegI, 13, R13->as_VMReg());
reg_def R_R13x(SOC, SOC, Op_RegI, 255, R13->as_VMReg()->next());
reg_def R_R14 (SOC, SOC, Op_RegI, 14, R14->as_VMReg());
reg_def R_R14x(SOC, SOC, Op_RegI, 255, R14->as_VMReg()->next());
reg_def R_R15 (SOC, SOC, Op_RegI, 15, R15->as_VMReg());
reg_def R_R15x(SOC, SOC, Op_RegI, 255, R15->as_VMReg()->next());
reg_def R_R16 (SOC, SOC, Op_RegI, 16, R16->as_VMReg()); // IP0
reg_def R_R16x(SOC, SOC, Op_RegI, 255, R16->as_VMReg()->next());
reg_def R_R17 (SOC, SOC, Op_RegI, 17, R17->as_VMReg()); // IP1
reg_def R_R17x(SOC, SOC, Op_RegI, 255, R17->as_VMReg()->next());
reg_def R_R18 (SOC, SOC, Op_RegI, 18, R18->as_VMReg()); // Platform Register
reg_def R_R18x(SOC, SOC, Op_RegI, 255, R18->as_VMReg()->next());
reg_def R_R19 (SOC, SOE, Op_RegI, 19, R19->as_VMReg());
reg_def R_R19x(SOC, SOE, Op_RegI, 255, R19->as_VMReg()->next());
reg_def R_R20 (SOC, SOE, Op_RegI, 20, R20->as_VMReg());
reg_def R_R20x(SOC, SOE, Op_RegI, 255, R20->as_VMReg()->next());
reg_def R_R21 (SOC, SOE, Op_RegI, 21, R21->as_VMReg());
reg_def R_R21x(SOC, SOE, Op_RegI, 255, R21->as_VMReg()->next());
reg_def R_R22 (SOC, SOE, Op_RegI, 22, R22->as_VMReg());
reg_def R_R22x(SOC, SOE, Op_RegI, 255, R22->as_VMReg()->next());
reg_def R_R23 (SOC, SOE, Op_RegI, 23, R23->as_VMReg());
reg_def R_R23x(SOC, SOE, Op_RegI, 255, R23->as_VMReg()->next());
reg_def R_R24 (SOC, SOE, Op_RegI, 24, R24->as_VMReg());
reg_def R_R24x(SOC, SOE, Op_RegI, 255, R24->as_VMReg()->next());
reg_def R_R25 (SOC, SOE, Op_RegI, 25, R25->as_VMReg());
reg_def R_R25x(SOC, SOE, Op_RegI, 255, R25->as_VMReg()->next());
reg_def R_R26 (SOC, SOE, Op_RegI, 26, R26->as_VMReg());
reg_def R_R26x(SOC, SOE, Op_RegI, 255, R26->as_VMReg()->next());
reg_def R_R27 (SOC, SOE, Op_RegI, 27, R27->as_VMReg()); // Rheap_base
reg_def R_R27x(SOC, SOE, Op_RegI, 255, R27->as_VMReg()->next()); // Rheap_base
reg_def R_R28 ( NS, SOE, Op_RegI, 28, R28->as_VMReg()); // TLS
reg_def R_R28x( NS, SOE, Op_RegI, 255, R28->as_VMReg()->next()); // TLS
reg_def R_R29 ( NS, SOE, Op_RegI, 29, R29->as_VMReg()); // FP
reg_def R_R29x( NS, SOE, Op_RegI, 255, R29->as_VMReg()->next()); // FP
reg_def R_R30 (SOC, SOC, Op_RegI, 30, R30->as_VMReg()); // LR
reg_def R_R30x(SOC, SOC, Op_RegI, 255, R30->as_VMReg()->next()); // LR
reg_def R_ZR ( NS, NS, Op_RegI, 31, ZR->as_VMReg()); // ZR
reg_def R_ZRx( NS, NS, Op_RegI, 255, ZR->as_VMReg()->next()); // ZR
// FIXME
//reg_def R_SP ( NS, NS, Op_RegP, 32, SP->as_VMReg());
reg_def R_SP ( NS, NS, Op_RegI, 32, SP->as_VMReg());
//reg_def R_SPx( NS, NS, Op_RegP, 255, SP->as_VMReg()->next());
reg_def R_SPx( NS, NS, Op_RegI, 255, SP->as_VMReg()->next());
// ----------------------------
// Float/Double/Vector Registers
// ----------------------------
reg_def R_V0(SOC, SOC, Op_RegF, 0, V0->as_VMReg());
reg_def R_V1(SOC, SOC, Op_RegF, 1, V1->as_VMReg());
reg_def R_V2(SOC, SOC, Op_RegF, 2, V2->as_VMReg());
reg_def R_V3(SOC, SOC, Op_RegF, 3, V3->as_VMReg());
reg_def R_V4(SOC, SOC, Op_RegF, 4, V4->as_VMReg());
reg_def R_V5(SOC, SOC, Op_RegF, 5, V5->as_VMReg());
reg_def R_V6(SOC, SOC, Op_RegF, 6, V6->as_VMReg());
reg_def R_V7(SOC, SOC, Op_RegF, 7, V7->as_VMReg());
reg_def R_V8(SOC, SOC, Op_RegF, 8, V8->as_VMReg());
reg_def R_V9(SOC, SOC, Op_RegF, 9, V9->as_VMReg());
reg_def R_V10(SOC, SOC, Op_RegF, 10, V10->as_VMReg());
reg_def R_V11(SOC, SOC, Op_RegF, 11, V11->as_VMReg());
reg_def R_V12(SOC, SOC, Op_RegF, 12, V12->as_VMReg());
reg_def R_V13(SOC, SOC, Op_RegF, 13, V13->as_VMReg());
reg_def R_V14(SOC, SOC, Op_RegF, 14, V14->as_VMReg());
reg_def R_V15(SOC, SOC, Op_RegF, 15, V15->as_VMReg());
reg_def R_V16(SOC, SOC, Op_RegF, 16, V16->as_VMReg());
reg_def R_V17(SOC, SOC, Op_RegF, 17, V17->as_VMReg());
reg_def R_V18(SOC, SOC, Op_RegF, 18, V18->as_VMReg());
reg_def R_V19(SOC, SOC, Op_RegF, 19, V19->as_VMReg());
reg_def R_V20(SOC, SOC, Op_RegF, 20, V20->as_VMReg());
reg_def R_V21(SOC, SOC, Op_RegF, 21, V21->as_VMReg());
reg_def R_V22(SOC, SOC, Op_RegF, 22, V22->as_VMReg());
reg_def R_V23(SOC, SOC, Op_RegF, 23, V23->as_VMReg());
reg_def R_V24(SOC, SOC, Op_RegF, 24, V24->as_VMReg());
reg_def R_V25(SOC, SOC, Op_RegF, 25, V25->as_VMReg());
reg_def R_V26(SOC, SOC, Op_RegF, 26, V26->as_VMReg());
reg_def R_V27(SOC, SOC, Op_RegF, 27, V27->as_VMReg());
reg_def R_V28(SOC, SOC, Op_RegF, 28, V28->as_VMReg());
reg_def R_V29(SOC, SOC, Op_RegF, 29, V29->as_VMReg());
reg_def R_V30(SOC, SOC, Op_RegF, 30, V30->as_VMReg());
reg_def R_V31(SOC, SOC, Op_RegF, 31, V31->as_VMReg());
reg_def R_V0b(SOC, SOC, Op_RegF, 255, V0->as_VMReg()->next(1));
reg_def R_V1b(SOC, SOC, Op_RegF, 255, V1->as_VMReg()->next(1));
reg_def R_V2b(SOC, SOC, Op_RegF, 255, V2->as_VMReg()->next(1));
reg_def R_V3b(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(1));
reg_def R_V4b(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(1));
reg_def R_V5b(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(1));
reg_def R_V6b(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(1));
reg_def R_V7b(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(1));
reg_def R_V8b(SOC, SOC, Op_RegF, 255, V8->as_VMReg()->next(1));
reg_def R_V9b(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(1));
reg_def R_V10b(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(1));
reg_def R_V11b(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(1));
reg_def R_V12b(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(1));
reg_def R_V13b(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(1));
reg_def R_V14b(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(1));
reg_def R_V15b(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(1));
reg_def R_V16b(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(1));
reg_def R_V17b(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(1));
reg_def R_V18b(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(1));
reg_def R_V19b(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(1));
reg_def R_V20b(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(1));
reg_def R_V21b(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(1));
reg_def R_V22b(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(1));
reg_def R_V23b(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(1));
reg_def R_V24b(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(1));
reg_def R_V25b(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(1));
reg_def R_V26b(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(1));
reg_def R_V27b(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(1));
reg_def R_V28b(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(1));
reg_def R_V29b(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(1));
reg_def R_V30b(SOC, SOC, Op_RegD, 30, V30->as_VMReg()->next(1));
reg_def R_V31b(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(1));
reg_def R_V0c(SOC, SOC, Op_RegF, 0, V0->as_VMReg()->next(2));
reg_def R_V1c(SOC, SOC, Op_RegF, 1, V1->as_VMReg()->next(2));
reg_def R_V2c(SOC, SOC, Op_RegF, 2, V2->as_VMReg()->next(2));
reg_def R_V3c(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(2));
reg_def R_V4c(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(2));
reg_def R_V5c(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(2));
reg_def R_V6c(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(2));
reg_def R_V7c(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(2));
reg_def R_V8c(SOC, SOC, Op_RegF, 8, V8->as_VMReg()->next(2));
reg_def R_V9c(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(2));
reg_def R_V10c(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(2));
reg_def R_V11c(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(2));
reg_def R_V12c(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(2));
reg_def R_V13c(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(2));
reg_def R_V14c(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(2));
reg_def R_V15c(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(2));
reg_def R_V16c(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(2));
reg_def R_V17c(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(2));
reg_def R_V18c(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(2));
reg_def R_V19c(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(2));
reg_def R_V20c(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(2));
reg_def R_V21c(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(2));
reg_def R_V22c(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(2));
reg_def R_V23c(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(2));
reg_def R_V24c(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(2));
reg_def R_V25c(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(2));
reg_def R_V26c(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(2));
reg_def R_V27c(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(2));
reg_def R_V28c(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(2));
reg_def R_V29c(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(2));
reg_def R_V30c(SOC, SOC, Op_RegF, 30, V30->as_VMReg()->next(2));
reg_def R_V31c(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(2));
reg_def R_V0d(SOC, SOC, Op_RegF, 0, V0->as_VMReg()->next(3));
reg_def R_V1d(SOC, SOC, Op_RegF, 1, V1->as_VMReg()->next(3));
reg_def R_V2d(SOC, SOC, Op_RegF, 2, V2->as_VMReg()->next(3));
reg_def R_V3d(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(3));
reg_def R_V4d(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(3));
reg_def R_V5d(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(3));
reg_def R_V6d(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(3));
reg_def R_V7d(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(3));
reg_def R_V8d(SOC, SOC, Op_RegF, 8, V8->as_VMReg()->next(3));
reg_def R_V9d(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(3));
reg_def R_V10d(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(3));
reg_def R_V11d(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(3));
reg_def R_V12d(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(3));
reg_def R_V13d(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(3));
reg_def R_V14d(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(3));
reg_def R_V15d(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(3));
reg_def R_V16d(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(3));
reg_def R_V17d(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(3));
reg_def R_V18d(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(3));
reg_def R_V19d(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(3));
reg_def R_V20d(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(3));
reg_def R_V21d(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(3));
reg_def R_V22d(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(3));
reg_def R_V23d(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(3));
reg_def R_V24d(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(3));
reg_def R_V25d(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(3));
reg_def R_V26d(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(3));
reg_def R_V27d(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(3));
reg_def R_V28d(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(3));
reg_def R_V29d(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(3));
reg_def R_V30d(SOC, SOC, Op_RegF, 30, V30->as_VMReg()->next(3));
reg_def R_V31d(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(3));
// ----------------------------
// Special Registers
// Condition Codes Flag Registers
reg_def APSR (SOC, SOC, Op_RegFlags, 255, VMRegImpl::Bad());
reg_def FPSCR(SOC, SOC, Op_RegFlags, 255, VMRegImpl::Bad());
// ----------------------------
// Specify the enum values for the registers. These enums are only used by the
// OptoReg "class". We can convert these enum values at will to VMReg when needed
// for visibility to the rest of the vm. The order of this enum influences the
// register allocator so having the freedom to set this order and not be stuck
// with the order that is natural for the rest of the vm is worth it.
// Quad vector must be aligned here, so list them first.
alloc_class fprs(
R_V8, R_V8b, R_V8c, R_V8d, R_V9, R_V9b, R_V9c, R_V9d,
R_V10, R_V10b, R_V10c, R_V10d, R_V11, R_V11b, R_V11c, R_V11d,
R_V12, R_V12b, R_V12c, R_V12d, R_V13, R_V13b, R_V13c, R_V13d,
R_V14, R_V14b, R_V14c, R_V14d, R_V15, R_V15b, R_V15c, R_V15d,
R_V16, R_V16b, R_V16c, R_V16d, R_V17, R_V17b, R_V17c, R_V17d,
R_V18, R_V18b, R_V18c, R_V18d, R_V19, R_V19b, R_V19c, R_V19d,
R_V20, R_V20b, R_V20c, R_V20d, R_V21, R_V21b, R_V21c, R_V21d,
R_V22, R_V22b, R_V22c, R_V22d, R_V23, R_V23b, R_V23c, R_V23d,
R_V24, R_V24b, R_V24c, R_V24d, R_V25, R_V25b, R_V25c, R_V25d,
R_V26, R_V26b, R_V26c, R_V26d, R_V27, R_V27b, R_V27c, R_V27d,
R_V28, R_V28b, R_V28c, R_V28d, R_V29, R_V29b, R_V29c, R_V29d,
R_V30, R_V30b, R_V30c, R_V30d, R_V31, R_V31b, R_V31c, R_V31d,
R_V0, R_V0b, R_V0c, R_V0d, R_V1, R_V1b, R_V1c, R_V1d,
R_V2, R_V2b, R_V2c, R_V2d, R_V3, R_V3b, R_V3c, R_V3d,
R_V4, R_V4b, R_V4c, R_V4d, R_V5, R_V5b, R_V5c, R_V5d,
R_V6, R_V6b, R_V6c, R_V6d, R_V7, R_V7b, R_V7c, R_V7d
);
// Need double-register alignment here.
// We are already quad-register aligned because of vectors above.
alloc_class gprs(
R_R0, R_R0x, R_R1, R_R1x, R_R2, R_R2x, R_R3, R_R3x,
R_R4, R_R4x, R_R5, R_R5x, R_R6, R_R6x, R_R7, R_R7x,
R_R8, R_R8x, R_R9, R_R9x, R_R10, R_R10x, R_R11, R_R11x,
R_R12, R_R12x, R_R13, R_R13x, R_R14, R_R14x, R_R15, R_R15x,
R_R16, R_R16x, R_R17, R_R17x, R_R18, R_R18x, R_R19, R_R19x,
R_R20, R_R20x, R_R21, R_R21x, R_R22, R_R22x, R_R23, R_R23x,
R_R24, R_R24x, R_R25, R_R25x, R_R26, R_R26x, R_R27, R_R27x,
R_R28, R_R28x, R_R29, R_R29x, R_R30, R_R30x
);
// Continuing with double-reigister alignment...
alloc_class chunk2(APSR, FPSCR);
alloc_class chunk3(R_SP, R_SPx);
alloc_class chunk4(R_ZR, R_ZRx);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( as defined in frame section )
// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// ----------------------------
// Integer Register Classes
// ----------------------------
reg_class int_reg_all(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7,
R_R8, R_R9, R_R10, R_R11, R_R12, R_R13, R_R14, R_R15,
R_R16, R_R17, R_R18, R_R19, R_R20, R_R21, R_R22, R_R23,
R_R24, R_R25, R_R26, R_R27, R_R28, R_R29, R_R30
);
// Exclusions from i_reg:
// SP (R31)
// Rthread/R28: reserved by HotSpot to the TLS register (invariant within Java)
reg_class int_reg %{
return _INT_REG_mask;
%}
reg_class ptr_reg %{
return _PTR_REG_mask;
%}
reg_class vectorx_reg %{
return _VECTORX_REG_mask;
%}
reg_class R0_regI(R_R0);
reg_class R1_regI(R_R1);
reg_class R2_regI(R_R2);
reg_class R3_regI(R_R3);
//reg_class R12_regI(R_R12);
// ----------------------------
// Pointer Register Classes
// ----------------------------
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg %{
return _SP_PTR_REG_mask;
%}
reg_class store_reg %{
return _STR_REG_mask;
%}
reg_class store_ptr_reg %{
return _STR_PTR_REG_mask;
%}
reg_class spillP_reg %{
return _SPILLP_REG_mask;
%}
// Other special pointer regs
reg_class R0_regP(R_R0, R_R0x);
reg_class R1_regP(R_R1, R_R1x);
reg_class R2_regP(R_R2, R_R2x);
reg_class Rexception_regP(R_R19, R_R19x);
reg_class Ricklass_regP(R_R8, R_R8x);
reg_class Rmethod_regP(R_R27, R_R27x);
reg_class Rthread_regP(R_R28, R_R28x);
reg_class IP_regP(R_R16, R_R16x);
#define RtempRegP IPRegP
reg_class LR_regP(R_R30, R_R30x);
reg_class SP_regP(R_SP, R_SPx);
reg_class FP_regP(R_R29, R_R29x);
reg_class ZR_regP(R_ZR, R_ZRx);
reg_class ZR_regI(R_ZR);
// ----------------------------
// Long Register Classes
// ----------------------------
reg_class long_reg %{ return _PTR_REG_mask; %}
// for ldrexd, strexd: first reg of pair must be even
reg_class long_reg_align %{ return LONG_REG_mask(); %}
reg_class R0_regL(R_R0,R_R0x); // arg 1 or return value
// ----------------------------
// Special Class for Condition Code Flags Register
reg_class int_flags(APSR);
reg_class float_flags(FPSCR);
// ----------------------------
// Float Point Register Classes
// ----------------------------
reg_class sflt_reg_0(
R_V0, R_V1, R_V2, R_V3, R_V4, R_V5, R_V6, R_V7,
R_V8, R_V9, R_V10, R_V11, R_V12, R_V13, R_V14, R_V15,
R_V16, R_V17, R_V18, R_V19, R_V20, R_V21, R_V22, R_V23,
R_V24, R_V25, R_V26, R_V27, R_V28, R_V29, R_V30, R_V31);
reg_class sflt_reg %{
return _SFLT_REG_mask;
%}
reg_class dflt_low_reg %{
return _DFLT_REG_mask;
%}
reg_class actual_dflt_reg %{
return _DFLT_REG_mask;
%}
reg_class vectorx_reg_0(
R_V0, R_V1, R_V2, R_V3, R_V4, R_V5, R_V6, R_V7,
R_V8, R_V9, R_V10, R_V11, R_V12, R_V13, R_V14, R_V15,
R_V16, R_V17, R_V18, R_V19, R_V20, R_V21, R_V22, R_V23,
R_V24, R_V25, R_V26, R_V27, R_V28, R_V29, R_V30, /*R_V31,*/
R_V0b, R_V1b, R_V2b, R_V3b, R_V4b, R_V5b, R_V6b, R_V7b,
R_V8b, R_V9b, R_V10b, R_V11b, R_V12b, R_V13b, R_V14b, R_V15b,
R_V16b, R_V17b, R_V18b, R_V19b, R_V20b, R_V21b, R_V22b, R_V23b,
R_V24b, R_V25b, R_V26b, R_V27b, R_V28b, R_V29b, R_V30b, /*R_V31b,*/
R_V0c, R_V1c, R_V2c, R_V3c, R_V4c, R_V5c, R_V6c, R_V7c,
R_V8c, R_V9c, R_V10c, R_V11c, R_V12c, R_V13c, R_V14c, R_V15c,
R_V16c, R_V17c, R_V18c, R_V19c, R_V20c, R_V21c, R_V22c, R_V23c,
R_V24c, R_V25c, R_V26c, R_V27c, R_V28c, R_V29c, R_V30c, /*R_V31c,*/
R_V0d, R_V1d, R_V2d, R_V3d, R_V4d, R_V5d, R_V6d, R_V7d,
R_V8d, R_V9d, R_V10d, R_V11d, R_V12d, R_V13d, R_V14d, R_V15d,
R_V16d, R_V17d, R_V18d, R_V19d, R_V20d, R_V21d, R_V22d, R_V23d,
R_V24d, R_V25d, R_V26d, R_V27d, R_V28d, R_V29d, R_V30d, /*R_V31d*/);
reg_class Rmemcopy_reg %{
return _RMEMCOPY_REG_mask;
%}
%}
source_hpp %{
const MachRegisterNumbers R_mem_copy_lo_num = R_V31_num;
const MachRegisterNumbers R_mem_copy_hi_num = R_V31b_num;
const FloatRegister Rmemcopy = V31;
const MachRegisterNumbers R_hf_ret_lo_num = R_V0_num;
const MachRegisterNumbers R_hf_ret_hi_num = R_V0b_num;
const FloatRegister Rhfret = V0;
extern OptoReg::Name R_Ricklass_num;
extern OptoReg::Name R_Rmethod_num;
extern OptoReg::Name R_tls_num;
extern OptoReg::Name R_Rheap_base_num;
extern RegMask _INT_REG_mask;
extern RegMask _PTR_REG_mask;
extern RegMask _SFLT_REG_mask;
extern RegMask _DFLT_REG_mask;
extern RegMask _VECTORX_REG_mask;
extern RegMask _RMEMCOPY_REG_mask;
extern RegMask _SP_PTR_REG_mask;
extern RegMask _SPILLP_REG_mask;
extern RegMask _STR_REG_mask;
extern RegMask _STR_PTR_REG_mask;
#define LDR_DOUBLE "LDR_D"
#define LDR_FLOAT "LDR_S"
#define STR_DOUBLE "STR_D"
#define STR_FLOAT "STR_S"
#define STR_64 "STR"
#define LDR_64 "LDR"
#define STR_32 "STR_W"
#define LDR_32 "LDR_W"
#define MOV_DOUBLE "FMOV_D"
#define MOV_FLOAT "FMOV_S"
#define FMSR "FMOV_SW"
#define FMRS "FMOV_WS"
#define LDREX "ldxr "
#define STREX "stxr "
#define str_64 str
#define ldr_64 ldr
#define ldr_32 ldr_w
#define ldrex ldxr
#define strex stxr
#define fmsr fmov_sw
#define fmrs fmov_ws
#define fconsts fmov_s
#define fconstd fmov_d
static inline bool is_uimm12(jlong imm, int shift) {
return Assembler::is_unsigned_imm_in_range(imm, 12, shift);
}
static inline bool is_memoryD(int offset) {
int scale = 3; // LogBytesPerDouble
return is_uimm12(offset, scale);
}
static inline bool is_memoryfp(int offset) {
int scale = LogBytesPerInt; // include 32-bit word accesses
return is_uimm12(offset, scale);
}
static inline bool is_memoryI(int offset) {
int scale = LogBytesPerInt;
return is_uimm12(offset, scale);
}
static inline bool is_memoryP(int offset) {
int scale = LogBytesPerWord;
return is_uimm12(offset, scale);
}
static inline bool is_memoryHD(int offset) {
int scale = LogBytesPerInt; // include 32-bit word accesses
return is_uimm12(offset, scale);
}
uintx limmL_low(uintx imm, int n);
static inline bool Xis_aimm(int imm) {
return Assembler::ArithmeticImmediate(imm).is_encoded();
}
static inline bool is_aimm(intptr_t imm) {
return Assembler::ArithmeticImmediate(imm).is_encoded();
}
static inline bool is_limmL(uintptr_t imm) {
return Assembler::LogicalImmediate(imm).is_encoded();
}
static inline bool is_limmL_low(intptr_t imm, int n) {
return is_limmL(limmL_low(imm, n));
}
static inline bool is_limmI(jint imm) {
return Assembler::LogicalImmediate(imm, true).is_encoded();
}
static inline uintx limmI_low(jint imm, int n) {
return limmL_low(imm, n);
}
static inline bool is_limmI_low(jint imm, int n) {
return is_limmL_low(imm, n);
}
%}
source %{
// Given a register encoding, produce a Integer Register object
static Register reg_to_register_object(int register_encoding) {
assert(R0->encoding() == R_R0_enc && R30->encoding() == R_R30_enc, "right coding");
assert(Rthread->encoding() == R_R28_enc, "right coding");
assert(SP->encoding() == R_SP_enc, "right coding");
return as_Register(register_encoding);
}
// Given a register encoding, produce a single-precision Float Register object
static FloatRegister reg_to_FloatRegister_object(int register_encoding) {
assert(V0->encoding() == R_V0_enc && V31->encoding() == R_V31_enc, "right coding");
return as_FloatRegister(register_encoding);
}
RegMask _INT_REG_mask;
RegMask _PTR_REG_mask;
RegMask _SFLT_REG_mask;
RegMask _DFLT_REG_mask;
RegMask _VECTORX_REG_mask;
RegMask _RMEMCOPY_REG_mask;
RegMask _SP_PTR_REG_mask;
RegMask _SPILLP_REG_mask;
RegMask _STR_REG_mask;
RegMask _STR_PTR_REG_mask;
OptoReg::Name R_Ricklass_num = -1;
OptoReg::Name R_Rmethod_num = -1;
OptoReg::Name R_tls_num = -1;
OptoReg::Name R_Rtemp_num = -1;
OptoReg::Name R_Rheap_base_num = -1;
static int mov_oop_size = -1;
#ifdef ASSERT
static bool same_mask(const RegMask &a, const RegMask &b) {
RegMask a_sub_b = a; a_sub_b.SUBTRACT(b);
RegMask b_sub_a = b; b_sub_a.SUBTRACT(a);
return a_sub_b.Size() == 0 && b_sub_a.Size() == 0;
}
#endif
void Compile::pd_compiler2_init() {
R_Ricklass_num = OptoReg::as_OptoReg(Ricklass->as_VMReg());
R_Rmethod_num = OptoReg::as_OptoReg(Rmethod->as_VMReg());
R_tls_num = OptoReg::as_OptoReg(Rthread->as_VMReg());
R_Rtemp_num = OptoReg::as_OptoReg(Rtemp->as_VMReg());
R_Rheap_base_num = OptoReg::as_OptoReg(Rheap_base->as_VMReg());
_INT_REG_mask = _INT_REG_ALL_mask;
_INT_REG_mask.Remove(R_tls_num);
_INT_REG_mask.Remove(R_SP_num);
if (UseCompressedOops) {
_INT_REG_mask.Remove(R_Rheap_base_num);
}
// Remove Rtemp because safepoint poll can trash it
// (see SharedRuntime::generate_handler_blob)
_INT_REG_mask.Remove(R_Rtemp_num);
_PTR_REG_mask = _INT_REG_mask;
_PTR_REG_mask.smear_to_sets(2);
// STR_REG = INT_REG+ZR
// SPILLP_REG = INT_REG+SP
// SP_PTR_REG = INT_REG+SP+TLS
_STR_REG_mask = _INT_REG_mask;
_SP_PTR_REG_mask = _STR_REG_mask;
_STR_REG_mask.Insert(R_ZR_num);
_SP_PTR_REG_mask.Insert(R_SP_num);
_SPILLP_REG_mask = _SP_PTR_REG_mask;
_SP_PTR_REG_mask.Insert(R_tls_num);
_STR_PTR_REG_mask = _STR_REG_mask;
_STR_PTR_REG_mask.smear_to_sets(2);
_SP_PTR_REG_mask.smear_to_sets(2);
_SPILLP_REG_mask.smear_to_sets(2);
_RMEMCOPY_REG_mask = RegMask(R_mem_copy_lo_num);
assert(OptoReg::as_OptoReg(Rmemcopy->as_VMReg()) == R_mem_copy_lo_num, "!");
_SFLT_REG_mask = _SFLT_REG_0_mask;
_SFLT_REG_mask.SUBTRACT(_RMEMCOPY_REG_mask);
_DFLT_REG_mask = _SFLT_REG_mask;
_DFLT_REG_mask.smear_to_sets(2);
_VECTORX_REG_mask = _SFLT_REG_mask;
_VECTORX_REG_mask.smear_to_sets(4);
assert(same_mask(_VECTORX_REG_mask, _VECTORX_REG_0_mask), "!");
#ifdef ASSERT
RegMask r((RegMask *)&SFLT_REG_mask());
r.smear_to_sets(2);
assert(same_mask(r, _DFLT_REG_mask), "!");
#endif
if (VM_Version::prefer_moves_over_load_literal()) {
mov_oop_size = 4;
} else {
mov_oop_size = 1;
}
assert(Matcher::interpreter_method_oop_reg_encode() == Rmethod->encoding(), "should be");
}
uintx limmL_low(uintx imm, int n) {
// 1: try as is
if (is_limmL(imm)) {
return imm;
}
// 2: try low bits + all 0's
uintx imm0 = imm & right_n_bits(n);
if (is_limmL(imm0)) {
return imm0;
}
// 3: try low bits + all 1's
uintx imm1 = imm0 | left_n_bits(BitsPerWord - n);
if (is_limmL(imm1)) {
return imm1;
}
#if 0
// 4: try low bits replicated
int field = 1 << log2_intptr(n + n - 1);
assert(field >= n, "!");
assert(field / n == 1, "!");
intptr_t immr = immx;
while (field < BitsPerWord) {
intrptr_t bits = immr & right_n_bits(field);
immr = bits | (bits << field);
field = field << 1;
}
// replicate at power-of-2 boundary
if (is_limmL(immr)) {
return immr;
}
#endif
return imm;
}
// Convert the raw encoding form into the form expected by the
// constructor for Address.
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
RelocationHolder rspec;
if (disp_reloc != relocInfo::none) {
rspec = Relocation::spec_simple(disp_reloc);
}
Register rbase = (base == 0xff) ? SP : as_Register(base);
if (index != 0xff) {
Register rindex = as_Register(index);
if (disp == 0x7fffffff) { // special value to indicate sign-extend
Address madr(rbase, rindex, ex_sxtw, scale);
madr._rspec = rspec;
return madr;
} else {
assert(disp == 0, "unsupported");
Address madr(rbase, rindex, ex_lsl, scale);
madr._rspec = rspec;
return madr;
}
} else {
assert(scale == 0, "not supported");
Address madr(rbase, disp);
madr._rspec = rspec;
return madr;
}
}
// Location of compiled Java return values. Same as C
OptoRegPair c2::return_value(int ideal_reg) {
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num, R_R0_num, R_hf_ret_lo_num, R_hf_ret_lo_num, R_R0_num };
static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, R_R0x_num, OptoReg::Bad, R_hf_ret_hi_num, R_R0x_num };
return OptoRegPair( hi[ideal_reg], lo[ideal_reg]);
}
// !!!!! Special hack to get all type of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset() {
bool far = (_method == NULL) ? maybe_far_call(this) : !cache_reachable();
bool patchable = _method != NULL;
int call_size = MacroAssembler::call_size(entry_point(), far, patchable);
return (call_size + (_method_handle_invoke ? 1 : 0)) * NativeInstruction::instruction_size;
}
int MachCallDynamicJavaNode::ret_addr_offset() {
bool far = !cache_reachable();
int call_size = MacroAssembler::call_size(entry_point(), far, true);
return (mov_oop_size + call_size) * NativeInstruction::instruction_size;
}
int MachCallRuntimeNode::ret_addr_offset() {
int call_size = 0;
// TODO: check if Leaf nodes also need this
if (!is_MachCallLeaf()) {
// adr $temp, ret_addr
// str $temp, [SP + last_java_pc]
call_size += 2;
}
// bl or mov_slow; blr
bool far = maybe_far_call(this);
call_size += MacroAssembler::call_size(entry_point(), far, false);
return call_size * NativeInstruction::instruction_size;
}
%}
// The intptr_t operand types, defined by textual substitution.
// (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.)
#define immX immL
#define iRegX iRegL
#define aimmX aimmL
#define limmX limmL
#define immX9 immL9
#define LShiftX LShiftL
#define shimmX immU6
#define store_RegLd store_RegL
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1); // Required cost attribute
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate: 9-bit (including sign bit), so same as immI8?
// FIXME: simm9 allows -256, but immI8 doesn't...
operand simm9() %{
predicate(Assembler::is_imm_in_range(n->get_int(), 9, 0));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand uimm12() %{
predicate(Assembler::is_unsigned_imm_in_range(n->get_int(), 12, 0));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand aimmP() %{
predicate(n->get_ptr() == 0 || (is_aimm(n->get_ptr()) && ((ConPNode*)n)->type()->reloc() == relocInfo::none));
match(ConP);
op_cost(0);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 12-bit - for addressing mode
operand immL12() %{
predicate((-4096 < n->get_long()) && (n->get_long() < 4096));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 9-bit - for addressing mode
operand immL9() %{
predicate((-256 <= n->get_long()) && (n->get_long() < 256));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immIMov() %{
predicate(n->get_int() >> 16 == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLMov() %{
predicate(n->get_long() >> 16 == 0);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12() %{
predicate(is_uimm12(n->get_long(), 0));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x2() %{
predicate(is_uimm12(n->get_long(), 1));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x4() %{
predicate(is_uimm12(n->get_long(), 2));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x8() %{
predicate(is_uimm12(n->get_long(), 3));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x16() %{
predicate(is_uimm12(n->get_long(), 4));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Used for long shift
operand immU6() %{
predicate(0 <= n->get_int() && (n->get_int() <= 63));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Used for register extended shift
operand immI_0_4() %{
predicate(0 <= n->get_int() && (n->get_int() <= 4));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Compressed Pointer Register
operand iRegN() %{
constraint(ALLOC_IN_RC(int_reg));
match(RegN);
match(ZRRegN);
format %{ %}
interface(REG_INTER);
%}
operand SPRegP() %{
constraint(ALLOC_IN_RC(SP_regP));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegP() %{
constraint(ALLOC_IN_RC(ZR_regP));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegL() %{
constraint(ALLOC_IN_RC(ZR_regP));
match(RegL);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegI() %{
constraint(ALLOC_IN_RC(ZR_regI));
match(RegI);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegN() %{
constraint(ALLOC_IN_RC(ZR_regI));
match(RegN);
format %{ %}
interface(REG_INTER);
%}