blob: a4697634a2883272b020248f3793957573cad793 [file] [log] [blame]
/*
* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_aarch64.inline.hpp"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
// Item will be loaded into a byte register; Intel only
void LIRItem::load_byte_item() {
load_item();
}
void LIRItem::load_nonconstant() {
LIR_Opr r = value()->operand();
if (r->is_constant()) {
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; }
LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; }
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = FrameMap::r0_opr; break;
case objectTag: opr = FrameMap::r0_oop_opr; break;
case longTag: opr = FrameMap::long0_opr; break;
case floatTag: opr = FrameMap::fpu0_float_opr; break;
case doubleTag: opr = FrameMap::fpu0_double_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
LIR_Opr reg = new_register(T_INT);
set_vreg_flag(reg, LIRGenerator::byte_reg);
return reg;
}
//--------- loading items into registers --------------------------------
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
if (v->type()->as_IntConstant() != NULL) {
return v->type()->as_IntConstant()->value() == 0L;
} else if (v->type()->as_LongConstant() != NULL) {
return v->type()->as_LongConstant()->value() == 0L;
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
}
bool LIRGenerator::can_inline_as_constant(Value v) const {
// FIXME: Just a guess
if (v->type()->as_IntConstant() != NULL) {
return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
} else if (v->type()->as_LongConstant() != NULL) {
return v->type()->as_LongConstant()->value() == 0L;
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else {
return false;
}
}
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
LIR_Opr LIRGenerator::safepoint_poll_register() {
return LIR_OprFact::illegalOpr;
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
intx large_disp = disp;
// accumulate fixed displacements
if (index->is_constant()) {
LIR_Const *constant = index->as_constant_ptr();
if (constant->type() == T_INT) {
large_disp += index->as_jint() << shift;
} else {
assert(constant->type() == T_LONG, "should be");
jlong c = index->as_jlong() << shift;
if ((jlong)((jint)c) == c) {
large_disp += c;
index = LIR_OprFact::illegalOpr;
} else {
LIR_Opr tmp = new_register(T_LONG);
__ move(index, tmp);
index = tmp;
// apply shift and displacement below
}
}
}
if (index->is_register()) {
// apply the shift and accumulate the displacement
if (shift > 0) {
LIR_Opr tmp = new_pointer_register();
__ shift_left(index, shift, tmp);
index = tmp;
}
if (large_disp != 0) {
LIR_Opr tmp = new_pointer_register();
if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
__ add(index, LIR_OprFact::intptrConst(large_disp), tmp);
index = tmp;
} else {
__ move(LIR_OprFact::intptrConst(large_disp), tmp);
__ add(tmp, index, tmp);
index = tmp;
}
large_disp = 0;
}
} else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
// index is illegal so replace it with the displacement loaded into a register
index = new_pointer_register();
__ move(LIR_OprFact::intptrConst(large_disp), index);
large_disp = 0;
}
// at this point we either have base + index or base + displacement
if (large_disp == 0 && index->is_register()) {
return new LIR_Address(base, index, type);
} else {
assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
return new LIR_Address(base, large_disp, type);
}
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
BasicType type) {
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
int elem_size = type2aelembytes(type);
int shift = exact_log2(elem_size);
LIR_Address* addr;
if (index_opr->is_constant()) {
addr = new LIR_Address(array_opr,
offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
} else {
if (offset_in_bytes) {
LIR_Opr tmp = new_pointer_register();
__ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
array_opr = tmp;
offset_in_bytes = 0;
}
addr = new LIR_Address(array_opr,
index_opr,
LIR_Address::scale(type),
offset_in_bytes, type);
}
return addr;
}
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
LIR_Opr r;
if (type == T_LONG) {
r = LIR_OprFact::longConst(x);
if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
LIR_Opr tmp = new_register(type);
__ move(r, tmp);
return tmp;
}
} else if (type == T_INT) {
r = LIR_OprFact::intConst(x);
if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
// This is all rather nasty. We don't know whether our constant
// is required for a logical or an arithmetic operation, wo we
// don't know what the range of valid values is!!
LIR_Opr tmp = new_register(type);
__ move(r, tmp);
return tmp;
}
} else {
ShouldNotReachHere();
r = NULL; // unreachable
}
return r;
}
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, type);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
LIR_Opr imm = NULL;
switch(addr->type()) {
case T_INT:
imm = LIR_OprFact::intConst(step);
break;
case T_LONG:
imm = LIR_OprFact::longConst(step);
break;
default:
ShouldNotReachHere();
}
LIR_Opr reg = new_register(addr->type());
__ load(addr, reg);
__ add(reg, imm, reg);
__ store(reg, addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
LIR_Opr reg = new_register(T_INT);
__ load(generate_address(base, disp, T_INT), reg, info);
__ cmp(condition, reg, LIR_OprFact::intConst(c));
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
LIR_Opr reg1 = new_register(T_INT);
__ load(generate_address(base, disp, type), reg1, info);
__ cmp(condition, reg, reg1);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
if (is_power_of_2(c - 1)) {
__ shift_left(left, exact_log2(c - 1), tmp);
__ add(tmp, left, result);
return true;
} else if (is_power_of_2(c + 1)) {
__ shift_left(left, exact_log2(c + 1), tmp);
__ sub(tmp, left, result);
return true;
} else {
return false;
}
}
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
BasicType type = item->type();
__ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
}
void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = new_register(objectType);
__ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
// "lock" stores the address of the monitor stack slot, so this is not an oop
LIR_Opr lock = new_register(T_INT);
// Need a scratch register for biased locking
LIR_Opr scratch = LIR_OprFact::illegalOpr;
if (UseBiasedLocking) {
scratch = new_register(T_INT);
}
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for(x);
}
// this CodeEmitInfo must not have the xhandlers because here the
// object is already locked (xhandlers expect object to be unlocked)
CodeEmitInfo* info = state_for(x, x->state(), true);
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
LIR_Opr lock = new_register(T_INT);
LIR_Opr obj_temp = new_register(T_INT);
set_no_result(x);
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
}
void LIRGenerator::do_NegateOp(NegateOp* x) {
LIRItem from(x->x(), this);
from.load_item();
LIR_Opr result = rlock_result(x);
__ negate (from.result(), result);
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
// float remainder is implemented as a direct call into the runtime
LIRItem right(x->x(), this);
LIRItem left(x->y(), this);
BasicTypeList signature(2);
if (x->op() == Bytecodes::_frem) {
signature.append(T_FLOAT);
signature.append(T_FLOAT);
} else {
signature.append(T_DOUBLE);
signature.append(T_DOUBLE);
}
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
left.load_item_force(cc->at(1));
right.load_item();
__ move(right.result(), cc->at(0));
address entry;
if (x->op() == Bytecodes::_frem) {
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
} else {
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
}
LIR_Opr result = rlock_result(x);
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
__ move(result_reg, result);
return;
}
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
// Always load right hand side.
right.load_item();
if (!left.is_register())
left.load_item();
LIR_Opr reg = rlock(x);
LIR_Opr tmp = LIR_OprFact::illegalOpr;
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
tmp = new_register(T_DOUBLE);
}
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp());
set_result(x, round_item(reg));
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
// missing test if instr is commutative and if we should swap
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
left.load_item();
bool need_zero_check = true;
if (right.is_constant()) {
jlong c = right.get_jlong_constant();
// no need to do div-by-zero check if the divisor is a non-zero constant
if (c != 0) need_zero_check = false;
// do not load right if the divisor is a power-of-2 constant
if (c > 0 && is_power_of_2_long(c)) {
right.dont_load_item();
} else {
right.load_item();
}
} else {
right.load_item();
}
if (need_zero_check) {
CodeEmitInfo* info = state_for(x);
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
}
rlock_result(x);
switch (x->op()) {
case Bytecodes::_lrem:
__ rem (left.result(), right.result(), x->operand());
break;
case Bytecodes::_ldiv:
__ div (left.result(), right.result(), x->operand());
break;
default:
ShouldNotReachHere();
break;
}
} else {
assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
"expect lmul, ladd or lsub");
// add, sub, mul
left.load_item();
if (! right.is_register()) {
if (x->op() == Bytecodes::_lmul
|| ! right.is_constant()
|| ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
right.load_item();
} else { // add, sub
assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
// don't load constants to save register
right.load_nonconstant();
}
}
rlock_result(x);
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
}
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
// Test if instr is commutative and if we should swap
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
if (x->is_commutative() && left.is_stack() && right.is_register()) {
// swap them if left is real stack (or cached) and right is real register(not cached)
left_arg = &right;
right_arg = &left;
}
left_arg->load_item();
// do not need to load right, as we can handle stack and constants
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
rlock_result(x);
bool need_zero_check = true;
if (right.is_constant()) {
jint c = right.get_jint_constant();
// no need to do div-by-zero check if the divisor is a non-zero constant
if (c != 0) need_zero_check = false;
// do not load right if the divisor is a power-of-2 constant
if (c > 0 && is_power_of_2(c)) {
right_arg->dont_load_item();
} else {
right_arg->load_item();
}
} else {
right_arg->load_item();
}
if (need_zero_check) {
CodeEmitInfo* info = state_for(x);
__ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
}
LIR_Opr ill = LIR_OprFact::illegalOpr;
if (x->op() == Bytecodes::_irem) {
__ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
} else if (x->op() == Bytecodes::_idiv) {
__ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
}
} else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
if (right.is_constant()
&& Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
right.load_nonconstant();
} else {
right.load_item();
}
rlock_result(x);
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
} else {
assert (x->op() == Bytecodes::_imul, "expect imul");
if (right.is_constant()) {
jint c = right.get_jint_constant();
if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
right_arg->dont_load_item();
} else {
// Cannot use constant op.
right_arg->load_item();
}
} else {
right.load_item();
}
rlock_result(x);
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
// when an operand with use count 1 is the left operand, then it is
// likely that no move for 2-operand-LIR-form is necessary
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
x->swap_operands();
}
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
}
ShouldNotReachHere();
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
rlock_result(x);
if (right.is_constant()) {
right.dont_load_item();
switch (x->op()) {
case Bytecodes::_ishl: {
int c = right.get_jint_constant() & 0x1f;
__ shift_left(left.result(), c, x->operand());
break;
}
case Bytecodes::_ishr: {
int c = right.get_jint_constant() & 0x1f;
__ shift_right(left.result(), c, x->operand());
break;
}
case Bytecodes::_iushr: {
int c = right.get_jint_constant() & 0x1f;
__ unsigned_shift_right(left.result(), c, x->operand());
break;
}
case Bytecodes::_lshl: {
int c = right.get_jint_constant() & 0x3f;
__ shift_left(left.result(), c, x->operand());
break;
}
case Bytecodes::_lshr: {
int c = right.get_jint_constant() & 0x3f;
__ shift_right(left.result(), c, x->operand());
break;
}
case Bytecodes::_lushr: {
int c = right.get_jint_constant() & 0x3f;
__ unsigned_shift_right(left.result(), c, x->operand());
break;
}
default:
ShouldNotReachHere();
}
} else {
right.load_item();
LIR_Opr tmp = new_register(T_INT);
switch (x->op()) {
case Bytecodes::_ishl: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
__ shift_left(left.result(), tmp, x->operand(), tmp);
break;
}
case Bytecodes::_ishr: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
__ shift_right(left.result(), tmp, x->operand(), tmp);
break;
}
case Bytecodes::_iushr: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
break;
}
case Bytecodes::_lshl: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
__ shift_left(left.result(), tmp, x->operand(), tmp);
break;
}
case Bytecodes::_lshr: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
__ shift_right(left.result(), tmp, x->operand(), tmp);
break;
}
case Bytecodes::_lushr: {
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
break;
}
default:
ShouldNotReachHere();
}
}
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
rlock_result(x);
if (right.is_constant()
&& ((right.type()->tag() == intTag
&& Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
|| (right.type()->tag() == longTag
&& Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) {
right.dont_load_item();
} else {
right.load_item();
}
switch (x->op()) {
case Bytecodes::_iand:
case Bytecodes::_land:
__ logical_and(left.result(), right.result(), x->operand()); break;
case Bytecodes::_ior:
case Bytecodes::_lor:
__ logical_or (left.result(), right.result(), x->operand()); break;
case Bytecodes::_ixor:
case Bytecodes::_lxor:
__ logical_xor(left.result(), right.result(), x->operand()); break;
default: Unimplemented();
}
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
ValueTag tag = x->x()->type()->tag();
if (tag == longTag) {
left.set_destroys_register();
}
left.load_item();
right.load_item();
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
Unimplemented();
}
}
LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
new_value.load_item();
cmp_value.load_item();
LIR_Opr result = new_register(T_INT);
if (type == T_OBJECT || type == T_ARRAY) {
__ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
} else if (type == T_INT) {
__ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
} else if (type == T_LONG) {
__ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
} else {
ShouldNotReachHere();
Unimplemented();
}
__ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
return result;
}
LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
bool is_oop = type == T_OBJECT || type == T_ARRAY;
LIR_Opr result = new_register(type);
value.load_item();
assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
LIR_Opr tmp = new_register(T_INT);
__ xchg(addr, value.result(), result, tmp);
return result;
}
LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
LIR_Opr result = new_register(type);
value.load_item();
assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
LIR_Opr tmp = new_register(T_INT);
__ xadd(addr, value.result(), result, tmp);
return result;
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
x->id() == vmIntrinsics::_dlog10) {
do_LibmIntrinsic(x);
return;
}
switch (x->id()) {
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt: {
assert(x->number_of_arguments() == 1, "wrong type");
LIRItem value(x->argument_at(0), this);
value.load_item();
LIR_Opr dst = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_dsqrt: {
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
case vmIntrinsics::_dabs: {
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
break;
}
}
break;
}
}
}
void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
LIRItem value(x->argument_at(0), this);
value.set_destroys_register();
LIR_Opr calc_result = rlock_result(x);
LIR_Opr result_reg = result_register_for(x->type());
CallingConvention* cc = NULL;
if (x->id() == vmIntrinsics::_dpow) {
LIRItem value1(x->argument_at(1), this);
value1.set_destroys_register();
BasicTypeList signature(2);
signature.append(T_DOUBLE);
signature.append(T_DOUBLE);
cc = frame_map()->c_calling_convention(&signature);
value.load_item_force(cc->at(0));
value1.load_item_force(cc->at(1));
} else {
BasicTypeList signature(1);
signature.append(T_DOUBLE);
cc = frame_map()->c_calling_convention(&signature);
value.load_item_force(cc->at(0));
}
switch (x->id()) {
case vmIntrinsics::_dexp:
if (StubRoutines::dexp() != NULL) {
__ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dlog:
if (StubRoutines::dlog() != NULL) {
__ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dlog10:
if (StubRoutines::dlog10() != NULL) {
__ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dpow:
if (StubRoutines::dpow() != NULL) {
__ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dsin:
if (StubRoutines::dsin() != NULL) {
__ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dcos:
if (StubRoutines::dcos() != NULL) {
__ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
}
break;
case vmIntrinsics::_dtan:
if (StubRoutines::dtan() != NULL) {
__ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
} else {
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
}
break;
default: ShouldNotReachHere();
}
__ move(result_reg, calc_result);
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Make all state_for calls early since they can emit code
CodeEmitInfo* info = state_for(x, x->state());
LIRItem src(x->argument_at(0), this);
LIRItem src_pos(x->argument_at(1), this);
LIRItem dst(x->argument_at(2), this);
LIRItem dst_pos(x->argument_at(3), this);
LIRItem length(x->argument_at(4), this);
// operands for arraycopy must use fixed registers, otherwise
// LinearScan will fail allocation (because arraycopy always needs a
// call)
// The java calling convention will give us enough registers
// so that on the stub side the args will be perfect already.
// On the other slow/special case side we call C and the arg
// positions are not similar enough to pick one as the best.
// Also because the java calling convention is a "shifted" version
// of the C convention we can process the java args trivially into C
// args without worry of overwriting during the xfer
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
length.load_item_force (FrameMap::as_opr(j_rarg4));
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
set_no_result(x);
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
}
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
assert(UseCRC32Intrinsics, "why are we here?");
// Make all state_for calls early since they can emit code
LIR_Opr result = rlock_result(x);
int flags = 0;
switch (x->id()) {
case vmIntrinsics::_updateCRC32: {
LIRItem crc(x->argument_at(0), this);
LIRItem val(x->argument_at(1), this);
// val is destroyed by update_crc32
val.set_destroys_register();
crc.load_item();
val.load_item();
__ update_crc32(crc.result(), val.result(), result);
break;
}
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem len(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if(off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
}
if (offset) {
LIR_Opr tmp = new_pointer_register();
__ add(base_op, LIR_OprFact::intConst(offset), tmp);
base_op = tmp;
offset = 0;
}
LIR_Address* a = new LIR_Address(base_op,
index,
offset,
T_BYTE);
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
LIR_Opr addr = new_pointer_register();
__ leal(LIR_OprFact::address(a), addr);
crc.load_item_force(cc->at(0));
__ move(addr, cc->at(1));
len.load_item_force(cc->at(2));
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
assert(UseCRC32CIntrinsics, "why are we here?");
// Make all state_for calls early since they can emit code
LIR_Opr result = rlock_result(x);
int flags = 0;
switch (x->id()) {
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem end(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
end.load_nonconstant();
// len = end - off
LIR_Opr len = end.result();
LIR_Opr tmpA = new_register(T_INT);
LIR_Opr tmpB = new_register(T_INT);
__ move(end.result(), tmpA);
__ move(off.result(), tmpB);
__ sub(tmpA, tmpB, tmpA);
len = tmpA;
LIR_Opr index = off.result();
if(off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
}
if (offset) {
LIR_Opr tmp = new_pointer_register();
__ add(base_op, LIR_OprFact::intConst(offset), tmp);
base_op = tmp;
offset = 0;
}
LIR_Address* a = new LIR_Address(base_op,
index,
offset,
T_BYTE);
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
LIR_Opr addr = new_pointer_register();
__ leal(LIR_OprFact::address(a), addr);
crc.load_item_force(cc->at(0));
__ move(addr, cc->at(1));
__ move(len, cc->at(2));
__ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
assert(x->number_of_arguments() == 3, "wrong type");
assert(UseFMA, "Needs FMA instructions support.");
LIRItem value(x->argument_at(0), this);
LIRItem value1(x->argument_at(1), this);
LIRItem value2(x->argument_at(2), this);
value.load_item();
value1.load_item();
value2.load_item();
LIR_Opr calc_input = value.result();
LIR_Opr calc_input1 = value1.result();
LIR_Opr calc_input2 = value2.result();
LIR_Opr calc_result = rlock_result(x);
switch (x->id()) {
case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
default: ShouldNotReachHere();
}
}
void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
fatal("vectorizedMismatch intrinsic is not implemented on this platform");
}
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
void LIRGenerator::do_Convert(Convert* x) {
LIRItem value(x->value(), this);
value.load_item();
LIR_Opr input = value.result();
LIR_Opr result = rlock(x);
// arguments of lir_convert
LIR_Opr conv_input = input;
LIR_Opr conv_result = result;
ConversionStub* stub = NULL;
__ convert(x->op(), conv_input, conv_result);
assert(result->is_virtual(), "result must be virtual register");
set_result(x, result);
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
#ifndef PRODUCT
if (PrintNotLoaded && !x->klass()->is_loaded()) {
tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
}
#endif
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr reg = result_register_for(x->type());
new_instance(reg, x->klass(), x->is_unresolved(),
FrameMap::r2_oop_opr,
FrameMap::r5_oop_opr,
FrameMap::r4_oop_opr,
LIR_OprFact::illegalOpr,
FrameMap::r3_metadata_opr, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item_force(FrameMap::r19_opr);
LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
LIR_Opr tmp4 = reg;
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
LIR_Opr len = length.result();
BasicType elem_type = x->elt_type();
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
LIRItem length(x->length(), this);
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
// and therefore provide the state before the parameters have been consumed
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
LIR_Opr tmp4 = reg;
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
length.load_item_force(FrameMap::r19_opr);
LIR_Opr len = length.result();
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
klass2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(i, i, NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers (NOTE: Usually this is handled transparently
// by the CodeEmitInfo cloning logic in CodeStub constructors but
// is done explicitly here because a stub isn't being used).
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
size->load_item();
store_stack_parameter(size->result(), in_ByteSize(i*4));
}
LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::r19_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::r2_opr;
__ move(FrameMap::sp_opr, varargs);
LIR_OprList* args = new LIR_OprList(3);
args->append(klass_reg);
args->append(rank);
args->append(varargs);
LIR_Opr reg = result_register_for(x->type());
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr,
reg, args, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
// nothing to do for now
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
// must do this before locking the destination register as an oop register,
// and before the obj is loaded (the latter is for deoptimization)
patching_info = state_for(x, x->state_before());
}
obj.load_item();
// info for exceptions
CodeEmitInfo* info_for_exception =
(x->needs_exception_state() ? state_for(x) :
state_for(x, x->state_before(), true /*ignore_xhandler*/));
CodeStub* stub;
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
} else if (x->is_invokespecial_receiver_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new DeoptimizeStub(info_for_exception,
Deoptimization::Reason_class_check,
Deoptimization::Action_none);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
}
LIR_Opr reg = rlock_result(x);
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
tmp3 = new_register(objectType);
}
__ checkcast(reg, obj.result(), x->klass(),
new_register(objectType), new_register(objectType), tmp3,
x->direct_compare(), info_for_exception, patching_info, stub,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
// result and test object may not be in same register
LIR_Opr reg = rlock_result(x);
CodeEmitInfo* patching_info = NULL;
if ((!x->klass()->is_loaded() || PatchALot)) {
// must do this before locking the destination register as an oop register
patching_info = state_for(x, x->state_before());
}
obj.load_item();
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
tmp3 = new_register(objectType);
}
__ instanceof(reg, obj.result(), x->klass(),
new_register(objectType), new_register(objectType), tmp3,
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_If(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
bool is_safepoint = x->is_safepoint();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
if (tag == longTag) {
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
// mirror for other conditions
if (cond == If::gtr || cond == If::leq) {
cond = Instruction::mirror(cond);
xin = &yitem;
yin = &xitem;
}
xin->set_destroys_register();
}
xin->load_item();
if (tag == longTag) {
if (yin->is_constant()
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
yin->dont_load_item();
} else {
yin->load_item();
}
} else if (tag == intTag) {
if (yin->is_constant()
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) {
yin->dont_load_item();
} else {
yin->load_item();
}
} else {
yin->load_item();
}
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
// add safepoint before generating condition code so it can be recomputed
if (x->is_safepoint()) {
// increment backedge counter if needed
increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
}
__ cmp(lir_cond(cond), left, right);
// Generate branch profiling. Profiling code doesn't kill flags.
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
return FrameMap::as_pointer_opr(rthread);
}
void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
__ volatile_store_mem_reg(value, address, info);
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
// 8179954: We need to make sure that the code generated for
// volatile accesses forms a sequentially-consistent set of
// operations when combined with STLR and LDAR. Without a leading
// membar it's possible for a simple Dekker test to fail if loads
// use LD;DMB but stores use STLR. This can happen if C2 compiles
// the stores in one method and C1 compiles the loads in another.
if (! UseBarriersForVolatile) {
__ membar();
}
__ volatile_load_mem_reg(address, result, info);
}