blob: c4a777ef6c83b1b11c6af12dbef7363ead5ed771 [file] [log] [blame]
/*
* Copyright (c) 2004, 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.print;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsDevice;
import java.awt.Rectangle;
import java.awt.Transparency;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;
import java.awt.image.DirectColorModel;
public class PrinterGraphicsConfig extends GraphicsConfiguration {
static ColorModel theModel;
GraphicsDevice gd;
int pageWidth, pageHeight;
AffineTransform deviceTransform;
public PrinterGraphicsConfig(String printerID, AffineTransform deviceTx,
int pageWid, int pageHgt) {
this.pageWidth = pageWid;
this.pageHeight = pageHgt;
this.deviceTransform = deviceTx;
this.gd = new PrinterGraphicsDevice(this, printerID);
}
/**
* Return the graphics device associated with this configuration.
*/
public GraphicsDevice getDevice() {
return gd;
}
/**
* Returns the color model associated with this configuration.
*/
public ColorModel getColorModel() {
if (theModel == null) {
BufferedImage bufImg =
new BufferedImage(1,1, BufferedImage.TYPE_3BYTE_BGR);
theModel = bufImg.getColorModel();
}
return theModel;
}
/**
* Returns the color model associated with this configuration that
* supports the specified transparency.
*/
public ColorModel getColorModel(int transparency) {
switch (transparency) {
case Transparency.OPAQUE:
return getColorModel();
case Transparency.BITMASK:
return new DirectColorModel(25, 0xff0000, 0xff00, 0xff, 0x1000000);
case Transparency.TRANSLUCENT:
return ColorModel.getRGBdefault();
default:
return null;
}
}
/**
* Returns the default Transform for this configuration. This
* Transform is typically the Identity transform for most normal
* screens. Device coordinates for screen and printer devices will
* have the origin in the upper left-hand corner of the target region of
* the device, with X coordinates
* increasing to the right and Y coordinates increasing downwards.
* For image buffers, this Transform will be the Identity transform.
*/
public AffineTransform getDefaultTransform() {
return new AffineTransform(deviceTransform);
}
/**
*
* Returns a Transform that can be composed with the default Transform
* of a Graphics2D so that 72 units in user space will equal 1 inch
* in device space.
* Given a Graphics2D, g, one can reset the transformation to create
* such a mapping by using the following pseudocode:
* <pre>
* GraphicsConfiguration gc = g.getGraphicsConfiguration();
*
* g.setTransform(gc.getDefaultTransform());
* g.transform(gc.getNormalizingTransform());
* </pre>
* Note that sometimes this Transform will be identity (e.g. for
* printers or metafile output) and that this Transform is only
* as accurate as the information supplied by the underlying system.
* For image buffers, this Transform will be the Identity transform,
* since there is no valid distance measurement.
*/
public AffineTransform getNormalizingTransform() {
return new AffineTransform();
}
public Rectangle getBounds() {
return new Rectangle(0, 0, pageWidth, pageHeight);
}
}