blob: 7e7987cdd1eca48743247d80d71a15ff394466e2 [file] [log] [blame]
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/parallel/heterogeneousGenerationSizer.hpp"
#include "gc/shared/collectorPolicy.hpp"
#include "logging/log.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/globalDefinitions.hpp"
const double HeterogeneousGenerationSizer::MaxRamFractionForYoung = 0.8;
// Check the available dram memory to limit NewSize and MaxNewSize before
// calling base class initialize_flags().
void HeterogeneousGenerationSizer::initialize_flags() {
FormatBuffer<100> calc_str("");
julong phys_mem;
// If MaxRam is specified, we use that as maximum physical memory available.
if (FLAG_IS_DEFAULT(MaxRAM)) {
phys_mem = os::physical_memory();
calc_str.append("Physical_Memory");
} else {
phys_mem = (julong)MaxRAM;
calc_str.append("MaxRAM");
}
julong reasonable_max = phys_mem;
// If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate
// reasonable max size of young generation.
if (!FLAG_IS_DEFAULT(MaxRAMFraction)) {
reasonable_max = (julong)(phys_mem / MaxRAMFraction);
calc_str.append(" / MaxRAMFraction");
} else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) {
reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100);
calc_str.append(" * MaxRAMPercentage / 100");
} else {
// We use our own fraction to calculate max size of young generation.
reasonable_max = phys_mem * MaxRamFractionForYoung;
calc_str.append(" * %0.2f", MaxRamFractionForYoung);
}
reasonable_max = align_up(reasonable_max, _gen_alignment);
if (MaxNewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(MaxNewSize)) {
log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
} else {
log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). "
"Dram usage can be lowered by setting MaxNewSize to a lower value", (size_t)reasonable_max, calc_str.buffer());
}
MaxNewSize = reasonable_max;
}
if (NewSize > reasonable_max) {
if (FLAG_IS_CMDLINE(NewSize)) {
log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))",
(size_t)reasonable_max, calc_str.buffer());
}
NewSize = reasonable_max;
}
// After setting new size flags, call base class initialize_flags()
GenerationSizer::initialize_flags();
}
bool HeterogeneousGenerationSizer::is_hetero_heap() const {
return true;
}
size_t HeterogeneousGenerationSizer::heap_reserved_size_bytes() const {
if (UseAdaptiveGCBoundary) {
// This is the size that young gen can grow to, when UseAdaptiveGCBoundary is true.
size_t max_yg_size = _max_heap_byte_size - _min_old_size;
// This is the size that old gen can grow to, when UseAdaptiveGCBoundary is true.
size_t max_old_size = _max_heap_byte_size - _min_young_size;
return max_yg_size + max_old_size;
} else {
return _max_heap_byte_size;
}
}