blob: a8a248de131989ba4eef8a7e7ea9a96019374efe [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C) 2012-2015, The Linux Foundation. All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL)
#include <fcntl.h>
#include <errno.h>
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <EGL/egl.h>
#include <utils/Trace.h>
#include <sys/ioctl.h>
#include <overlay.h>
#include <overlayRotator.h>
#include <overlayWriteback.h>
#include <mdp_version.h>
#include "hwc_utils.h"
#include "hwc_fbupdate.h"
#include "hwc_mdpcomp.h"
#include "hwc_dump_layers.h"
#include "hdmi.h"
#include "hwc_copybit.h"
#include "hwc_ad.h"
#include "profiler.h"
#include "hwc_virtual.h"
using namespace qhwc;
using namespace overlay;
#define VSYNC_DEBUG 0
#define POWER_MODE_DEBUG 1
static int hwc_device_open(const struct hw_module_t* module,
const char* name,
struct hw_device_t** device);
static struct hw_module_methods_t hwc_module_methods = {
open: hwc_device_open
};
static void reset_panel(struct hwc_composer_device_1* dev);
hwc_module_t HAL_MODULE_INFO_SYM = {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 2,
version_minor: 0,
id: HWC_HARDWARE_MODULE_ID,
name: "Qualcomm Hardware Composer Module",
author: "CodeAurora Forum",
methods: &hwc_module_methods,
dso: 0,
reserved: {0},
}
};
/*
* Save callback functions registered to HWC
*/
static void hwc_registerProcs(struct hwc_composer_device_1* dev,
hwc_procs_t const* procs)
{
ALOGI("%s", __FUNCTION__);
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
ALOGE("%s: Invalid context", __FUNCTION__);
return;
}
ctx->proc = procs;
// Now that we have the functions needed, kick off
// the uevent & vsync threads
init_uevent_thread(ctx);
init_vsync_thread(ctx);
}
static void setPaddingRound(hwc_context_t *ctx, int numDisplays,
hwc_display_contents_1_t** displays) {
ctx->isPaddingRound = false;
for(int i = 0; i < numDisplays; i++) {
hwc_display_contents_1_t *list = displays[i];
if (LIKELY(list && list->numHwLayers > 0)) {
if((ctx->mPrevHwLayerCount[i] == 1 or
ctx->mPrevHwLayerCount[i] == 0) and
(list->numHwLayers > 1)) {
/* If the previous cycle for dpy 'i' has 0 AppLayers and the
* current cycle has atleast 1 AppLayer, padding round needs
* to be invoked in current cycle on all the active displays
* to free up the resources.
*/
ctx->isPaddingRound = true;
}
ctx->mPrevHwLayerCount[i] = (int)list->numHwLayers;
} else {
ctx->mPrevHwLayerCount[i] = 0;
}
}
}
/* Based on certain conditions, isDMAStateChanging will be set
* to make this function self-contained */
static void setDMAState(hwc_context_t *ctx, int numDisplays,
hwc_display_contents_1_t** displays) {
ctx->isDMAStateChanging = false;
if(ctx->mRotMgr->getNumActiveSessions() == 0)
Overlay::setDMAMode(Overlay::DMA_LINE_MODE);
for(int dpy = 0; dpy < numDisplays; dpy++) {
hwc_display_contents_1_t *list = displays[dpy];
if (LIKELY(list && list->numHwLayers > 0)) {
for(size_t layerIndex = 0; layerIndex < list->numHwLayers;
layerIndex++) {
if(list->hwLayers[layerIndex].compositionType !=
HWC_FRAMEBUFFER_TARGET)
{
hwc_layer_1_t const* layer = &list->hwLayers[layerIndex];
private_handle_t *hnd = (private_handle_t *)layer->handle;
/* If a layer requires rotation, set the DMA state
* to BLOCK_MODE */
if (canUseRotator(ctx, dpy) &&
(has90Transform(layer) || getRotDownscale(ctx, layer))
&& isRotationDoable(ctx, hnd)) {
if(not (ctx->mOverlay->isDMAMultiplexingSupported() &&
dpy)) {
if(ctx->mOverlay->isPipeTypeAttached(
overlay::utils::OV_MDP_PIPE_DMA))
ctx->isDMAStateChanging = true;
}
Overlay::setDMAMode(Overlay::DMA_BLOCK_MODE);
}
}
}
if(dpy) {
/* Uncomment the below code for testing purpose.
Assuming the orientation value is in terms of HAL_TRANSFORM,
this needs mapping to HAL, if its in different convention */
/* char value[PROPERTY_VALUE_MAX];
property_get("sys.ext_orientation", value, "0");
ctx->mExtOrientation = atoi(value);*/
if(ctx->mExtOrientation || ctx->mBufferMirrorMode) {
if(ctx->mOverlay->isPipeTypeAttached(
overlay::utils::OV_MDP_PIPE_DMA)) {
ctx->isDMAStateChanging = true;
}
Overlay::setDMAMode(Overlay::DMA_BLOCK_MODE);
}
}
}
}
}
static void setNumActiveDisplays(hwc_context_t *ctx, int numDisplays,
hwc_display_contents_1_t** displays) {
ctx->numActiveDisplays = 0;
for(int i = 0; i < numDisplays; i++) {
hwc_display_contents_1_t *list = displays[i];
if (LIKELY(list && list->numHwLayers > 0)) {
/* For display devices like SSD and screenrecord, we cannot
* rely on isActive and connected attributes of dpyAttr to
* determine if the displaydevice is active. Hence in case if
* the layer-list is non-null and numHwLayers > 0, we assume
* the display device to be active.
*/
ctx->numActiveDisplays += 1;
}
}
}
static bool isHotPluggable(hwc_context_t *ctx, int dpy) {
return ((dpy == HWC_DISPLAY_EXTERNAL) ||
((dpy == HWC_DISPLAY_PRIMARY) &&
ctx->mHDMIDisplay->isHDMIPrimaryDisplay()));
}
static void reset(hwc_context_t *ctx, int numDisplays,
hwc_display_contents_1_t** displays) {
for(int i = 0; i < numDisplays; i++) {
hwc_display_contents_1_t *list = displays[i];
// XXX:SurfaceFlinger no longer guarantees that this
// value is reset on every prepare. However, for the layer
// cache we need to reset it.
// We can probably rethink that later on
if (LIKELY(list && list->numHwLayers > 0)) {
for(size_t j = 0; j < list->numHwLayers; j++) {
if(list->hwLayers[j].compositionType != HWC_FRAMEBUFFER_TARGET)
list->hwLayers[j].compositionType = HWC_FRAMEBUFFER;
}
}
if(ctx->mMDPComp[i])
ctx->mMDPComp[i]->reset();
if(ctx->mFBUpdate[i])
ctx->mFBUpdate[i]->reset();
if(ctx->mCopyBit[i])
ctx->mCopyBit[i]->reset();
if(ctx->mLayerRotMap[i])
ctx->mLayerRotMap[i]->reset();
}
ctx->mAD->reset();
}
static void scaleDisplayFrame(hwc_context_t *ctx, int dpy,
hwc_display_contents_1_t *list) {
uint32_t origXres = ctx->dpyAttr[dpy].xres;
uint32_t origYres = ctx->dpyAttr[dpy].yres;
uint32_t newXres = ctx->dpyAttr[dpy].xres_new;
uint32_t newYres = ctx->dpyAttr[dpy].yres_new;
float xresRatio = (float)origXres / (float)newXres;
float yresRatio = (float)origYres / (float)newYres;
for (size_t i = 0; i < list->numHwLayers; i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
hwc_rect_t& displayFrame = layer->displayFrame;
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
uint32_t layerWidth = displayFrame.right - displayFrame.left;
uint32_t layerHeight = displayFrame.bottom - displayFrame.top;
displayFrame.left = (int)(xresRatio * (float)displayFrame.left);
displayFrame.top = (int)(yresRatio * (float)displayFrame.top);
displayFrame.right = (int)((float)displayFrame.left +
(float)layerWidth * xresRatio);
displayFrame.bottom = (int)((float)displayFrame.top +
(float)layerHeight * yresRatio);
}
}
static void hwc_configure_color_temp(hwc_composer_device_1* dev) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
char value[PROPERTY_VALUE_MAX];
bool cool;
property_get("persist.sys.debug.color_temp", value, "x");
cool = (value[0] == '1');
if ((value[0] == '0' || value[0] == '1') &&
cool != ctx->mCoolColorTemperatureEnabled) {
ctx->mCoolColorTemperatureEnabled = cool;
ALOGI("Color temperature change. Cool = %d", cool ? 1 : 0);
int fd = open("/sys/class/graphics/fb0/color_temp", O_WRONLY);
if (fd >= 0) {
if (cool)
write(fd, "1", 2);
else
write(fd, "0", 2);
close(fd);
} else {
ALOGE("Failed to open color_temp file with result=%d", fd);
}
}
}
static int hwc_prepare_primary(hwc_composer_device_1 *dev,
hwc_display_contents_1_t *list) {
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
const int dpy = HWC_DISPLAY_PRIMARY;
bool fbComp = false;
if (!ctx->mDefaultModeApplied)
applyDefaultMode(ctx);
if (LIKELY(list && list->numHwLayers > 1) && ctx->dpyAttr[dpy].connected &&
(ctx->dpyAttr[dpy].isActive ||
ctx->mHDMIDisplay->isHDMIPrimaryDisplay())
&& !ctx->dpyAttr[dpy].isPause) {
// When HDMI is primary we should rely on the first valid
// draw call in order to activate the display
if (!ctx->dpyAttr[dpy].isActive) {
// If the cable is connected after HWC initialization and before
// the UEvent thread is initialized then we will miss the ONLINE
// event. We need to update the display appropriately when we get
// the first valid frame.
int cableConnected = ctx->mHDMIDisplay->getConnectedState();
if ((cableConnected == 1) && !ctx->dpyAttr[dpy].connected) {
qhwc::handle_online(ctx, dpy);
}
ctx->mHDMIDisplay->activateDisplay();
ctx->dpyAttr[dpy].isActive = true;
}
if (ctx->dpyAttr[dpy].customFBSize &&
list->flags & HWC_GEOMETRY_CHANGED)
scaleDisplayFrame(ctx, dpy, list);
reset_layer_prop(ctx, dpy, (int)list->numHwLayers - 1);
setListStats(ctx, list, dpy);
fbComp = (ctx->mMDPComp[dpy]->prepare(ctx, list) < 0);
if (fbComp) {
const int fbZ = 0;
if(not ctx->mFBUpdate[dpy]->prepareAndValidate(ctx, list, fbZ)) {
ctx->mOverlay->clear(dpy);
ctx->mLayerRotMap[dpy]->clear();
}
}
if (ctx->mMDP.version < qdutils::MDP_V4_0) {
if(ctx->mCopyBit[dpy])
ctx->mCopyBit[dpy]->prepare(ctx, list, dpy);
}
setGPUHint(ctx, list);
}
return 0;
}
static int hwc_prepare_external(hwc_composer_device_1 *dev,
hwc_display_contents_1_t *list) {
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
const int dpy = HWC_DISPLAY_EXTERNAL;
if (LIKELY(list && list->numHwLayers > 1) &&
ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected) {
reset_layer_prop(ctx, dpy, (int)list->numHwLayers - 1);
if(!ctx->dpyAttr[dpy].isPause) {
ctx->dpyAttr[dpy].isConfiguring = false;
setListStats(ctx, list, dpy);
if(ctx->mMDPComp[dpy]->prepare(ctx, list) < 0) {
const int fbZ = 0;
if(not ctx->mFBUpdate[dpy]->prepareAndValidate(ctx, list, fbZ))
{
ctx->mOverlay->clear(dpy);
ctx->mLayerRotMap[dpy]->clear();
}
}
} else {
/* External Display is in Pause state.
* Mark all application layers as OVERLAY so that
* GPU will not compose.
*/
for(size_t i = 0 ;i < (size_t)(list->numHwLayers - 1); i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
layer->compositionType = HWC_OVERLAY;
}
}
}
return 0;
}
static int hwc_prepare(hwc_composer_device_1 *dev, size_t numDisplays,
hwc_display_contents_1_t** displays)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
if (ctx->mPanelResetStatus) {
ALOGW("%s: panel is in bad state. reset the panel", __FUNCTION__);
reset_panel(dev);
}
//Will be unlocked at the end of set
ctx->mDrawLock.lock();
setPaddingRound(ctx, (int)numDisplays, displays);
setDMAState(ctx, (int)numDisplays, displays);
setNumActiveDisplays(ctx, (int)numDisplays, displays);
reset(ctx, (int)numDisplays, displays);
ctx->mOverlay->configBegin();
ctx->mRotMgr->configBegin();
overlay::Writeback::configBegin();
for (int32_t dpy = ((int32_t)numDisplays-1); dpy >=0 ; dpy--) {
hwc_display_contents_1_t *list = displays[dpy];
resetROI(ctx, dpy);
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
ret = hwc_prepare_primary(dev, list);
break;
case HWC_DISPLAY_EXTERNAL:
ret = hwc_prepare_external(dev, list);
break;
case HWC_DISPLAY_VIRTUAL:
if(ctx->mHWCVirtual)
ret = ctx->mHWCVirtual->prepare(dev, list);
break;
default:
ret = -EINVAL;
}
}
ctx->mOverlay->configDone();
ctx->mRotMgr->configDone();
overlay::Writeback::configDone();
// If VD list is deleted, mdp overlay pipe objects and writeback object
// are deleted as part of configDone functions.
// Proceed with HWCVirtualVDS object deletion.
if(ctx->mHWCVirtual)
ctx->mHWCVirtual->destroy(ctx, numDisplays, displays);
return ret;
}
static int hwc_eventControl(struct hwc_composer_device_1* dev, int dpy,
int event, int enable)
{
ATRACE_CALL();
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
switch(event) {
case HWC_EVENT_VSYNC:
if (ctx->vstate.enable == enable)
break;
ret = hwc_vsync_control(ctx, dpy, enable);
if(ret == 0)
ctx->vstate.enable = !!enable;
ALOGD_IF (VSYNC_DEBUG, "VSYNC state changed to %s",
(enable)?"ENABLED":"DISABLED");
break;
#ifdef QCOM_BSP
case HWC_EVENT_ORIENTATION:
if(dpy == HWC_DISPLAY_PRIMARY) {
Locker::Autolock _l(ctx->mDrawLock);
// store the primary display orientation
ctx->deviceOrientation = enable;
}
break;
#endif
default:
ret = -EINVAL;
}
return ret;
}
static int hwc_setPowerMode(struct hwc_composer_device_1* dev, int dpy,
int mode)
{
ATRACE_CALL();
hwc_context_t* ctx = (hwc_context_t*)(dev);
int ret = 0, value = 0;
Locker::Autolock _l(ctx->mDrawLock);
ALOGD_IF(POWER_MODE_DEBUG, "%s: Setting mode %d on display: %d",
__FUNCTION__, mode, dpy);
switch(mode) {
case HWC_POWER_MODE_OFF:
// free up all the overlay pipes in use
// when we get a blank for either display
// makes sure that all pipes are freed
ctx->mOverlay->configBegin();
ctx->mOverlay->configDone();
ctx->mRotMgr->clear();
// If VDS is connected, do not clear WB object as it
// will end up detaching IOMMU. This is required
// to send black frame to WFD sink on power suspend.
// Note: With this change, we keep the WriteBack object
// alive on power suspend for AD use case.
value = FB_BLANK_POWERDOWN;
break;
case HWC_POWER_MODE_DOZE:
case HWC_POWER_MODE_DOZE_SUSPEND:
value = FB_BLANK_VSYNC_SUSPEND;
break;
case HWC_POWER_MODE_NORMAL:
value = FB_BLANK_UNBLANK;
break;
}
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
if(ctx->mHDMIDisplay->isHDMIPrimaryDisplay()) {
if(ctx->dpyAttr[dpy].connected) {
// When HDMI is connected as primary we clean up resources
// and call commit to generate a black frame on the interface.
// However, we do not call blank since we need the timing
// generator and HDMI core to remain turned on.
if((mode == HWC_POWER_MODE_OFF) &&
(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd))) {
ALOGE("%s: display commit fail for %d", __FUNCTION__, dpy);
ret = -1;
}
}
} else {
if(ioctl(ctx->dpyAttr[dpy].fd, FBIOBLANK, value) < 0 ) {
ALOGE("%s: ioctl FBIOBLANK failed for Primary with error %s"
" value %d", __FUNCTION__, strerror(errno), value);
return -errno;
}
if(mode == HWC_POWER_MODE_NORMAL && !ctx->mHPDEnabled) {
// Enable HPD here, as during bootup POWER_MODE_NORMAL is set
// when SF is completely initialized
ctx->mHDMIDisplay->setHPD(1);
ctx->mHPDEnabled = true;
}
ctx->dpyAttr[dpy].isActive = not(mode == HWC_POWER_MODE_OFF);
}
//Deliberate fall through since there is no explicit power mode for
//virtual displays.
case HWC_DISPLAY_VIRTUAL:
if(ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected) {
const int dpy = HWC_DISPLAY_VIRTUAL;
if(mode == HWC_POWER_MODE_OFF and
(not ctx->dpyAttr[dpy].isPause)) {
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: displayCommit failed for virtual", __FUNCTION__);
ret = -1;
}
}
ctx->dpyAttr[dpy].isActive = not(mode == HWC_POWER_MODE_OFF);
}
break;
case HWC_DISPLAY_EXTERNAL:
if(mode == HWC_POWER_MODE_OFF) {
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: displayCommit failed for external", __FUNCTION__);
ret = -1;
}
}
ctx->dpyAttr[dpy].isActive = not(mode == HWC_POWER_MODE_OFF);
break;
default:
return -EINVAL;
}
// Configure the color temperature
hwc_configure_color_temp(dev);
ALOGD_IF(POWER_MODE_DEBUG, "%s: Done setting mode %d on display %d",
__FUNCTION__, mode, dpy);
return ret;
}
static void reset_panel(struct hwc_composer_device_1* dev)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
if (!ctx->dpyAttr[HWC_DISPLAY_PRIMARY].isActive) {
ALOGD ("%s : Display OFF - Skip BLANK & UNBLANK", __FUNCTION__);
ctx->mPanelResetStatus = false;
return;
}
ALOGD("%s: setting power mode off", __FUNCTION__);
ret = hwc_setPowerMode(dev, HWC_DISPLAY_PRIMARY, HWC_POWER_MODE_OFF);
if (ret < 0) {
ALOGE("%s: FBIOBLANK failed to BLANK: %s", __FUNCTION__,
strerror(errno));
}
ALOGD("%s: setting power mode normal and enabling vsync", __FUNCTION__);
ret = hwc_setPowerMode(dev, HWC_DISPLAY_PRIMARY, HWC_POWER_MODE_NORMAL);
if (ret < 0) {
ALOGE("%s: FBIOBLANK failed to UNBLANK : %s", __FUNCTION__,
strerror(errno));
}
hwc_vsync_control(ctx, HWC_DISPLAY_PRIMARY, 1);
ctx->mPanelResetStatus = false;
}
static int hwc_query(struct hwc_composer_device_1* dev,
int param, int* value)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
int supported = HWC_DISPLAY_PRIMARY_BIT;
switch (param) {
case HWC_BACKGROUND_LAYER_SUPPORTED:
// Not supported for now
value[0] = 0;
break;
case HWC_DISPLAY_TYPES_SUPPORTED:
if(ctx->mMDP.hasOverlay) {
supported |= HWC_DISPLAY_VIRTUAL_BIT;
if(!(qdutils::MDPVersion::getInstance().is8x26() ||
qdutils::MDPVersion::getInstance().is8x16() ||
qdutils::MDPVersion::getInstance().is8x39()))
supported |= HWC_DISPLAY_EXTERNAL_BIT;
}
value[0] = supported;
break;
case HWC_FORMAT_RB_SWAP:
value[0] = 1;
break;
case HWC_COLOR_FILL:
value[0] = 1;
break;
default:
return -EINVAL;
}
return 0;
}
static int hwc_set_primary(hwc_context_t *ctx, hwc_display_contents_1_t* list) {
ATRACE_CALL();
int ret = 0;
const int dpy = HWC_DISPLAY_PRIMARY;
if (LIKELY(list) && ctx->dpyAttr[dpy].isActive
&& !ctx->dpyAttr[dpy].isPause) {
size_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
int fd = -1; //FenceFD from the Copybit(valid in async mode)
bool copybitDone = false;
if (ctx->mCopyBit[dpy]) {
if (ctx->mMDP.version < qdutils::MDP_V4_0)
copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd);
else
fd = ctx->mMDPComp[dpy]->drawOverlap(ctx, list);
}
if(list->numHwLayers > 1)
hwc_sync(ctx, list, dpy, fd);
// Dump the layers for primary
if(ctx->mHwcDebug[dpy])
ctx->mHwcDebug[dpy]->dumpLayers(list);
if (!ctx->mMDPComp[dpy]->draw(ctx, list)) {
ALOGE("%s: MDPComp draw failed", __FUNCTION__);
ret = -1;
}
//TODO We dont check for SKIP flag on this layer because we need PAN
//always. Last layer is always FB
private_handle_t *hnd = (private_handle_t *)fbLayer->handle;
if(copybitDone && ctx->mMDP.version >= qdutils::MDP_V4_0) {
hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer();
}
if(isAbcInUse(ctx) == true) {
int index = ctx->listStats[dpy].renderBufIndexforABC;
hwc_layer_1_t *tempLayer = &list->hwLayers[index];
hnd = (private_handle_t *)tempLayer->handle;
}
if(hnd) {
if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) {
ALOGE("%s: FBUpdate draw failed", __FUNCTION__);
ret = -1;
}
}
/* When source split is enabled, right ROI will always be NULL since the
* ROI for the whole panel generated in a single coordinate system will
* be populuated in left ROI. So leave the right ROI untouched */
int lSplit = qdutils::MDPVersion::getInstance().isSrcSplit() ? 0 :
(isDisplaySplit(ctx, dpy) ? getLeftSplit(ctx, dpy) : 0);
qhwc::ovutils::Dim lRoi = qhwc::ovutils::Dim(
ctx->listStats[dpy].lRoi.left,
ctx->listStats[dpy].lRoi.top,
ctx->listStats[dpy].lRoi.right - ctx->listStats[dpy].lRoi.left,
ctx->listStats[dpy].lRoi.bottom - ctx->listStats[dpy].lRoi.top);
qhwc::ovutils::Dim rRoi = qhwc::ovutils::Dim(
ctx->listStats[dpy].rRoi.left - lSplit,
ctx->listStats[dpy].rRoi.top,
ctx->listStats[dpy].rRoi.right - ctx->listStats[dpy].rRoi.left,
ctx->listStats[dpy].rRoi.bottom - ctx->listStats[dpy].rRoi.top);
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd, lRoi, rRoi)) {
ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy);
ret = -1;
}
}
closeAcquireFds(list);
return ret;
}
static int hwc_set_external(hwc_context_t *ctx,
hwc_display_contents_1_t* list)
{
ATRACE_CALL();
int ret = 0;
const int dpy = HWC_DISPLAY_EXTERNAL;
if (LIKELY(list) && ctx->dpyAttr[dpy].isActive &&
ctx->dpyAttr[dpy].connected &&
!ctx->dpyAttr[dpy].isPause) {
size_t last = list->numHwLayers - 1;
hwc_layer_1_t *fbLayer = &list->hwLayers[last];
int fd = -1; //FenceFD from the Copybit(valid in async mode)
bool copybitDone = false;
if(ctx->mCopyBit[dpy])
copybitDone = ctx->mCopyBit[dpy]->draw(ctx, list, dpy, &fd);
if(list->numHwLayers > 1)
hwc_sync(ctx, list, dpy, fd);
// Dump the layers for external
if(ctx->mHwcDebug[dpy])
ctx->mHwcDebug[dpy]->dumpLayers(list);
if (!ctx->mMDPComp[dpy]->draw(ctx, list)) {
ALOGE("%s: MDPComp draw failed", __FUNCTION__);
ret = -1;
}
private_handle_t *hnd = (private_handle_t *)fbLayer->handle;
if(copybitDone) {
hnd = ctx->mCopyBit[dpy]->getCurrentRenderBuffer();
}
if(hnd) {
if (!ctx->mFBUpdate[dpy]->draw(ctx, hnd)) {
ALOGE("%s: FBUpdate::draw fail!", __FUNCTION__);
ret = -1;
}
}
if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) {
ALOGE("%s: display commit fail for %d dpy!", __FUNCTION__, dpy);
ret = -1;
}
}
closeAcquireFds(list);
return ret;
}
static int hwc_set(hwc_composer_device_1 *dev,
size_t numDisplays,
hwc_display_contents_1_t** displays)
{
int ret = 0;
hwc_context_t* ctx = (hwc_context_t*)(dev);
for (int dpy = 0; dpy < (int)numDisplays; dpy++) {
hwc_display_contents_1_t* list = displays[dpy];
switch(dpy) {
case HWC_DISPLAY_PRIMARY:
ret = hwc_set_primary(ctx, list);
break;
case HWC_DISPLAY_EXTERNAL:
ret = hwc_set_external(ctx, list);
break;
case HWC_DISPLAY_VIRTUAL:
if(ctx->mHWCVirtual)
ret = ctx->mHWCVirtual->set(ctx, list);
break;
default:
ret = -EINVAL;
}
}
// This is only indicative of how many times SurfaceFlinger posts
// frames to the display.
CALC_FPS();
MDPComp::resetIdleFallBack();
ctx->mVideoTransFlag = false;
//Was locked at the beginning of prepare
ctx->mDrawLock.unlock();
return ret;
}
int hwc_getDisplayConfigs(struct hwc_composer_device_1* dev, int disp,
uint32_t* configs, size_t* numConfigs) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
bool hotPluggable = isHotPluggable(ctx, disp);
bool isVirtualDisplay = (disp == HWC_DISPLAY_VIRTUAL);
// If hotpluggable or virtual displays are inactive return error
if ((hotPluggable || isVirtualDisplay) && !ctx->dpyAttr[disp].connected) {
ALOGE("%s display (%d) is inactive", __FUNCTION__, disp);
return -EINVAL;
}
if (*numConfigs <= 0) {
ALOGE("%s Invalid number of configs (%zu)", __FUNCTION__, *numConfigs);
return -EINVAL;
}
switch(disp) {
case HWC_DISPLAY_PRIMARY:
if (hotPluggable) {
ctx->mHDMIDisplay->getDisplayConfigs(configs, numConfigs);
} else {
if(ctx->mColorMode->getNumModes() > 0) {
*numConfigs = ctx->mColorMode->getNumModes();
for (size_t i = 0; i < *numConfigs; i++)
configs[i] = (uint32_t) i;
} else {
configs[0] = 0;
*numConfigs = 1;
}
}
break;
case HWC_DISPLAY_EXTERNAL:
ctx->mHDMIDisplay->getDisplayConfigs(configs, numConfigs);
break;
case HWC_DISPLAY_VIRTUAL:
configs[0] = 0;
*numConfigs = 1;
break;
}
return 0;
}
int hwc_getDisplayAttributes(struct hwc_composer_device_1* dev, int disp,
uint32_t config, const uint32_t* attributes, int32_t* values) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
bool hotPluggable = isHotPluggable(ctx, disp);
bool isVirtualDisplay = (disp == HWC_DISPLAY_VIRTUAL);
// If hotpluggable or virtual displays are inactive return error
if ((hotPluggable || isVirtualDisplay) && !ctx->dpyAttr[disp].connected) {
ALOGE("%s display (%d) is inactive", __FUNCTION__, disp);
return -EINVAL;
}
uint32_t xres = 0, yres = 0, refresh = 0;
int ret = 0;
if (hotPluggable) {
ret = ctx->mHDMIDisplay->getAttrForConfig(config, xres, yres, refresh);
if(ret < 0) {
ALOGE("%s Error getting attributes for config %d",
__FUNCTION__, config);
return ret;
}
}
for (size_t i = 0; attributes[i] != HWC_DISPLAY_NO_ATTRIBUTE; i++) {
switch (attributes[i]) {
case HWC_DISPLAY_VSYNC_PERIOD:
values[i] =
hotPluggable ? refresh : ctx->dpyAttr[disp].vsync_period;
break;
case HWC_DISPLAY_WIDTH:
if (ctx->dpyAttr[disp].customFBSize)
values[i] = ctx->dpyAttr[disp].xres_new;
else
values[i] = hotPluggable ? xres : ctx->dpyAttr[disp].xres;
ALOGD("%s disp = %d, width = %d",__FUNCTION__, disp,
values[i]);
break;
case HWC_DISPLAY_HEIGHT:
if (ctx->dpyAttr[disp].customFBSize)
values[i] = ctx->dpyAttr[disp].yres_new;
else
values[i] = hotPluggable ? yres : ctx->dpyAttr[disp].yres;
ALOGD("%s disp = %d, height = %d",__FUNCTION__, disp,
values[i]);
break;
case HWC_DISPLAY_DPI_X:
values[i] = (int32_t) (ctx->dpyAttr[disp].xdpi*1000.0);
break;
case HWC_DISPLAY_DPI_Y:
values[i] = (int32_t) (ctx->dpyAttr[disp].ydpi*1000.0);
break;
case HWC_DISPLAY_COLOR_TRANSFORM:
values[i] = ctx->mColorMode->getModeForIndex(config);
break;
default:
ALOGE("Unknown display attribute %d",
attributes[i]);
return -EINVAL;
}
}
return 0;
}
void hwc_dump(struct hwc_composer_device_1* dev, char *buff, int buff_len)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
android::String8 aBuf("");
dumpsys_log(aBuf, "Qualcomm HWC state:\n");
dumpsys_log(aBuf, " MDPVersion=%d\n", ctx->mMDP.version);
dumpsys_log(aBuf, " DisplayPanel=%c\n", ctx->mMDP.panel);
dumpsys_log(aBuf, " DynRefreshRate=%d\n",
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].dynRefreshRate);
for(int dpy = 0; dpy < HWC_NUM_DISPLAY_TYPES; dpy++) {
if(ctx->mMDPComp[dpy])
ctx->mMDPComp[dpy]->dump(aBuf, ctx);
}
char ovDump[2048] = {'\0'};
ctx->mOverlay->getDump(ovDump, 2048);
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
ctx->mRotMgr->getDump(ovDump, 1024);
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
if(Writeback::getDump(ovDump, 1024)) {
dumpsys_log(aBuf, ovDump);
ovDump[0] = '\0';
}
strlcpy(buff, aBuf.string(), buff_len);
}
int hwc_getActiveConfig(struct hwc_composer_device_1* dev, int disp)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
bool hotPluggable = isHotPluggable(ctx, disp);
bool isVirtualDisplay = (disp == HWC_DISPLAY_VIRTUAL);
// If hotpluggable or virtual displays are inactive return error
if ((hotPluggable || isVirtualDisplay) && !ctx->dpyAttr[disp].connected) {
ALOGE("%s display (%d) is inactive", __FUNCTION__, disp);
return -EINVAL;
}
// For use cases when primary panel is the default interface we only have
// the default config (0th index)
if (!hotPluggable && disp == HWC_DISPLAY_PRIMARY) {
return ctx->mColorMode->getActiveModeIndex();
} else if (isVirtualDisplay) {
return 0;
}
return ctx->mHDMIDisplay->getActiveConfig();
}
int hwc_setActiveConfig(struct hwc_composer_device_1* dev, int disp, int index)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
Locker::Autolock _l(ctx->mDrawLock);
bool hotPluggable = isHotPluggable(ctx, disp);
bool isVirtualDisplay = (disp == HWC_DISPLAY_VIRTUAL);
// If hotpluggable or virtual displays are inactive return error
if ((hotPluggable || isVirtualDisplay) && !ctx->dpyAttr[disp].connected) {
ALOGE("%s display (%d) is inactive", __FUNCTION__, disp);
return -EINVAL;
}
// For use cases when primary panel is the default interface we only switch
// color modes
if(!hotPluggable && disp == HWC_DISPLAY_PRIMARY) {
return ctx->mColorMode->applyModeByIndex(index);
} else if (isVirtualDisplay) {
// virtual supports only the default config (0th index)
return (index == 0) ? index : -EINVAL;
}
return ctx->mHDMIDisplay->setActiveConfig(index);
}
static int hwc_device_close(struct hw_device_t *dev)
{
if(!dev) {
ALOGE("%s: NULL device pointer", __FUNCTION__);
return -1;
}
closeContext((hwc_context_t*)dev);
free(dev);
return 0;
}
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, HWC_HARDWARE_COMPOSER)) {
struct hwc_context_t *dev;
dev = (hwc_context_t*)malloc(sizeof(*dev));
if(dev == NULL)
return status;
memset(dev, 0, sizeof(*dev));
//Initialize hwc context
initContext(dev);
//Setup HWC methods
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = HWC_DEVICE_API_VERSION_1_5;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = hwc_device_close;
dev->device.prepare = hwc_prepare;
dev->device.set = hwc_set;
dev->device.eventControl = hwc_eventControl;
dev->device.setPowerMode = hwc_setPowerMode;
dev->device.query = hwc_query;
dev->device.registerProcs = hwc_registerProcs;
dev->device.dump = hwc_dump;
dev->device.getDisplayConfigs = hwc_getDisplayConfigs;
dev->device.getDisplayAttributes = hwc_getDisplayAttributes;
dev->device.getActiveConfig = hwc_getActiveConfig;
dev->device.setActiveConfig = hwc_setActiveConfig;
*device = &dev->device.common;
status = 0;
}
return status;
}