blob: d8e292a0da11b07954a5ad4cff930f2c712c6026 [file] [log] [blame] [edit]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Sensor.h"
#include <hardware/sensors.h>
#include <utils/SystemClock.h>
#include <cmath>
namespace android {
namespace hardware {
namespace sensors {
namespace V2_1 {
namespace subhal {
namespace implementation {
using ::android::hardware::sensors::V1_0::MetaDataEventType;
using ::android::hardware::sensors::V1_0::OperationMode;
using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V1_0::SensorFlagBits;
using ::android::hardware::sensors::V1_0::SensorStatus;
using ::android::hardware::sensors::V2_1::Event;
using ::android::hardware::sensors::V2_1::SensorInfo;
using ::android::hardware::sensors::V2_1::SensorType;
Sensor::Sensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: mIsEnabled(false),
mSamplingPeriodNs(0),
mLastSampleTimeNs(0),
mCallback(callback),
mMode(OperationMode::NORMAL) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.vendor = "Vendor String";
mSensorInfo.version = 1;
constexpr float kDefaultMaxDelayUs = 1000 * 1000;
mSensorInfo.maxDelay = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
mRunThread = std::thread(startThread, this);
}
Sensor::~Sensor() {
// Ensure that lock is unlocked before calling mRunThread.join() or a
// deadlock will occur.
{
std::unique_lock<std::mutex> lock(mRunMutex);
mStopThread = true;
mIsEnabled = false;
mWaitCV.notify_all();
}
mRunThread.join();
}
const SensorInfo& Sensor::getSensorInfo() const {
return mSensorInfo;
}
void Sensor::batch(int64_t samplingPeriodNs) {
samplingPeriodNs = std::clamp(samplingPeriodNs,
static_cast<int64_t>(mSensorInfo.minDelay) * 1000,
static_cast<int64_t>(mSensorInfo.maxDelay) * 1000);
std::unique_lock<std::mutex> lock(mRunMutex);
if (mSamplingPeriodNs != samplingPeriodNs) {
mSamplingPeriodNs = samplingPeriodNs;
// Wake up the 'run' thread to check if a new event should be generated now
mWaitCV.notify_all();
}
}
void Sensor::activate(bool enable) {
if (mIsEnabled != enable) {
std::unique_lock<std::mutex> lock(mRunMutex);
mIsEnabled = enable;
mWaitCV.notify_all();
}
}
Result Sensor::flush() {
// Only generate a flush complete event if the sensor is enabled and if the sensor is not a
// one-shot sensor.
if (!mIsEnabled || (mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::ONE_SHOT_MODE))) {
return Result::BAD_VALUE;
}
// Note: If a sensor supports batching, write all of the currently batched events for the sensor
// to the Event FMQ prior to writing the flush complete event.
Event ev;
ev.sensorHandle = mSensorInfo.sensorHandle;
ev.sensorType = SensorType::META_DATA;
ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE;
std::vector<Event> evs{ev};
mCallback->postEvents(evs, isWakeUpSensor());
return Result::OK;
}
void Sensor::startThread(Sensor* sensor) {
sensor->run();
}
void Sensor::run() {
std::unique_lock<std::mutex> runLock(mRunMutex);
constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000;
while (!mStopThread) {
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
mWaitCV.wait(runLock, [&] {
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
});
} else {
timespec curTime;
clock_gettime(CLOCK_BOOTTIME, &curTime);
int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec;
int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
if (now >= nextSampleTime) {
mLastSampleTimeNs = now;
nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
mCallback->postEvents(readEvents(), isWakeUpSensor());
}
mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now));
}
}
}
bool Sensor::isWakeUpSensor() {
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::WAKE_UP);
}
std::vector<Event> Sensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
event.u.vec3.x = 0;
event.u.vec3.y = 0;
event.u.vec3.z = 0;
event.u.vec3.status = SensorStatus::ACCURACY_HIGH;
events.push_back(event);
return events;
}
void Sensor::setOperationMode(OperationMode mode) {
if (mMode != mode) {
std::unique_lock<std::mutex> lock(mRunMutex);
mMode = mode;
mWaitCV.notify_all();
}
}
bool Sensor::supportsDataInjection() const {
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION);
}
Result Sensor::injectEvent(const Event& event) {
Result result = Result::OK;
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
// When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
// environment data into the device.
} else if (!supportsDataInjection()) {
result = Result::INVALID_OPERATION;
} else if (mMode == OperationMode::DATA_INJECTION) {
mCallback->postEvents(std::vector<Event>{event}, isWakeUpSensor());
} else {
result = Result::BAD_VALUE;
}
return result;
}
OnChangeSensor::OnChangeSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(sensorHandle, callback), mPreviousEventSet(false) {
mSensorInfo.flags |= SensorFlagBits::ON_CHANGE_MODE;
}
void OnChangeSensor::activate(bool enable) {
Sensor::activate(enable);
if (!enable) {
mPreviousEventSet = false;
}
}
std::vector<Event> OnChangeSensor::readEvents() {
std::vector<Event> events = Sensor::readEvents();
std::vector<Event> outputEvents;
for (auto iter = events.begin(); iter != events.end(); ++iter) {
Event ev = *iter;
if (ev.u.vec3 != mPreviousEvent.u.vec3 || !mPreviousEventSet) {
outputEvents.push_back(ev);
mPreviousEvent = ev;
mPreviousEventSet = true;
}
}
return outputEvents;
}
ContinuousSensor::ContinuousSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(sensorHandle, callback) {
mSensorInfo.flags |= SensorFlagBits::CONTINUOUS_MODE;
}
AccelSensor::AccelSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: ContinuousSensor(sensorHandle, callback) {
mSensorInfo.name = "Accel Sensor";
mSensorInfo.type = SensorType::ACCELEROMETER;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_ACCELEROMETER;
mSensorInfo.maxRange = 78.4f; // +/- 8g
mSensorInfo.resolution = 1.52e-5;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelay = 20 * 1000; // microseconds
mSensorInfo.flags |= SensorFlagBits::DATA_INJECTION;
}
std::vector<Event> AccelSensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
event.u.vec3.x = 0;
event.u.vec3.y = 0;
event.u.vec3.z = 9.815;
event.u.vec3.status = SensorStatus::ACCURACY_HIGH;
events.push_back(event);
return events;
}
PressureSensor::PressureSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: ContinuousSensor(sensorHandle, callback) {
mSensorInfo.name = "Pressure Sensor";
mSensorInfo.type = SensorType::PRESSURE;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_PRESSURE;
mSensorInfo.maxRange = 1100.0f; // hPa
mSensorInfo.resolution = 0.005f; // hPa
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelay = 100 * 1000; // microseconds
}
MagnetometerSensor::MagnetometerSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: ContinuousSensor(sensorHandle, callback) {
mSensorInfo.name = "Magnetic Field Sensor";
mSensorInfo.type = SensorType::MAGNETIC_FIELD;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_MAGNETIC_FIELD;
mSensorInfo.maxRange = 1300.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelay = 20 * 1000; // microseconds
}
LightSensor::LightSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(sensorHandle, callback) {
mSensorInfo.name = "Light Sensor";
mSensorInfo.type = SensorType::LIGHT;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_LIGHT;
mSensorInfo.maxRange = 43000.0f;
mSensorInfo.resolution = 10.0f;
mSensorInfo.power = 0.001f; // mA
mSensorInfo.minDelay = 200 * 1000; // microseconds
}
ProximitySensor::ProximitySensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(sensorHandle, callback) {
mSensorInfo.name = "Proximity Sensor";
mSensorInfo.type = SensorType::PROXIMITY;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_PROXIMITY;
mSensorInfo.maxRange = 5.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0.012f; // mA
mSensorInfo.minDelay = 200 * 1000; // microseconds
mSensorInfo.flags |= SensorFlagBits::WAKE_UP;
}
GyroSensor::GyroSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: ContinuousSensor(sensorHandle, callback) {
mSensorInfo.name = "Gyro Sensor";
mSensorInfo.type = SensorType::GYROSCOPE;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_GYROSCOPE;
mSensorInfo.maxRange = 1000.0f * M_PI / 180.0f;
mSensorInfo.resolution = 1000.0f * M_PI / (180.0f * 32768.0f);
mSensorInfo.power = 0.001f;
mSensorInfo.minDelay = 2.5f * 1000; // microseconds
}
std::vector<Event> GyroSensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
event.u.vec3.x = 0;
event.u.vec3.y = 0;
event.u.vec3.z = 0;
event.u.vec3.status = SensorStatus::ACCURACY_HIGH;
events.push_back(event);
return events;
}
AmbientTempSensor::AmbientTempSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: OnChangeSensor(sensorHandle, callback) {
mSensorInfo.name = "Ambient Temp Sensor";
mSensorInfo.type = SensorType::AMBIENT_TEMPERATURE;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE;
mSensorInfo.maxRange = 80.0f;
mSensorInfo.resolution = 0.01f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelay = 40 * 1000; // microseconds
}
RelativeHumiditySensor::RelativeHumiditySensor(int32_t sensorHandle,
ISensorsEventCallback* callback)
: OnChangeSensor(sensorHandle, callback) {
mSensorInfo.name = "Relative Humidity Sensor";
mSensorInfo.type = SensorType::RELATIVE_HUMIDITY;
mSensorInfo.typeAsString = SENSOR_STRING_TYPE_RELATIVE_HUMIDITY;
mSensorInfo.maxRange = 100.0f;
mSensorInfo.resolution = 0.1f;
mSensorInfo.power = 0.001f;
mSensorInfo.minDelay = 40 * 1000; // microseconds
}
} // namespace implementation
} // namespace subhal
} // namespace V2_1
} // namespace sensors
} // namespace hardware
} // namespace android