blob: dc1dfdcc7eaafeb59c51491f381cc15a26ce3c74 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "keymaster_hidl_hal_test"
#include <cutils/log.h>
#include <iostream>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/x509.h>
#include <cutils/properties.h>
#include <keymasterV4_0/attestation_record.h>
#include <keymasterV4_0/key_param_output.h>
#include <keymasterV4_0/openssl_utils.h>
#include "KeymasterHidlTest.h"
static bool arm_deleteAllKeys = false;
static bool dump_Attestations = false;
namespace android {
namespace hardware {
template <typename T>
bool operator==(const hidl_vec<T>& a, const hidl_vec<T>& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); ++i) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
namespace keymaster {
namespace V4_0 {
bool operator==(const AuthorizationSet& a, const AuthorizationSet& b) {
return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin());
}
bool operator==(const KeyCharacteristics& a, const KeyCharacteristics& b) {
// This isn't very efficient. Oh, well.
AuthorizationSet a_sw(a.softwareEnforced);
AuthorizationSet b_sw(b.softwareEnforced);
AuthorizationSet a_tee(b.hardwareEnforced);
AuthorizationSet b_tee(b.hardwareEnforced);
a_sw.Sort();
b_sw.Sort();
a_tee.Sort();
b_tee.Sort();
return a_sw == b_sw && a_tee == b_tee;
}
namespace test {
namespace {
template <TagType tag_type, Tag tag, typename ValueT>
bool contains(hidl_vec<KeyParameter>& set, TypedTag<tag_type, tag> ttag, ValueT expected_value) {
size_t count = std::count_if(set.begin(), set.end(), [&](const KeyParameter& param) {
return param.tag == tag && accessTagValue(ttag, param) == expected_value;
});
return count == 1;
}
template <TagType tag_type, Tag tag>
bool contains(hidl_vec<KeyParameter>& set, TypedTag<tag_type, tag>) {
size_t count = std::count_if(set.begin(), set.end(),
[&](const KeyParameter& param) { return param.tag == tag; });
return count > 0;
}
constexpr char hex_value[256] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, // '0'..'9'
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'A'..'F'
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'a'..'f'
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
string hex2str(string a) {
string b;
size_t num = a.size() / 2;
b.resize(num);
for (size_t i = 0; i < num; i++) {
b[i] = (hex_value[a[i * 2] & 0xFF] << 4) + (hex_value[a[i * 2 + 1] & 0xFF]);
}
return b;
}
char nibble2hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
string bin2hex(const hidl_vec<uint8_t>& data) {
string retval;
retval.reserve(data.size() * 2 + 1);
for (uint8_t byte : data) {
retval.push_back(nibble2hex[0x0F & (byte >> 4)]);
retval.push_back(nibble2hex[0x0F & byte]);
}
return retval;
}
string rsa_key = hex2str(
"30820275020100300d06092a864886f70d01010105000482025f3082025b"
"02010002818100c6095409047d8634812d5a218176e45c41d60a75b13901"
"f234226cffe776521c5a77b9e389417b71c0b6a44d13afe4e4a2805d46c9"
"da2935adb1ff0c1f24ea06e62b20d776430a4d435157233c6f916783c30e"
"310fcbd89b85c2d56771169785ac12bca244abda72bfb19fc44d27c81e1d"
"92de284f4061edfd99280745ea6d2502030100010281801be0f04d9cae37"
"18691f035338308e91564b55899ffb5084d2460e6630257e05b3ceab0297"
"2dfabcd6ce5f6ee2589eb67911ed0fac16e43a444b8c861e544a05933657"
"72f8baf6b22fc9e3c5f1024b063ac080a7b2234cf8aee8f6c47bbf4fd3ac"
"e7240290bef16c0b3f7f3cdd64ce3ab5912cf6e32f39ab188358afcccd80"
"81024100e4b49ef50f765d3b24dde01aceaaf130f2c76670a91a61ae08af"
"497b4a82be6dee8fcdd5e3f7ba1cfb1f0c926b88f88c92bfab137fba2285"
"227b83c342ff7c55024100ddabb5839c4c7f6bf3d4183231f005b31aa58a"
"ffdda5c79e4cce217f6bc930dbe563d480706c24e9ebfcab28a6cdefd324"
"b77e1bf7251b709092c24ff501fd91024023d4340eda3445d8cd26c14411"
"da6fdca63c1ccd4b80a98ad52b78cc8ad8beb2842c1d280405bc2f6c1bea"
"214a1d742ab996b35b63a82a5e470fa88dbf823cdd02401b7b57449ad30d"
"1518249a5f56bb98294d4b6ac12ffc86940497a5a5837a6cf946262b4945"
"26d328c11e1126380fde04c24f916dec250892db09a6d77cdba351024077"
"62cd8f4d050da56bd591adb515d24d7ccd32cca0d05f866d583514bd7324"
"d5f33645e8ed8b4a1cb3cc4a1d67987399f2a09f5b3fb68c88d5e5d90ac3"
"3492d6");
string ec_256_key = hex2str(
"308187020100301306072a8648ce3d020106082a8648ce3d030107046d30"
"6b0201010420737c2ecd7b8d1940bf2930aa9b4ed3ff941eed09366bc032"
"99986481f3a4d859a14403420004bf85d7720d07c25461683bc648b4778a"
"9a14dd8a024e3bdd8c7ddd9ab2b528bbc7aa1b51f14ebbbb0bd0ce21bcc4"
"1c6eb00083cf3376d11fd44949e0b2183bfe");
string ec_521_key = hex2str(
"3081EE020100301006072A8648CE3D020106052B810400230481D63081D3"
"02010104420011458C586DB5DAA92AFAB03F4FE46AA9D9C3CE9A9B7A006A"
"8384BEC4C78E8E9D18D7D08B5BCFA0E53C75B064AD51C449BAE0258D54B9"
"4B1E885DED08ED4FB25CE9A1818903818600040149EC11C6DF0FA122C6A9"
"AFD9754A4FA9513A627CA329E349535A5629875A8ADFBE27DCB932C05198"
"6377108D054C28C6F39B6F2C9AF81802F9F326B842FF2E5F3C00AB7635CF"
"B36157FC0882D574A10D839C1A0C049DC5E0D775E2EE50671A208431BB45"
"E78E70BEFE930DB34818EE4D5C26259F5C6B8E28A652950F9F88D7B4B2C9"
"D9");
string ec_256_key_rfc5915 =
hex2str("308193020100301306072a8648ce3d020106082a8648ce3d030107047930"
"770201010420782370a8c8ce5537baadd04dcff079c8158cfa9c67b818b3"
"8e8d21c9fa750c1da00a06082a8648ce3d030107a14403420004e2cc561e"
"e701da0ad0ef0d176bb0c919d42e79c393fdc1bd6c4010d85cf2cf8e68c9"
"05464666f98dad4f01573ba81078b3428570a439ba3229fbc026c550682f");
string ec_256_key_sec1 =
hex2str("308187020100301306072a8648ce3d020106082a8648ce3d030107046d30"
"6b0201010420782370a8c8ce5537baadd04dcff079c8158cfa9c67b818b3"
"8e8d21c9fa750c1da14403420004e2cc561ee701da0ad0ef0d176bb0c919"
"d42e79c393fdc1bd6c4010d85cf2cf8e68c905464666f98dad4f01573ba8"
"1078b3428570a439ba3229fbc026c550682f");
struct RSA_Delete {
void operator()(RSA* p) { RSA_free(p); }
};
X509* parse_cert_blob(const hidl_vec<uint8_t>& blob) {
const uint8_t* p = blob.data();
return d2i_X509(nullptr, &p, blob.size());
}
bool verify_chain(const hidl_vec<hidl_vec<uint8_t>>& chain, const std::string& msg,
const std::string& signature) {
{
EVP_MD_CTX md_ctx_verify;
X509_Ptr signing_cert(parse_cert_blob(chain[0]));
EVP_PKEY_Ptr signing_pubkey(X509_get_pubkey(signing_cert.get()));
EXPECT_TRUE(signing_pubkey);
ERR_print_errors_cb(
[](const char* str, size_t len, void* ctx) -> int {
(void)ctx;
std::cerr << std::string(str, len) << std::endl;
return 1;
},
nullptr);
EVP_MD_CTX_init(&md_ctx_verify);
bool result = false;
EXPECT_TRUE((result = EVP_DigestVerifyInit(&md_ctx_verify, NULL, EVP_sha256(), NULL,
signing_pubkey.get())));
EXPECT_TRUE(
(result = result && EVP_DigestVerifyUpdate(&md_ctx_verify, msg.c_str(), msg.size())));
EXPECT_TRUE((result = result && EVP_DigestVerifyFinal(
&md_ctx_verify,
reinterpret_cast<const uint8_t*>(signature.c_str()),
signature.size())));
EVP_MD_CTX_cleanup(&md_ctx_verify);
if (!result) return false;
}
for (size_t i = 0; i < chain.size(); ++i) {
X509_Ptr key_cert(parse_cert_blob(chain[i]));
X509_Ptr signing_cert;
if (i < chain.size() - 1) {
signing_cert.reset(parse_cert_blob(chain[i + 1]));
} else {
signing_cert.reset(parse_cert_blob(chain[i]));
}
EXPECT_TRUE(!!key_cert.get() && !!signing_cert.get());
if (!key_cert.get() || !signing_cert.get()) return false;
EVP_PKEY_Ptr signing_pubkey(X509_get_pubkey(signing_cert.get()));
EXPECT_TRUE(!!signing_pubkey.get());
if (!signing_pubkey.get()) return false;
EXPECT_EQ(1, X509_verify(key_cert.get(), signing_pubkey.get()))
<< "Verification of certificate " << i << " failed "
<< "OpenSSL error string: " << ERR_error_string(ERR_get_error(), NULL);
char* cert_issuer = //
X509_NAME_oneline(X509_get_issuer_name(key_cert.get()), nullptr, 0);
char* signer_subj =
X509_NAME_oneline(X509_get_subject_name(signing_cert.get()), nullptr, 0);
EXPECT_STREQ(cert_issuer, signer_subj) << "Cert " << i << " has wrong issuer.";
if (i == 0) {
char* cert_sub = X509_NAME_oneline(X509_get_subject_name(key_cert.get()), nullptr, 0);
EXPECT_STREQ("/CN=Android Keystore Key", cert_sub)
<< "Cert " << i << " has wrong subject.";
OPENSSL_free(cert_sub);
}
OPENSSL_free(cert_issuer);
OPENSSL_free(signer_subj);
if (dump_Attestations) std::cout << bin2hex(chain[i]) << std::endl;
}
return true;
}
// Extract attestation record from cert. Returned object is still part of cert; don't free it
// separately.
ASN1_OCTET_STRING* get_attestation_record(X509* certificate) {
ASN1_OBJECT_Ptr oid(OBJ_txt2obj(kAttestionRecordOid, 1 /* dotted string format */));
EXPECT_TRUE(!!oid.get());
if (!oid.get()) return nullptr;
int location = X509_get_ext_by_OBJ(certificate, oid.get(), -1 /* search from beginning */);
EXPECT_NE(-1, location) << "Attestation extension not found in certificate";
if (location == -1) return nullptr;
X509_EXTENSION* attest_rec_ext = X509_get_ext(certificate, location);
EXPECT_TRUE(!!attest_rec_ext)
<< "Found attestation extension but couldn't retrieve it? Probably a BoringSSL bug.";
if (!attest_rec_ext) return nullptr;
ASN1_OCTET_STRING* attest_rec = X509_EXTENSION_get_data(attest_rec_ext);
EXPECT_TRUE(!!attest_rec) << "Attestation extension contained no data";
return attest_rec;
}
bool tag_in_list(const KeyParameter& entry) {
// Attestations don't contain everything in key authorization lists, so we need to filter
// the key lists to produce the lists that we expect to match the attestations.
auto tag_list = {
Tag::INCLUDE_UNIQUE_ID, Tag::BLOB_USAGE_REQUIREMENTS, Tag::EC_CURVE, Tag::HARDWARE_TYPE,
};
return std::find(tag_list.begin(), tag_list.end(), entry.tag) != tag_list.end();
}
AuthorizationSet filter_tags(const AuthorizationSet& set) {
AuthorizationSet filtered;
std::remove_copy_if(set.begin(), set.end(), std::back_inserter(filtered), tag_in_list);
return filtered;
}
std::string make_string(const uint8_t* data, size_t length) {
return std::string(reinterpret_cast<const char*>(data), length);
}
template <size_t N>
std::string make_string(const uint8_t (&a)[N]) {
return make_string(a, N);
}
bool avb_verification_enabled() {
char value[PROPERTY_VALUE_MAX];
return property_get("ro.boot.vbmeta.device_state", value, "") != 0;
}
} // namespace
bool verify_attestation_record(const string& challenge, const string& app_id,
AuthorizationSet expected_sw_enforced,
AuthorizationSet expected_hw_enforced, SecurityLevel security_level,
const hidl_vec<uint8_t>& attestation_cert,
std::chrono::time_point<std::chrono::system_clock> creation_time) {
X509_Ptr cert(parse_cert_blob(attestation_cert));
EXPECT_TRUE(!!cert.get());
if (!cert.get()) return false;
ASN1_OCTET_STRING* attest_rec = get_attestation_record(cert.get());
EXPECT_TRUE(!!attest_rec);
if (!attest_rec) return false;
AuthorizationSet att_sw_enforced;
AuthorizationSet att_hw_enforced;
uint32_t att_attestation_version;
uint32_t att_keymaster_version;
SecurityLevel att_attestation_security_level;
SecurityLevel att_keymaster_security_level;
HidlBuf att_challenge;
HidlBuf att_unique_id;
HidlBuf att_app_id;
auto error = parse_attestation_record(attest_rec->data, //
attest_rec->length, //
&att_attestation_version, //
&att_attestation_security_level, //
&att_keymaster_version, //
&att_keymaster_security_level, //
&att_challenge, //
&att_sw_enforced, //
&att_hw_enforced, //
&att_unique_id);
EXPECT_EQ(ErrorCode::OK, error);
if (error != ErrorCode::OK) return false;
EXPECT_TRUE(att_attestation_version == 3);
expected_sw_enforced.push_back(TAG_ATTESTATION_APPLICATION_ID, HidlBuf(app_id));
EXPECT_EQ(att_keymaster_version, 4U);
EXPECT_EQ(security_level, att_keymaster_security_level);
EXPECT_EQ(security_level, att_attestation_security_level);
EXPECT_EQ(challenge.length(), att_challenge.size());
EXPECT_EQ(0, memcmp(challenge.data(), att_challenge.data(), challenge.length()));
char property_value[PROPERTY_VALUE_MAX] = {};
// TODO(b/136282179): When running under VTS-on-GSI the TEE-backed
// keymaster implementation will report YYYYMM dates instead of YYYYMMDD
// for the BOOT_PATCH_LEVEL.
if (avb_verification_enabled()) {
for (int i = 0; i < att_hw_enforced.size(); i++) {
if (att_hw_enforced[i].tag == TAG_BOOT_PATCHLEVEL ||
att_hw_enforced[i].tag == TAG_VENDOR_PATCHLEVEL) {
std::string date = std::to_string(att_hw_enforced[i].f.integer);
// strptime seems to require delimiters, but the tag value will
// be YYYYMMDD
date.insert(6, "-");
date.insert(4, "-");
EXPECT_EQ(date.size(), 10);
struct tm time;
strptime(date.c_str(), "%Y-%m-%d", &time);
// Day of the month (0-31)
EXPECT_GE(time.tm_mday, 0);
EXPECT_LT(time.tm_mday, 32);
// Months since Jan (0-11)
EXPECT_GE(time.tm_mon, 0);
EXPECT_LT(time.tm_mon, 12);
// Years since 1900
EXPECT_GT(time.tm_year, 110);
EXPECT_LT(time.tm_year, 200);
}
}
}
// Check to make sure boolean values are properly encoded. Presence of a boolean tag indicates
// true. A provided boolean tag that can be pulled back out of the certificate indicates correct
// encoding. No need to check if it's in both lists, since the AuthorizationSet compare below
// will handle mismatches of tags.
EXPECT_TRUE(expected_hw_enforced.Contains(TAG_NO_AUTH_REQUIRED));
// Alternatively this checks the opposite - a false boolean tag (one that isn't provided in
// the authorization list during key generation) isn't being attested to in the certificate.
EXPECT_FALSE(expected_hw_enforced.Contains(TAG_TRUSTED_USER_PRESENCE_REQUIRED));
EXPECT_FALSE(att_hw_enforced.Contains(TAG_TRUSTED_USER_PRESENCE_REQUIRED));
KeymasterHidlTest::CheckCreationDateTime(att_sw_enforced, creation_time);
if (att_hw_enforced.Contains(TAG_ALGORITHM, Algorithm::EC)) {
// For ECDSA keys, either an EC_CURVE or a KEY_SIZE can be specified, but one must be.
EXPECT_TRUE(att_hw_enforced.Contains(TAG_EC_CURVE) ||
att_hw_enforced.Contains(TAG_KEY_SIZE));
}
// Test root of trust elements
HidlBuf verified_boot_key;
keymaster_verified_boot_t verified_boot_state;
bool device_locked;
HidlBuf verified_boot_hash;
error = parse_root_of_trust(attest_rec->data, attest_rec->length, &verified_boot_key,
&verified_boot_state, &device_locked, &verified_boot_hash);
EXPECT_EQ(ErrorCode::OK, error);
if (avb_verification_enabled()) {
property_get("ro.boot.vbmeta.digest", property_value, "nogood");
EXPECT_NE(strcmp(property_value, "nogood"), 0);
string prop_string(property_value);
EXPECT_EQ(prop_string.size(), 64);
EXPECT_EQ(prop_string, bin2hex(verified_boot_hash));
property_get("ro.boot.vbmeta.device_state", property_value, "nogood");
EXPECT_NE(strcmp(property_value, "nogood"), 0);
if (!strcmp(property_value, "unlocked")) {
EXPECT_FALSE(device_locked);
} else {
EXPECT_TRUE(device_locked);
}
}
// Verified boot key should be all 0's if the boot state is not verified or self signed
std::string empty_boot_key(32, '\0');
std::string verified_boot_key_str((const char*)verified_boot_key.data(),
verified_boot_key.size());
property_get("ro.boot.verifiedbootstate", property_value, "nogood");
EXPECT_NE(property_value, "nogood");
if (!strcmp(property_value, "green")) {
EXPECT_EQ(verified_boot_state, KM_VERIFIED_BOOT_VERIFIED);
EXPECT_NE(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "yellow")) {
EXPECT_EQ(verified_boot_state, KM_VERIFIED_BOOT_SELF_SIGNED);
EXPECT_NE(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "orange")) {
EXPECT_EQ(verified_boot_state, KM_VERIFIED_BOOT_UNVERIFIED);
EXPECT_EQ(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else if (!strcmp(property_value, "red")) {
EXPECT_EQ(verified_boot_state, KM_VERIFIED_BOOT_FAILED);
EXPECT_EQ(0, memcmp(verified_boot_key.data(), empty_boot_key.data(),
verified_boot_key.size()));
} else {
EXPECT_TRUE(false);
}
att_sw_enforced.Sort();
expected_sw_enforced.Sort();
EXPECT_EQ(filter_tags(expected_sw_enforced), filter_tags(att_sw_enforced));
att_hw_enforced.Sort();
expected_hw_enforced.Sort();
EXPECT_EQ(filter_tags(expected_hw_enforced), filter_tags(att_hw_enforced));
return true;
}
class NewKeyGenerationTest : public KeymasterHidlTest {
protected:
void CheckBaseParams(const KeyCharacteristics& keyCharacteristics) {
// TODO(swillden): Distinguish which params should be in which auth list.
AuthorizationSet auths(keyCharacteristics.hardwareEnforced);
auths.push_back(AuthorizationSet(keyCharacteristics.softwareEnforced));
EXPECT_TRUE(auths.Contains(TAG_ORIGIN, KeyOrigin::GENERATED));
EXPECT_TRUE(auths.Contains(TAG_PURPOSE, KeyPurpose::SIGN));
EXPECT_TRUE(auths.Contains(TAG_PURPOSE, KeyPurpose::VERIFY));
// Verify that App ID, App data and ROT are NOT included.
EXPECT_FALSE(auths.Contains(TAG_ROOT_OF_TRUST));
EXPECT_FALSE(auths.Contains(TAG_APPLICATION_ID));
EXPECT_FALSE(auths.Contains(TAG_APPLICATION_DATA));
// Check that some unexpected tags/values are NOT present.
EXPECT_FALSE(auths.Contains(TAG_PURPOSE, KeyPurpose::ENCRYPT));
EXPECT_FALSE(auths.Contains(TAG_PURPOSE, KeyPurpose::DECRYPT));
EXPECT_FALSE(auths.Contains(TAG_AUTH_TIMEOUT, 301U));
// Now check that unspecified, defaulted tags are correct.
EXPECT_TRUE(auths.Contains(TAG_CREATION_DATETIME));
EXPECT_TRUE(auths.Contains(TAG_OS_VERSION, os_version()))
<< "OS version is " << os_version() << " key reported "
<< auths.GetTagValue(TAG_OS_VERSION);
EXPECT_TRUE(auths.Contains(TAG_OS_PATCHLEVEL, os_patch_level()))
<< "OS patch level is " << os_patch_level() << " key reported "
<< auths.GetTagValue(TAG_OS_PATCHLEVEL);
}
void CheckCharacteristics(const HidlBuf& key_blob,
const KeyCharacteristics& key_characteristics) {
KeyCharacteristics retrieved_chars;
ASSERT_EQ(ErrorCode::OK, GetCharacteristics(key_blob, &retrieved_chars));
EXPECT_EQ(key_characteristics, retrieved_chars);
}
};
/*
* NewKeyGenerationTest.Rsa
*
* Verifies that keymaster can generate all required RSA key sizes, and that the resulting keys have
* correct characteristics.
*/
TEST_F(NewKeyGenerationTest, Rsa) {
for (auto key_size : ValidKeySizes(Algorithm::RSA)) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(key_size, 3)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE),
&key_blob, &key_characteristics));
ASSERT_GT(key_blob.size(), 0U);
CheckBaseParams(key_characteristics);
CheckCharacteristics(key_blob, key_characteristics);
AuthorizationSet crypto_params;
if (IsSecure()) {
crypto_params = key_characteristics.hardwareEnforced;
} else {
crypto_params = key_characteristics.softwareEnforced;
}
EXPECT_TRUE(crypto_params.Contains(TAG_ALGORITHM, Algorithm::RSA));
EXPECT_TRUE(crypto_params.Contains(TAG_KEY_SIZE, key_size))
<< "Key size " << key_size << "missing";
EXPECT_TRUE(crypto_params.Contains(TAG_RSA_PUBLIC_EXPONENT, 3U));
CheckedDeleteKey(&key_blob);
}
}
/*
* NewKeyGenerationTest.RsaCheckCreationDateTime
*
* Verifies that creation date time is correct.
*/
TEST_F(NewKeyGenerationTest, RsaCheckCreationDateTime) {
KeyCharacteristics key_characteristics;
auto creation_time = std::chrono::system_clock::now();
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 3)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
GetCharacteristics(key_blob_, &key_characteristics);
AuthorizationSet sw_enforced = key_characteristics.softwareEnforced;
CheckCreationDateTime(sw_enforced, creation_time);
}
/*
* NewKeyGenerationTest.NoInvalidRsaSizes
*
* Verifies that keymaster cannot generate any RSA key sizes that are designated as invalid.
*/
TEST_F(NewKeyGenerationTest, NoInvalidRsaSizes) {
for (auto key_size : InvalidKeySizes(Algorithm::RSA)) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(ErrorCode::UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(key_size, 3)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE),
&key_blob, &key_characteristics));
}
}
/*
* NewKeyGenerationTest.RsaNoDefaultSize
*
* Verifies that failing to specify a key size for RSA key generation returns UNSUPPORTED_KEY_SIZE.
*/
TEST_F(NewKeyGenerationTest, RsaNoDefaultSize) {
ASSERT_EQ(ErrorCode::UNSUPPORTED_KEY_SIZE,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_ALGORITHM, Algorithm::RSA)
.Authorization(TAG_RSA_PUBLIC_EXPONENT, 3U)
.SigningKey()));
}
/*
* NewKeyGenerationTest.Ecdsa
*
* Verifies that keymaster can generate all required EC key sizes, and that the resulting keys have
* correct characteristics.
*/
TEST_F(NewKeyGenerationTest, Ecdsa) {
for (auto key_size : ValidKeySizes(Algorithm::EC)) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(
ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(key_size).Digest(Digest::NONE),
&key_blob, &key_characteristics));
ASSERT_GT(key_blob.size(), 0U);
CheckBaseParams(key_characteristics);
CheckCharacteristics(key_blob, key_characteristics);
AuthorizationSet crypto_params;
if (IsSecure()) {
crypto_params = key_characteristics.hardwareEnforced;
} else {
crypto_params = key_characteristics.softwareEnforced;
}
EXPECT_TRUE(crypto_params.Contains(TAG_ALGORITHM, Algorithm::EC));
EXPECT_TRUE(crypto_params.Contains(TAG_KEY_SIZE, key_size))
<< "Key size " << key_size << "missing";
CheckedDeleteKey(&key_blob);
}
}
/*
* NewKeyGenerationTest.EcCheckCreationDateTime
*
* Verifies that creation date time is correct.
*/
TEST_F(NewKeyGenerationTest, EcCheckCreationDateTime) {
KeyCharacteristics key_characteristics;
auto creation_time = std::chrono::system_clock::now();
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::NONE)));
GetCharacteristics(key_blob_, &key_characteristics);
AuthorizationSet sw_enforced = key_characteristics.softwareEnforced;
CheckCreationDateTime(sw_enforced, creation_time);
}
/*
* NewKeyGenerationTest.EcdsaDefaultSize
*
* Verifies that failing to specify a key size for EC key generation returns UNSUPPORTED_KEY_SIZE.
*/
TEST_F(NewKeyGenerationTest, EcdsaDefaultSize) {
ASSERT_EQ(ErrorCode::UNSUPPORTED_KEY_SIZE,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_ALGORITHM, Algorithm::EC)
.SigningKey()
.Digest(Digest::NONE)));
}
/*
* NewKeyGenerationTest.EcdsaInvalidSize
*
* Verifies that specifying an invalid key size for EC key generation returns UNSUPPORTED_KEY_SIZE.
*/
TEST_F(NewKeyGenerationTest, EcdsaInvalidSize) {
for (auto key_size : InvalidKeySizes(Algorithm::EC)) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(
ErrorCode::UNSUPPORTED_KEY_SIZE,
GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(key_size).Digest(Digest::NONE),
&key_blob, &key_characteristics));
}
ASSERT_EQ(ErrorCode::UNSUPPORTED_KEY_SIZE,
GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(190).Digest(Digest::NONE)));
}
/*
* NewKeyGenerationTest.EcdsaMismatchKeySize
*
* Verifies that specifying mismatched key size and curve for EC key generation returns
* INVALID_ARGUMENT.
*/
TEST_F(NewKeyGenerationTest, EcdsaMismatchKeySize) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::INVALID_ARGUMENT,
GenerateKey(AuthorizationSetBuilder()
.EcdsaSigningKey(224)
.Authorization(TAG_EC_CURVE, EcCurve::P_256)
.Digest(Digest::NONE)));
}
/*
* NewKeyGenerationTest.EcdsaAllValidSizes
*
* Verifies that keymaster supports all required EC key sizes.
*/
TEST_F(NewKeyGenerationTest, EcdsaAllValidSizes) {
auto valid_sizes = ValidKeySizes(Algorithm::EC);
for (size_t size : valid_sizes) {
EXPECT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(size).Digest(Digest::NONE)))
<< "Failed to generate size: " << size;
CheckCharacteristics(key_blob_, key_characteristics_);
CheckedDeleteKey();
}
}
/*
* NewKeyGenerationTest.EcdsaInvalidCurves
*
* Verifies that keymaster does not support any curve designated as unsupported.
*/
TEST_F(NewKeyGenerationTest, EcdsaAllValidCurves) {
Digest digest;
if (SecLevel() == SecurityLevel::STRONGBOX) {
digest = Digest::SHA_2_256;
} else {
digest = Digest::SHA_2_512;
}
for (auto curve : ValidCurves()) {
EXPECT_EQ(
ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(curve).Digest(digest)))
<< "Failed to generate key on curve: " << curve;
CheckCharacteristics(key_blob_, key_characteristics_);
CheckedDeleteKey();
}
}
/*
* NewKeyGenerationTest.Hmac
*
* Verifies that keymaster supports all required digests, and that the resulting keys have correct
* characteristics.
*/
TEST_F(NewKeyGenerationTest, Hmac) {
for (auto digest : ValidDigests(false /* withNone */, true /* withMD5 */)) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
constexpr size_t key_size = 128;
ASSERT_EQ(
ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder().HmacKey(key_size).Digest(digest).Authorization(
TAG_MIN_MAC_LENGTH, 128),
&key_blob, &key_characteristics));
ASSERT_GT(key_blob.size(), 0U);
CheckBaseParams(key_characteristics);
CheckCharacteristics(key_blob, key_characteristics);
AuthorizationSet hardwareEnforced = key_characteristics.hardwareEnforced;
AuthorizationSet softwareEnforced = key_characteristics.softwareEnforced;
if (IsSecure()) {
EXPECT_TRUE(hardwareEnforced.Contains(TAG_ALGORITHM, Algorithm::HMAC));
EXPECT_TRUE(hardwareEnforced.Contains(TAG_KEY_SIZE, key_size))
<< "Key size " << key_size << "missing";
} else {
EXPECT_TRUE(softwareEnforced.Contains(TAG_ALGORITHM, Algorithm::HMAC));
EXPECT_TRUE(softwareEnforced.Contains(TAG_KEY_SIZE, key_size))
<< "Key size " << key_size << "missing";
}
CheckedDeleteKey(&key_blob);
}
}
/*
* NewKeyGenerationTest.HmacCheckKeySizes
*
* Verifies that keymaster supports all key sizes, and rejects all invalid key sizes.
*/
TEST_F(NewKeyGenerationTest, HmacCheckKeySizes) {
for (size_t key_size = 0; key_size <= 512; ++key_size) {
if (key_size < 64 || key_size % 8 != 0) {
// To keep this test from being very slow, we only test a random fraction of non-byte
// key sizes. We test only ~10% of such cases. Since there are 392 of them, we expect
// to run ~40 of them in each run.
if (key_size % 8 == 0 || random() % 10 == 0) {
EXPECT_EQ(ErrorCode::UNSUPPORTED_KEY_SIZE,
GenerateKey(AuthorizationSetBuilder()
.HmacKey(key_size)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 256)))
<< "HMAC key size " << key_size << " invalid";
}
} else {
EXPECT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.HmacKey(key_size)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 256)))
<< "Failed to generate HMAC key of size " << key_size;
CheckCharacteristics(key_blob_, key_characteristics_);
CheckedDeleteKey();
}
}
}
/*
* NewKeyGenerationTest.HmacCheckMinMacLengths
*
* Verifies that keymaster supports all required MAC lengths and rejects all invalid lengths. This
* test is probabilistic in order to keep the runtime down, but any failure prints out the specific
* MAC length that failed, so reproducing a failed run will be easy.
*/
TEST_F(NewKeyGenerationTest, HmacCheckMinMacLengths) {
for (size_t min_mac_length = 0; min_mac_length <= 256; ++min_mac_length) {
if (min_mac_length < 64 || min_mac_length % 8 != 0) {
// To keep this test from being very long, we only test a random fraction of non-byte
// lengths. We test only ~10% of such cases. Since there are 172 of them, we expect to
// run ~17 of them in each run.
if (min_mac_length % 8 == 0 || random() % 10 == 0) {
EXPECT_EQ(ErrorCode::UNSUPPORTED_MIN_MAC_LENGTH,
GenerateKey(AuthorizationSetBuilder()
.HmacKey(128)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, min_mac_length)))
<< "HMAC min mac length " << min_mac_length << " invalid.";
}
} else {
EXPECT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder()
.HmacKey(128)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, min_mac_length)))
<< "Failed to generate HMAC key with min MAC length " << min_mac_length;
CheckCharacteristics(key_blob_, key_characteristics_);
CheckedDeleteKey();
}
}
}
/*
* NewKeyGenerationTest.HmacMultipleDigests
*
* Verifies that keymaster rejects HMAC key generation with multiple specified digest algorithms.
*/
TEST_F(NewKeyGenerationTest, HmacMultipleDigests) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::UNSUPPORTED_DIGEST,
GenerateKey(AuthorizationSetBuilder()
.HmacKey(128)
.Digest(Digest::SHA1)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 128)));
}
/*
* NewKeyGenerationTest.HmacDigestNone
*
* Verifies that keymaster rejects HMAC key generation with no digest or Digest::NONE
*/
TEST_F(NewKeyGenerationTest, HmacDigestNone) {
ASSERT_EQ(
ErrorCode::UNSUPPORTED_DIGEST,
GenerateKey(AuthorizationSetBuilder().HmacKey(128).Authorization(TAG_MIN_MAC_LENGTH, 128)));
ASSERT_EQ(ErrorCode::UNSUPPORTED_DIGEST,
GenerateKey(AuthorizationSetBuilder()
.HmacKey(128)
.Digest(Digest::NONE)
.Authorization(TAG_MIN_MAC_LENGTH, 128)));
}
typedef KeymasterHidlTest SigningOperationsTest;
/*
* SigningOperationsTest.RsaSuccess
*
* Verifies that raw RSA signature operations succeed.
*/
TEST_F(SigningOperationsTest, RsaSuccess) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)));
string message = "12345678901234567890123456789012";
string signature = SignMessage(
message, AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
}
/*
* SigningOperationsTest.RsaGetKeyCharacteristicsRequiresCorrectAppIdAppData
*
* Verifies that getting RSA key characteristics requires the correct app ID/data.
*/
TEST_F(SigningOperationsTest, RsaGetKeyCharacteristicsRequiresCorrectAppIdAppData) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata")),
&key_blob, &key_characteristics));
CheckGetCharacteristics(key_blob, HidlBuf("clientid"), HidlBuf("appdata"),
&key_characteristics);
}
/*
* SigningOperationsTest.RsaUseRequiresCorrectAppIdAppData
*
* Verifies that using an RSA key requires the correct app ID/data.
*/
TEST_F(SigningOperationsTest, RsaUseRequiresCorrectAppIdAppData) {
ASSERT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))));
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE)));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))));
AbortIfNeeded();
}
/*
* SigningOperationsTest.RsaPssSha256Success
*
* Verifies that RSA-PSS signature operations succeed.
*/
TEST_F(SigningOperationsTest, RsaPssSha256Success) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_PSS)
.Authorization(TAG_NO_AUTH_REQUIRED)));
// Use large message, which won't work without digesting.
string message(1024, 'a');
string signature = SignMessage(
message, AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Padding(PaddingMode::RSA_PSS));
}
/*
* SigningOperationsTest.RsaPaddingNoneDoesNotAllowOther
*
* Verifies that keymaster rejects signature operations that specify a padding mode when the key
* supports only unpadded operations.
*/
TEST_F(SigningOperationsTest, RsaPaddingNoneDoesNotAllowOther) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::NONE)));
string message = "12345678901234567890123456789012";
string signature;
EXPECT_EQ(ErrorCode::INCOMPATIBLE_PADDING_MODE,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
}
/*
* SigningOperationsTest.NoUserConfirmation
*
* Verifies that keymaster rejects signing operations for keys with
* TRUSTED_CONFIRMATION_REQUIRED and no valid confirmation token
* presented.
*/
TEST_F(SigningOperationsTest, NoUserConfirmation) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(1024, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Authorization(TAG_TRUSTED_CONFIRMATION_REQUIRED)));
const string message = "12345678901234567890123456789012";
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE)));
string signature;
EXPECT_EQ(ErrorCode::NO_USER_CONFIRMATION, Finish(message, &signature));
}
/*
* SigningOperationsTest.RsaPkcs1Sha256Success
*
* Verifies that digested RSA-PKCS1 signature operations succeed.
*/
TEST_F(SigningOperationsTest, RsaPkcs1Sha256Success) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
string message(1024, 'a');
string signature = SignMessage(message, AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN));
}
/*
* SigningOperationsTest.RsaPkcs1NoDigestSuccess
*
* Verifies that undigested RSA-PKCS1 signature operations succeed.
*/
TEST_F(SigningOperationsTest, RsaPkcs1NoDigestSuccess) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
string message(53, 'a');
string signature = SignMessage(
message,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::RSA_PKCS1_1_5_SIGN));
}
/*
* SigningOperationsTest.RsaPkcs1NoDigestTooLarge
*
* Verifies that undigested RSA-PKCS1 signature operations fail with the correct error code when
* given a too-long message.
*/
TEST_F(SigningOperationsTest, RsaPkcs1NoDigestTooLong) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
string message(257, 'a');
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
string signature;
EXPECT_EQ(ErrorCode::INVALID_INPUT_LENGTH, Finish(message, &signature));
}
/*
* SigningOperationsTest.RsaPssSha512TooSmallKey
*
* Verifies that undigested RSA-PSS signature operations fail with the correct error code when
* used with a key that is too small for the message.
*
* A PSS-padded message is of length salt_size + digest_size + 16 (sizes in bits), and the keymaster
* specification requires that salt_size == digest_size, so the message will be digest_size * 2 +
* 16. Such a message can only be signed by a given key if the key is at least that size. This test
* uses SHA512, which has a digest_size == 512, so the message size is 1040 bits, too large for a
* 1024-bit key.
*/
TEST_F(SigningOperationsTest, RsaPssSha512TooSmallKey) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(1024, 65537)
.Digest(Digest::SHA_2_512)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::RSA_PSS)));
EXPECT_EQ(
ErrorCode::INCOMPATIBLE_DIGEST,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::SHA_2_512).Padding(PaddingMode::RSA_PSS)));
}
/*
* SigningOperationsTest.RsaNoPaddingTooLong
*
* Verifies that raw RSA signature operations fail with the correct error code when
* given a too-long message.
*/
TEST_F(SigningOperationsTest, RsaNoPaddingTooLong) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
// One byte too long
string message(2048 / 8 + 1, 'a');
ASSERT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
string result;
ErrorCode finish_error_code = Finish(message, &result);
EXPECT_TRUE(finish_error_code == ErrorCode::INVALID_INPUT_LENGTH ||
finish_error_code == ErrorCode::INVALID_ARGUMENT);
// Very large message that should exceed the transfer buffer size of any reasonable TEE.
message = string(128 * 1024, 'a');
ASSERT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN)));
finish_error_code = Finish(message, &result);
EXPECT_TRUE(finish_error_code == ErrorCode::INVALID_INPUT_LENGTH ||
finish_error_code == ErrorCode::INVALID_ARGUMENT);
}
/*
* SigningOperationsTest.RsaAbort
*
* Verifies that operations can be aborted correctly. Uses an RSA signing operation for the test,
* but the behavior should be algorithm and purpose-independent.
*/
TEST_F(SigningOperationsTest, RsaAbort) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Padding(PaddingMode::NONE)));
ASSERT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE)));
EXPECT_EQ(ErrorCode::OK, Abort(op_handle_));
// Another abort should fail
EXPECT_EQ(ErrorCode::INVALID_OPERATION_HANDLE, Abort(op_handle_));
// Set to sentinel, so TearDown() doesn't try to abort again.
op_handle_ = kOpHandleSentinel;
}
/*
* SigningOperationsTest.RsaUnsupportedPadding
*
* Verifies that RSA operations fail with the correct error (but key gen succeeds) when used with a
* padding mode inappropriate for RSA.
*/
TEST_F(SigningOperationsTest, RsaUnsupportedPadding) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Digest(Digest::SHA_2_256 /* supported digest */)
.Padding(PaddingMode::PKCS7)));
ASSERT_EQ(
ErrorCode::UNSUPPORTED_PADDING_MODE,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Padding(PaddingMode::PKCS7)));
}
/*
* SigningOperationsTest.RsaPssNoDigest
*
* Verifies that RSA PSS operations fail when no digest is used. PSS requires a digest.
*/
TEST_F(SigningOperationsTest, RsaNoDigest) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Authorization(TAG_NO_AUTH_REQUIRED)
.Digest(Digest::NONE)
.Padding(PaddingMode::RSA_PSS)));
ASSERT_EQ(ErrorCode::INCOMPATIBLE_DIGEST,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::RSA_PSS)));
ASSERT_EQ(ErrorCode::UNSUPPORTED_DIGEST,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder().Padding(PaddingMode::RSA_PSS)));
}
/*
* SigningOperationsTest.RsaPssNoDigest
*
* Verifies that RSA operations fail when no padding mode is specified. PaddingMode::NONE is
* supported in some cases (as validated in other tests), but a mode must be specified.
*/
TEST_F(SigningOperationsTest, RsaNoPadding) {
// Padding must be specified
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaKey(2048, 65537)
.Authorization(TAG_NO_AUTH_REQUIRED)
.SigningKey()
.Digest(Digest::NONE)));
ASSERT_EQ(ErrorCode::UNSUPPORTED_PADDING_MODE,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder().Digest(Digest::NONE)));
}
/*
* SigningOperationsTest.RsaShortMessage
*
* Verifies that raw RSA signatures succeed with a message shorter than the key size.
*/
TEST_F(SigningOperationsTest, RsaTooShortMessage) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
// Barely shorter
string message(2048 / 8 - 1, 'a');
SignMessage(message, AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
// Much shorter
message = "a";
SignMessage(message, AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
}
/*
* SigningOperationsTest.RsaSignWithEncryptionKey
*
* Verifies that RSA encryption keys cannot be used to sign.
*/
TEST_F(SigningOperationsTest, RsaSignWithEncryptionKey) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
ASSERT_EQ(ErrorCode::INCOMPATIBLE_PURPOSE,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE)));
}
/*
* SigningOperationsTest.RsaSignTooLargeMessage
*
* Verifies that attempting a raw signature of a message which is the same length as the key, but
* numerically larger than the public modulus, fails with the correct error.
*/
TEST_F(SigningOperationsTest, RsaSignTooLargeMessage) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
// Largest possible message will always be larger than the public modulus.
string message(2048 / 8, static_cast<char>(0xff));
ASSERT_EQ(ErrorCode::OK, Begin(KeyPurpose::SIGN, AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
string signature;
ASSERT_EQ(ErrorCode::INVALID_ARGUMENT, Finish(message, &signature));
}
/*
* SigningOperationsTest.EcdsaAllSizesAndHashes
*
* Verifies that ECDSA operations succeed with all possible key sizes and hashes.
*/
TEST_F(SigningOperationsTest, EcdsaAllSizesAndHashes) {
for (auto key_size : ValidKeySizes(Algorithm::EC)) {
for (auto digest : ValidDigests(false /* withNone */, false /* withMD5 */)) {
ErrorCode error = GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(key_size)
.Digest(digest));
EXPECT_EQ(ErrorCode::OK, error) << "Failed to generate ECDSA key with size " << key_size
<< " and digest " << digest;
if (error != ErrorCode::OK) continue;
string message(1024, 'a');
if (digest == Digest::NONE) message.resize(key_size / 8);
SignMessage(message, AuthorizationSetBuilder().Digest(digest));
CheckedDeleteKey();
}
}
}
/*
* SigningOperationsTest.EcdsaAllCurves
*
* Verifies that ECDSA operations succeed with all possible curves.
*/
TEST_F(SigningOperationsTest, EcdsaAllCurves) {
for (auto curve : ValidCurves()) {
ErrorCode error = GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(curve)
.Digest(Digest::SHA_2_256));
EXPECT_EQ(ErrorCode::OK, error) << "Failed to generate ECDSA key with curve " << curve;
if (error != ErrorCode::OK) continue;
string message(1024, 'a');
SignMessage(message, AuthorizationSetBuilder().Digest(Digest::SHA_2_256));
CheckedDeleteKey();
}
}
/*
* SigningOperationsTest.EcdsaNoDigestHugeData
*
* Verifies that ECDSA operations support very large messages, even without digesting. This should
* work because ECDSA actually only signs the leftmost L_n bits of the message, however large it may
* be. Not using digesting is a bad idea, but in some cases digesting is done by the framework.
*/
TEST_F(SigningOperationsTest, EcdsaNoDigestHugeData) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::NONE)));
string message(1 * 1024, 'a');
SignMessage(message, AuthorizationSetBuilder().Digest(Digest::NONE));
}
/*
* SigningOperationsTest.EcGetKeyCharacteristicsRequiresCorrectAppIdAppData
*
* Verifies that getting EC key characteristics requires the correct app ID/data.
*/
TEST_F(SigningOperationsTest, EcGetKeyCharacteristicsRequiresCorrectAppIdAppData) {
HidlBuf key_blob;
KeyCharacteristics key_characteristics;
ASSERT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata")),
&key_blob, &key_characteristics));
CheckGetCharacteristics(key_blob, HidlBuf("clientid"), HidlBuf("appdata"),
&key_characteristics);
}
/*
* SigningOperationsTest.EcUseRequiresCorrectAppIdAppData
*
* Verifies that using an EC key requires the correct app ID/data.
*/
TEST_F(SigningOperationsTest, EcUseRequiresCorrectAppIdAppData) {
ASSERT_EQ(ErrorCode::OK,
GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))));
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN, AuthorizationSetBuilder().Digest(Digest::NONE)));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))));
AbortIfNeeded();
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::SIGN,
AuthorizationSetBuilder()
.Digest(Digest::NONE)
.Authorization(TAG_APPLICATION_DATA, HidlBuf("appdata"))
.Authorization(TAG_APPLICATION_ID, HidlBuf("clientid"))));
AbortIfNeeded();
}
/*
* SigningOperationsTest.AesEcbSign
*
* Verifies that attempts to use AES keys to sign fail in the correct way.
*/
TEST_F(SigningOperationsTest, AesEcbSign) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.SigningKey()
.AesEncryptionKey(128)
.Authorization(TAG_BLOCK_MODE, BlockMode::ECB)));
AuthorizationSet out_params;
EXPECT_EQ(ErrorCode::UNSUPPORTED_PURPOSE,
Begin(KeyPurpose::SIGN, AuthorizationSet() /* in_params */, &out_params));
EXPECT_EQ(ErrorCode::UNSUPPORTED_PURPOSE,
Begin(KeyPurpose::VERIFY, AuthorizationSet() /* in_params */, &out_params));
}
/*
* SigningOperationsTest.HmacAllDigests
*
* Verifies that HMAC works with all digests.
*/
TEST_F(SigningOperationsTest, HmacAllDigests) {
for (auto digest : ValidDigests(false /* withNone */, false /* withMD5 */)) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.HmacKey(128)
.Digest(digest)
.Authorization(TAG_MIN_MAC_LENGTH, 160)))
<< "Failed to create HMAC key with digest " << digest;
string message = "12345678901234567890123456789012";
string signature = MacMessage(message, digest, 160);
EXPECT_EQ(160U / 8U, signature.size())
<< "Failed to sign with HMAC key with digest " << digest;
CheckedDeleteKey();
}
}
/*
* SigningOperationsTest.HmacSha256TooLargeMacLength
*
* Verifies that HMAC fails in the correct way when asked to generate a MAC larger than the digest
* size.
*/
TEST_F(SigningOperationsTest, HmacSha256TooLargeMacLength) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.HmacKey(128)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 256)));
AuthorizationSet output_params;
EXPECT_EQ(
ErrorCode::UNSUPPORTED_MAC_LENGTH,
Begin(
KeyPurpose::SIGN, key_blob_,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Authorization(TAG_MAC_LENGTH, 264),
&output_params, &op_handle_));
}
/*
* SigningOperationsTest.HmacSha256TooSmallMacLength
*
* Verifies that HMAC fails in the correct way when asked to generate a MAC smaller than the
* specified minimum MAC length.
*/
TEST_F(SigningOperationsTest, HmacSha256TooSmallMacLength) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.HmacKey(128)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 128)));
AuthorizationSet output_params;
EXPECT_EQ(
ErrorCode::INVALID_MAC_LENGTH,
Begin(
KeyPurpose::SIGN, key_blob_,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Authorization(TAG_MAC_LENGTH, 120),
&output_params, &op_handle_));
}
/*
* SigningOperationsTest.HmacRfc4231TestCase3
*
* Validates against the test vectors from RFC 4231 test case 3.
*/
TEST_F(SigningOperationsTest, HmacRfc4231TestCase3) {
string key(20, 0xaa);
string message(50, 0xdd);
uint8_t sha_224_expected[] = {
0x7f, 0xb3, 0xcb, 0x35, 0x88, 0xc6, 0xc1, 0xf6, 0xff, 0xa9, 0x69, 0x4d, 0x7d, 0x6a,
0xd2, 0x64, 0x93, 0x65, 0xb0, 0xc1, 0xf6, 0x5d, 0x69, 0xd1, 0xec, 0x83, 0x33, 0xea,
};
uint8_t sha_256_expected[] = {
0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8,
0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8,
0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe,
};
uint8_t sha_384_expected[] = {
0x88, 0x06, 0x26, 0x08, 0xd3, 0xe6, 0xad, 0x8a, 0x0a, 0xa2, 0xac, 0xe0,
0x14, 0xc8, 0xa8, 0x6f, 0x0a, 0xa6, 0x35, 0xd9, 0x47, 0xac, 0x9f, 0xeb,
0xe8, 0x3e, 0xf4, 0xe5, 0x59, 0x66, 0x14, 0x4b, 0x2a, 0x5a, 0xb3, 0x9d,
0xc1, 0x38, 0x14, 0xb9, 0x4e, 0x3a, 0xb6, 0xe1, 0x01, 0xa3, 0x4f, 0x27,
};
uint8_t sha_512_expected[] = {
0xfa, 0x73, 0xb0, 0x08, 0x9d, 0x56, 0xa2, 0x84, 0xef, 0xb0, 0xf0, 0x75, 0x6c,
0x89, 0x0b, 0xe9, 0xb1, 0xb5, 0xdb, 0xdd, 0x8e, 0xe8, 0x1a, 0x36, 0x55, 0xf8,
0x3e, 0x33, 0xb2, 0x27, 0x9d, 0x39, 0xbf, 0x3e, 0x84, 0x82, 0x79, 0xa7, 0x22,
0xc8, 0x06, 0xb4, 0x85, 0xa4, 0x7e, 0x67, 0xc8, 0x07, 0xb9, 0x46, 0xa3, 0x37,
0xbe, 0xe8, 0x94, 0x26, 0x74, 0x27, 0x88, 0x59, 0xe1, 0x32, 0x92, 0xfb,
};
CheckHmacTestVector(key, message, Digest::SHA_2_256, make_string(sha_256_expected));
if (SecLevel() != SecurityLevel::STRONGBOX) {
CheckHmacTestVector(key, message, Digest::SHA_2_224, make_string(sha_224_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_384, make_string(sha_384_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_512, make_string(sha_512_expected));
}
}
/*
* SigningOperationsTest.HmacRfc4231TestCase5
*
* Validates against the test vectors from RFC 4231 test case 5.
*/
TEST_F(SigningOperationsTest, HmacRfc4231TestCase5) {
string key(20, 0x0c);
string message = "Test With Truncation";
uint8_t sha_224_expected[] = {
0x0e, 0x2a, 0xea, 0x68, 0xa9, 0x0c, 0x8d, 0x37,
0xc9, 0x88, 0xbc, 0xdb, 0x9f, 0xca, 0x6f, 0xa8,
};
uint8_t sha_256_expected[] = {
0xa3, 0xb6, 0x16, 0x74, 0x73, 0x10, 0x0e, 0xe0,
0x6e, 0x0c, 0x79, 0x6c, 0x29, 0x55, 0x55, 0x2b,
};
uint8_t sha_384_expected[] = {
0x3a, 0xbf, 0x34, 0xc3, 0x50, 0x3b, 0x2a, 0x23,
0xa4, 0x6e, 0xfc, 0x61, 0x9b, 0xae, 0xf8, 0x97,
};
uint8_t sha_512_expected[] = {
0x41, 0x5f, 0xad, 0x62, 0x71, 0x58, 0x0a, 0x53,
0x1d, 0x41, 0x79, 0xbc, 0x89, 0x1d, 0x87, 0xa6,
};
CheckHmacTestVector(key, message, Digest::SHA_2_256, make_string(sha_256_expected));
if (SecLevel() != SecurityLevel::STRONGBOX) {
CheckHmacTestVector(key, message, Digest::SHA_2_224, make_string(sha_224_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_384, make_string(sha_384_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_512, make_string(sha_512_expected));
}
}
/*
* SigningOperationsTest.HmacRfc4231TestCase6
*
* Validates against the test vectors from RFC 4231 test case 6.
*/
TEST_F(SigningOperationsTest, HmacRfc4231TestCase6) {
string key(131, 0xaa);
string message = "Test Using Larger Than Block-Size Key - Hash Key First";
uint8_t sha_224_expected[] = {
0x95, 0xe9, 0xa0, 0xdb, 0x96, 0x20, 0x95, 0xad, 0xae, 0xbe, 0x9b, 0x2d, 0x6f, 0x0d,
0xbc, 0xe2, 0xd4, 0x99, 0xf1, 0x12, 0xf2, 0xd2, 0xb7, 0x27, 0x3f, 0xa6, 0x87, 0x0e,
};
uint8_t sha_256_expected[] = {
0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26,
0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28,
0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54,
};
uint8_t sha_384_expected[] = {
0x4e, 0xce, 0x08, 0x44, 0x85, 0x81, 0x3e, 0x90, 0x88, 0xd2, 0xc6, 0x3a,
0x04, 0x1b, 0xc5, 0xb4, 0x4f, 0x9e, 0xf1, 0x01, 0x2a, 0x2b, 0x58, 0x8f,
0x3c, 0xd1, 0x1f, 0x05, 0x03, 0x3a, 0xc4, 0xc6, 0x0c, 0x2e, 0xf6, 0xab,
0x40, 0x30, 0xfe, 0x82, 0x96, 0x24, 0x8d, 0xf1, 0x63, 0xf4, 0x49, 0x52,
};
uint8_t sha_512_expected[] = {
0x80, 0xb2, 0x42, 0x63, 0xc7, 0xc1, 0xa3, 0xeb, 0xb7, 0x14, 0x93, 0xc1, 0xdd,
0x7b, 0xe8, 0xb4, 0x9b, 0x46, 0xd1, 0xf4, 0x1b, 0x4a, 0xee, 0xc1, 0x12, 0x1b,
0x01, 0x37, 0x83, 0xf8, 0xf3, 0x52, 0x6b, 0x56, 0xd0, 0x37, 0xe0, 0x5f, 0x25,
0x98, 0xbd, 0x0f, 0xd2, 0x21, 0x5d, 0x6a, 0x1e, 0x52, 0x95, 0xe6, 0x4f, 0x73,
0xf6, 0x3f, 0x0a, 0xec, 0x8b, 0x91, 0x5a, 0x98, 0x5d, 0x78, 0x65, 0x98,
};
CheckHmacTestVector(key, message, Digest::SHA_2_256, make_string(sha_256_expected));
if (SecLevel() != SecurityLevel::STRONGBOX) {
CheckHmacTestVector(key, message, Digest::SHA_2_224, make_string(sha_224_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_384, make_string(sha_384_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_512, make_string(sha_512_expected));
}
}
/*
* SigningOperationsTest.HmacRfc4231TestCase7
*
* Validates against the test vectors from RFC 4231 test case 7.
*/
TEST_F(SigningOperationsTest, HmacRfc4231TestCase7) {
string key(131, 0xaa);
string message =
"This is a test using a larger than block-size key and a larger than "
"block-size data. The key needs to be hashed before being used by the HMAC "
"algorithm.";
uint8_t sha_224_expected[] = {
0x3a, 0x85, 0x41, 0x66, 0xac, 0x5d, 0x9f, 0x02, 0x3f, 0x54, 0xd5, 0x17, 0xd0, 0xb3,
0x9d, 0xbd, 0x94, 0x67, 0x70, 0xdb, 0x9c, 0x2b, 0x95, 0xc9, 0xf6, 0xf5, 0x65, 0xd1,
};
uint8_t sha_256_expected[] = {
0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f,
0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07,
0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2,
};
uint8_t sha_384_expected[] = {
0x66, 0x17, 0x17, 0x8e, 0x94, 0x1f, 0x02, 0x0d, 0x35, 0x1e, 0x2f, 0x25,
0x4e, 0x8f, 0xd3, 0x2c, 0x60, 0x24, 0x20, 0xfe, 0xb0, 0xb8, 0xfb, 0x9a,
0xdc, 0xce, 0xbb, 0x82, 0x46, 0x1e, 0x99, 0xc5, 0xa6, 0x78, 0xcc, 0x31,
0xe7, 0x99, 0x17, 0x6d, 0x38, 0x60, 0xe6, 0x11, 0x0c, 0x46, 0x52, 0x3e,
};
uint8_t sha_512_expected[] = {
0xe3, 0x7b, 0x6a, 0x77, 0x5d, 0xc8, 0x7d, 0xba, 0xa4, 0xdf, 0xa9, 0xf9, 0x6e,
0x5e, 0x3f, 0xfd, 0xde, 0xbd, 0x71, 0xf8, 0x86, 0x72, 0x89, 0x86, 0x5d, 0xf5,
0xa3, 0x2d, 0x20, 0xcd, 0xc9, 0x44, 0xb6, 0x02, 0x2c, 0xac, 0x3c, 0x49, 0x82,
0xb1, 0x0d, 0x5e, 0xeb, 0x55, 0xc3, 0xe4, 0xde, 0x15, 0x13, 0x46, 0x76, 0xfb,
0x6d, 0xe0, 0x44, 0x60, 0x65, 0xc9, 0x74, 0x40, 0xfa, 0x8c, 0x6a, 0x58,
};
CheckHmacTestVector(key, message, Digest::SHA_2_256, make_string(sha_256_expected));
if (SecLevel() != SecurityLevel::STRONGBOX) {
CheckHmacTestVector(key, message, Digest::SHA_2_224, make_string(sha_224_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_384, make_string(sha_384_expected));
CheckHmacTestVector(key, message, Digest::SHA_2_512, make_string(sha_512_expected));
}
}
typedef KeymasterHidlTest VerificationOperationsTest;
/*
* VerificationOperationsTest.RsaSuccess
*
* Verifies that a simple RSA signature/verification sequence succeeds.
*/
TEST_F(VerificationOperationsTest, RsaSuccess) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
string message = "12345678901234567890123456789012";
string signature = SignMessage(
message, AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
VerifyMessage(message, signature,
AuthorizationSetBuilder().Digest(Digest::NONE).Padding(PaddingMode::NONE));
}
/*
* VerificationOperationsTest.RsaSuccess
*
* Verifies RSA signature/verification for all padding modes and digests.
*/
TEST_F(VerificationOperationsTest, RsaAllPaddingsAndDigests) {
auto authorizations = AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(ValidDigests(true /* withNone */, true /* withMD5 */))
.Padding(PaddingMode::NONE)
.Padding(PaddingMode::RSA_PSS)
.Padding(PaddingMode::RSA_PKCS1_1_5_SIGN);
ASSERT_EQ(ErrorCode::OK, GenerateKey(authorizations));
string message(128, 'a');
string corrupt_message(message);
++corrupt_message[corrupt_message.size() / 2];
for (auto padding :
{PaddingMode::NONE, PaddingMode::RSA_PSS, PaddingMode::RSA_PKCS1_1_5_SIGN}) {
for (auto digest : ValidDigests(true /* withNone */, true /* withMD5 */)) {
if (padding == PaddingMode::NONE && digest != Digest::NONE) {
// Digesting only makes sense with padding.
continue;
}
if (padding == PaddingMode::RSA_PSS && digest == Digest::NONE) {
// PSS requires digesting.
continue;
}
string signature =
SignMessage(message, AuthorizationSetBuilder().Digest(digest).Padding(padding));
VerifyMessage(message, signature,
AuthorizationSetBuilder().Digest(digest).Padding(padding));
if (digest != Digest::NONE) {
// Verify with OpenSSL.
HidlBuf pubkey;
ASSERT_EQ(ErrorCode::OK, ExportKey(KeyFormat::X509, &pubkey));
const uint8_t* p = pubkey.data();
EVP_PKEY_Ptr pkey(d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size()));
ASSERT_TRUE(pkey.get());
EVP_MD_CTX digest_ctx;
EVP_MD_CTX_init(&digest_ctx);
EVP_PKEY_CTX* pkey_ctx;
const EVP_MD* md = openssl_digest(digest);
ASSERT_NE(md, nullptr);
EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, md, nullptr /* engine */,
pkey.get()));
switch (padding) {
case PaddingMode::RSA_PSS:
EXPECT_GT(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING), 0);
EXPECT_GT(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, EVP_MD_size(md)), 0);
break;
case PaddingMode::RSA_PKCS1_1_5_SIGN:
// PKCS1 is the default; don't need to set anything.
break;
default:
FAIL();
break;
}
EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size()));
EXPECT_EQ(1, EVP_DigestVerifyFinal(
&digest_ctx, reinterpret_cast<const uint8_t*>(signature.data()),
signature.size()));
EVP_MD_CTX_cleanup(&digest_ctx);
}
// Corrupt signature shouldn't verify.
string corrupt_signature(signature);
++corrupt_signature[corrupt_signature.size() / 2];
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::VERIFY,
AuthorizationSetBuilder().Digest(digest).Padding(padding)));
string result;
EXPECT_EQ(ErrorCode::VERIFICATION_FAILED, Finish(message, corrupt_signature, &result));
// Corrupt message shouldn't verify
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::VERIFY,
AuthorizationSetBuilder().Digest(digest).Padding(padding)));
EXPECT_EQ(ErrorCode::VERIFICATION_FAILED, Finish(corrupt_message, signature, &result));
}
}
}
/*
* VerificationOperationsTest.RsaSuccess
*
* Verifies ECDSA signature/verification for all digests and curves.
*/
TEST_F(VerificationOperationsTest, EcdsaAllDigestsAndCurves) {
auto digests = ValidDigests(true /* withNone */, false /* withMD5 */);
string message = "1234567890";
string corrupt_message = "2234567890";
for (auto curve : ValidCurves()) {
ErrorCode error = GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(curve)
.Digest(digests));
EXPECT_EQ(ErrorCode::OK, error) << "Failed to generate key for EC curve " << curve;
if (error != ErrorCode::OK) {
continue;
}
for (auto digest : digests) {
string signature = SignMessage(message, AuthorizationSetBuilder().Digest(digest));
VerifyMessage(message, signature, AuthorizationSetBuilder().Digest(digest));
// Verify with OpenSSL
if (digest != Digest::NONE) {
HidlBuf pubkey;
ASSERT_EQ(ErrorCode::OK, ExportKey(KeyFormat::X509, &pubkey))
<< curve << ' ' << digest;
const uint8_t* p = pubkey.data();
EVP_PKEY_Ptr pkey(d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size()));
ASSERT_TRUE(pkey.get());
EVP_MD_CTX digest_ctx;
EVP_MD_CTX_init(&digest_ctx);
EVP_PKEY_CTX* pkey_ctx;
const EVP_MD* md = openssl_digest(digest);
EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, md, nullptr /* engine */,
pkey.get()))
<< curve << ' ' << digest;
EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size()))
<< curve << ' ' << digest;
EXPECT_EQ(1, EVP_DigestVerifyFinal(
&digest_ctx, reinterpret_cast<const uint8_t*>(signature.data()),
signature.size()))
<< curve << ' ' << digest;
EVP_MD_CTX_cleanup(&digest_ctx);
}
// Corrupt signature shouldn't verify.
string corrupt_signature(signature);
++corrupt_signature[corrupt_signature.size() / 2];
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::VERIFY, AuthorizationSetBuilder().Digest(digest)))
<< curve << ' ' << digest;
string result;
EXPECT_EQ(ErrorCode::VERIFICATION_FAILED, Finish(message, corrupt_signature, &result))
<< curve << ' ' << digest;
// Corrupt message shouldn't verify
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::VERIFY, AuthorizationSetBuilder().Digest(digest)))
<< curve << ' ' << digest;
EXPECT_EQ(ErrorCode::VERIFICATION_FAILED, Finish(corrupt_message, signature, &result))
<< curve << ' ' << digest;
}
auto rc = DeleteKey();
ASSERT_TRUE(rc == ErrorCode::OK || rc == ErrorCode::UNIMPLEMENTED);
}
}
/*
* VerificationOperationsTest.HmacSigningKeyCannotVerify
*
* Verifies HMAC signing and verification, but that a signing key cannot be used to verify.
*/
TEST_F(VerificationOperationsTest, HmacSigningKeyCannotVerify) {
string key_material = "HelloThisIsAKey";
HidlBuf signing_key, verification_key;
KeyCharacteristics signing_key_chars, verification_key_chars;
EXPECT_EQ(ErrorCode::OK,
ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.Authorization(TAG_ALGORITHM, Algorithm::HMAC)
.Authorization(TAG_PURPOSE, KeyPurpose::SIGN)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 160),
KeyFormat::RAW, key_material, &signing_key, &signing_key_chars));
EXPECT_EQ(ErrorCode::OK,
ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.Authorization(TAG_ALGORITHM, Algorithm::HMAC)
.Authorization(TAG_PURPOSE, KeyPurpose::VERIFY)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 160),
KeyFormat::RAW, key_material, &verification_key, &verification_key_chars));
string message = "This is a message.";
string signature = SignMessage(
signing_key, message,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Authorization(TAG_MAC_LENGTH, 160));
// Signing key should not work.
AuthorizationSet out_params;
EXPECT_EQ(ErrorCode::INCOMPATIBLE_PURPOSE,
Begin(KeyPurpose::VERIFY, signing_key, AuthorizationSetBuilder().Digest(Digest::SHA_2_256),
&out_params, &op_handle_));
// Verification key should work.
VerifyMessage(verification_key, message, signature,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256));
CheckedDeleteKey(&signing_key);
CheckedDeleteKey(&verification_key);
}
typedef KeymasterHidlTest ExportKeyTest;
/*
* ExportKeyTest.RsaUnsupportedKeyFormat
*
* Verifies that attempting to export RSA keys in PKCS#8 format fails with the correct error.
*/
TEST_F(ExportKeyTest, RsaUnsupportedKeyFormat) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
HidlBuf export_data;
ASSERT_EQ(ErrorCode::UNSUPPORTED_KEY_FORMAT, ExportKey(KeyFormat::PKCS8, &export_data));
}
/*
* ExportKeyTest.RsaCorruptedKeyBlob
*
* Verifies that attempting to export RSA keys from corrupted key blobs fails. This is essentially
* a poor-man's key blob fuzzer.
*/
TEST_F(ExportKeyTest, RsaCorruptedKeyBlob) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(2048, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE)));
for (size_t i = 0; i < key_blob_.size(); ++i) {
HidlBuf corrupted(key_blob_);
++corrupted[i];
HidlBuf export_data;
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
ExportKey(KeyFormat::X509, corrupted, HidlBuf(), HidlBuf(), &export_data))
<< "Blob corrupted at offset " << i << " erroneously accepted as valid";
}
}
/*
* ExportKeyTest.RsaCorruptedKeyBlob
*
* Verifies that attempting to export ECDSA keys from corrupted key blobs fails. This is
* essentially a poor-man's key blob fuzzer.
*/
TEST_F(ExportKeyTest, EcCorruptedKeyBlob) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(EcCurve::P_256)
.Digest(Digest::NONE)));
for (size_t i = 0; i < key_blob_.size(); ++i) {
HidlBuf corrupted(key_blob_);
++corrupted[i];
HidlBuf export_data;
EXPECT_EQ(ErrorCode::INVALID_KEY_BLOB,
ExportKey(KeyFormat::X509, corrupted, HidlBuf(), HidlBuf(), &export_data))
<< "Blob corrupted at offset " << i << " erroneously accepted as valid";
}
}
/*
* ExportKeyTest.AesKeyUnexportable
*
* Verifies that attempting to export AES keys fails in the expected way.
*/
TEST_F(ExportKeyTest, AesKeyUnexportable) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.AesEncryptionKey(128)
.EcbMode()
.Padding(PaddingMode::NONE)));
HidlBuf export_data;
EXPECT_EQ(ErrorCode::UNSUPPORTED_KEY_FORMAT, ExportKey(KeyFormat::X509, &export_data));
EXPECT_EQ(ErrorCode::UNSUPPORTED_KEY_FORMAT, ExportKey(KeyFormat::PKCS8, &export_data));
EXPECT_EQ(ErrorCode::UNSUPPORTED_KEY_FORMAT, ExportKey(KeyFormat::RAW, &export_data));
}
class ImportKeyTest : public KeymasterHidlTest {
public:
template <TagType tag_type, Tag tag, typename ValueT>
void CheckCryptoParam(TypedTag<tag_type, tag> ttag, ValueT expected) {
SCOPED_TRACE("CheckCryptoParam");
if (IsSecure()) {
EXPECT_TRUE(contains(key_characteristics_.hardwareEnforced, ttag, expected))
<< "Tag " << tag << " with value " << expected << " not found";
EXPECT_FALSE(contains(key_characteristics_.softwareEnforced, ttag))
<< "Tag " << tag << " found";
} else {
EXPECT_TRUE(contains(key_characteristics_.softwareEnforced, ttag, expected))
<< "Tag " << tag << " with value " << expected << " not found";
EXPECT_FALSE(contains(key_characteristics_.hardwareEnforced, ttag))
<< "Tag " << tag << " found";
}
}
void CheckOrigin() {
SCOPED_TRACE("CheckOrigin");
if (IsSecure()) {
EXPECT_TRUE(
contains(key_characteristics_.hardwareEnforced, TAG_ORIGIN, KeyOrigin::IMPORTED));
} else {
EXPECT_TRUE(
contains(key_characteristics_.softwareEnforced, TAG_ORIGIN, KeyOrigin::IMPORTED));
}
}
};
/*
* ImportKeyTest.RsaSuccess
*
* Verifies that importing and using an RSA key pair works correctly.
*/
TEST_F(ImportKeyTest, RsaSuccess) {
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaSigningKey(1024, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_PSS),
KeyFormat::PKCS8, rsa_key));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::RSA);
CheckCryptoParam(TAG_KEY_SIZE, 1024U);
CheckCryptoParam(TAG_RSA_PUBLIC_EXPONENT, 65537U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckCryptoParam(TAG_PADDING, PaddingMode::RSA_PSS);
CheckOrigin();
string message(1024 / 8, 'a');
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Padding(PaddingMode::RSA_PSS);
string signature = SignMessage(message, params);
VerifyMessage(message, signature, params);
}
/*
* ImportKeyTest.RsaKeySizeMismatch
*
* Verifies that importing an RSA key pair with a size that doesn't match the key fails in the
* correct way.
*/
TEST_F(ImportKeyTest, RsaKeySizeMismatch) {
ASSERT_EQ(ErrorCode::IMPORT_PARAMETER_MISMATCH,
ImportKey(AuthorizationSetBuilder()
.RsaSigningKey(2048 /* Doesn't match key */, 65537)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE),
KeyFormat::PKCS8, rsa_key));
}
/*
* ImportKeyTest.RsaPublicExponentMismatch
*
* Verifies that importing an RSA key pair with a public exponent that doesn't match the key fails
* in the correct way.
*/
TEST_F(ImportKeyTest, RsaPublicExponentMismatch) {
ASSERT_EQ(ErrorCode::IMPORT_PARAMETER_MISMATCH,
ImportKey(AuthorizationSetBuilder()
.RsaSigningKey(1024, 3 /* Doesn't match key */)
.Digest(Digest::NONE)
.Padding(PaddingMode::NONE),
KeyFormat::PKCS8, rsa_key));
}
/*
* ImportKeyTest.EcdsaSuccess
*
* Verifies that importing and using an ECDSA P-256 key pair works correctly.
*/
TEST_F(ImportKeyTest, EcdsaSuccess) {
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::SHA_2_256),
KeyFormat::PKCS8, ec_256_key));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::EC);
CheckCryptoParam(TAG_KEY_SIZE, 256U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckCryptoParam(TAG_EC_CURVE, EcCurve::P_256);
CheckOrigin();
string message(32, 'a');
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256);
string signature = SignMessage(message, params);
VerifyMessage(message, signature, params);
}
/*
* ImportKeyTest.EcdsaP256RFC5915Success
*
* Verifies that importing and using an ECDSA P-256 key pair encoded using RFC5915 works correctly.
*/
TEST_F(ImportKeyTest, EcdsaP256RFC5915Success) {
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::SHA_2_256),
KeyFormat::PKCS8, ec_256_key_rfc5915));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::EC);
CheckCryptoParam(TAG_KEY_SIZE, 256U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckCryptoParam(TAG_EC_CURVE, EcCurve::P_256);
CheckOrigin();
string message(32, 'a');
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256);
string signature = SignMessage(message, params);
VerifyMessage(message, signature, params);
}
/*
* ImportKeyTest.EcdsaP256SEC1Success
*
* Verifies that importing and using an ECDSA P-256 key pair encoded using SEC1 works correctly.
*/
TEST_F(ImportKeyTest, EcdsaP256SEC1Success) {
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::SHA_2_256),
KeyFormat::PKCS8, ec_256_key_sec1));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::EC);
CheckCryptoParam(TAG_KEY_SIZE, 256U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckCryptoParam(TAG_EC_CURVE, EcCurve::P_256);
CheckOrigin();
string message(32, 'a');
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256);
string signature = SignMessage(message, params);
VerifyMessage(message, signature, params);
}
/*
* ImportKeyTest.Ecdsa521Success
*
* Verifies that importing and using an ECDSA P-521 key pair works correctly.
*/
TEST_F(ImportKeyTest, Ecdsa521Success) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(521)
.Digest(Digest::SHA_2_256),
KeyFormat::PKCS8, ec_521_key));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::EC);
CheckCryptoParam(TAG_KEY_SIZE, 521U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckCryptoParam(TAG_EC_CURVE, EcCurve::P_521);
CheckOrigin();
string message(32, 'a');
auto params = AuthorizationSetBuilder().Digest(Digest::SHA_2_256);
string signature = SignMessage(message, params);
VerifyMessage(message, signature, params);
}
/*
* ImportKeyTest.EcdsaSizeMismatch
*
* Verifies that importing an ECDSA key pair with a size that doesn't match the key fails in the
* correct way.
*/
TEST_F(ImportKeyTest, EcdsaSizeMismatch) {
ASSERT_EQ(ErrorCode::IMPORT_PARAMETER_MISMATCH,
ImportKey(AuthorizationSetBuilder()
.EcdsaSigningKey(224 /* Doesn't match key */)
.Digest(Digest::NONE),
KeyFormat::PKCS8, ec_256_key));
}
/*
* ImportKeyTest.EcdsaCurveMismatch
*
* Verifies that importing an ECDSA key pair with a curve that doesn't match the key fails in the
* correct way.
*/
TEST_F(ImportKeyTest, EcdsaCurveMismatch) {
ASSERT_EQ(ErrorCode::IMPORT_PARAMETER_MISMATCH,
ImportKey(AuthorizationSetBuilder()
.EcdsaSigningKey(EcCurve::P_224 /* Doesn't match key */)
.Digest(Digest::NONE),
KeyFormat::PKCS8, ec_256_key));
}
/*
* ImportKeyTest.AesSuccess
*
* Verifies that importing and using an AES key works.
*/
TEST_F(ImportKeyTest, AesSuccess) {
string key = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.AesEncryptionKey(key.size() * 8)
.EcbMode()
.Padding(PaddingMode::PKCS7),
KeyFormat::RAW, key));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::AES);
CheckCryptoParam(TAG_KEY_SIZE, 128U);
CheckCryptoParam(TAG_PADDING, PaddingMode::PKCS7);
CheckCryptoParam(TAG_BLOCK_MODE, BlockMode::ECB);
CheckOrigin();
string message = "Hello World!";
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
string ciphertext = EncryptMessage(message, params);
string plaintext = DecryptMessage(ciphertext, params);
EXPECT_EQ(message, plaintext);
}
/*
* ImportKeyTest.AesSuccess
*
* Verifies that importing and using an HMAC key works.
*/
TEST_F(ImportKeyTest, HmacKeySuccess) {
string key = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ASSERT_EQ(ErrorCode::OK, ImportKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.HmacKey(key.size() * 8)
.Digest(Digest::SHA_2_256)
.Authorization(TAG_MIN_MAC_LENGTH, 256),
KeyFormat::RAW, key));
CheckCryptoParam(TAG_ALGORITHM, Algorithm::HMAC);
CheckCryptoParam(TAG_KEY_SIZE, 128U);
CheckCryptoParam(TAG_DIGEST, Digest::SHA_2_256);
CheckOrigin();
string message = "Hello World!";
string signature = MacMessage(message, Digest::SHA_2_256, 256);
VerifyMessage(message, signature, AuthorizationSetBuilder().Digest(Digest::SHA_2_256));
}
auto wrapped_key = hex2str(
"3082017902010004820100934bf94e2aa28a3f83c9f79297250262fbe3276b5a1c91159bbfa3ef8957aac84b59b30b"
"455a79c2973480823d8b3863c3deef4a8e243590268d80e18751a0e130f67ce6a1ace9f79b95e097474febc981195b"
"1d13a69086c0863f66a7b7fdb48792227b1ac5e2489febdf087ab5486483033a6f001ca5d1ec1e27f5c30f4cec2642"
"074a39ae68aee552e196627a8e3d867e67a8c01b11e75f13cca0a97ab668b50cda07a8ecb7cd8e3dd7009c9636534f"
"6f239cffe1fc8daa466f78b676c7119efb96bce4e69ca2a25d0b34ed9c3ff999b801597d5220e307eaa5bee507fb94"
"d1fa69f9e519b2de315bac92c36f2ea1fa1df4478c0ddedeae8c70e0233cd098040cd796b02c370f1fa4cc0124f130"
"2e0201033029a1083106020100020101a203020120a30402020100a4053103020101a6053103020140bf8377020500"
"0420ccd540855f833a5e1480bfd2d36faf3aeee15df5beabe2691bc82dde2a7aa910041064c9f689c60ff6223ab6e6"
"999e0eb6e5");
auto wrapped_key_masked = hex2str(
"3082017902010004820100aad93ed5924f283b4bb5526fbe7a1412f9d9749ec30db9062b29e574a8546f33c8873245"
"2f5b8e6a391ee76c39ed1712c61d8df6213dec1cffbc17a8c6d04c7b30893d8daa9b2015213e21946821553207f8f9"
"931c4caba23ed3bee28b36947e47f10e0a5c3dc51c988a628daad3e5e1f4005e79c2d5a96c284b4b8d7e4948f331e5"
"b85dd5a236f85579f3ea1d1b848487470bdb0ab4f81a12bee42c99fe0df4bee3759453e69ad1d68a809ce06b949f76"
"94a990429b2fe81e066ff43e56a21602db70757922a4bcc23ab89f1e35da77586775f423e519c2ea394caf48a28d0c"
"8020f1dcf6b3a68ec246f615ae96dae9a079b1f6eb959033c1af5c125fd94168040c6d9721d08589581ab49204a330"
"2e0201033029a1083106020100020101a203020120a30402020100a4053103020101a6053103020140bf8377020500"
"0420a61c6e247e25b3e6e69aa78eb03c2d4ac20d1f99a9a024a76f35c8e2cab9b68d04102560c70109ae67c030f00b"
"98b512a670");
auto wrapping_key = hex2str(
"308204be020100300d06092a864886f70d0101010500048204a8308204a40201000282010100aec367931d8900ce56"
"b0067f7d70e1fc653f3f34d194c1fed50018fb43db937b06e673a837313d56b1c725150a3fef86acbddc41bb759c28"
"54eae32d35841efb5c18d82bc90a1cb5c1d55adf245b02911f0b7cda88c421ff0ebafe7c0d23be312d7bd5921ffaea"
"1347c157406fef718f682643e4e5d33c6703d61c0cf7ac0bf4645c11f5c1374c3886427411c449796792e0bef75dec"
"858a2123c36753e02a95a96d7c454b504de385a642e0dfc3e60ac3a7ee4991d0d48b0172a95f9536f02ba13cecccb9"
"2b727db5c27e5b2f5cec09600b286af5cf14c42024c61ddfe71c2a8d7458f185234cb00e01d282f10f8fc6721d2aed"
"3f4833cca2bd8fa62821dd55020301000102820100431447b6251908112b1ee76f99f3711a52b6630960046c2de70d"
"e188d833f8b8b91e4d785caeeeaf4f0f74414e2cda40641f7fe24f14c67a88959bdb27766df9e710b630a03adc683b"
"5d2c43080e52bee71e9eaeb6de297a5fea1072070d181c822bccff087d63c940ba8a45f670feb29fb4484d1c95e6d2"
"579ba02aae0a00900c3ebf490e3d2cd7ee8d0e20c536e4dc5a5097272888cddd7e91f228b1c4d7474c55b8fcd618c4"
"a957bbddd5ad7407cc312d8d98a5caf7e08f4a0d6b45bb41c652659d5a5ba05b663737a8696281865ba20fbdd7f851"
"e6c56e8cbe0ddbbf24dc03b2d2cb4c3d540fb0af52e034a2d06698b128e5f101e3b51a34f8d8b4f8618102818100de"
"392e18d682c829266cc3454e1d6166242f32d9a1d10577753e904ea7d08bff841be5bac82a164c5970007047b8c517"
"db8f8f84e37bd5988561bdf503d4dc2bdb38f885434ae42c355f725c9a60f91f0788e1f1a97223b524b5357fdf72e2"
"f696bab7d78e32bf92ba8e1864eab1229e91346130748a6e3c124f9149d71c743502818100c95387c0f9d35f137b57"
"d0d65c397c5e21cc251e47008ed62a542409c8b6b6ac7f8967b3863ca645fcce49582a9aa17349db6c4a95affdae0d"
"ae612e1afac99ed39a2d934c880440aed8832f9843163a47f27f392199dc1202f9a0f9bd08308007cb1e4e7f583093"
"66a7de25f7c3c9b880677c068e1be936e81288815252a8a102818057ff8ca1895080b2cae486ef0adfd791fb0235c0"
"b8b36cd6c136e52e4085f4ea5a063212a4f105a3764743e53281988aba073f6e0027298e1c4378556e0efca0e14ece"
"1af76ad0b030f27af6f0ab35fb73a060d8b1a0e142fa2647e93b32e36d8282ae0a4de50ab7afe85500a16f43a64719"
"d6e2b9439823719cd08bcd03178102818100ba73b0bb28e3f81e9bd1c568713b101241acc607976c4ddccc90e65b65"
"56ca31516058f92b6e09f3b160ff0e374ec40d78ae4d4979fde6ac06a1a400c61dd31254186af30b22c10582a8a43e"
"34fe949c5f3b9755bae7baa7b7b7a6bd03b38cef55c86885fc6c1978b9cee7ef33da507c9df6b9277cff1e6aaa5d57"
"aca528466102818100c931617c77829dfb1270502be9195c8f2830885f57dba869536811e6864236d0c4736a0008a1"
"45af36b8357a7c3d139966d04c4e00934ea1aede3bb6b8ec841dc95e3f579751e2bfdfe27ae778983f959356210723"
"287b0affcc9f727044d48c373f1babde0724fa17a4fd4da0902c7c9b9bf27ba61be6ad02dfddda8f4e6822");
string zero_masking_key =
hex2str("0000000000000000000000000000000000000000000000000000000000000000");
string masking_key = hex2str("D796B02C370F1FA4CC0124F14EC8CBEBE987E825246265050F399A51FD477DFC");
class ImportWrappedKeyTest : public KeymasterHidlTest {};
TEST_F(ImportWrappedKeyTest, Success) {
auto wrapping_key_desc = AuthorizationSetBuilder()
.RsaEncryptionKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)
.Authorization(TAG_PURPOSE, KeyPurpose::WRAP_KEY);
ASSERT_EQ(ErrorCode::OK,
ImportWrappedKey(
wrapped_key, wrapping_key, wrapping_key_desc, zero_masking_key,
AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)));
string message = "Hello World!";
auto params = AuthorizationSetBuilder().BlockMode(BlockMode::ECB).Padding(PaddingMode::PKCS7);
string ciphertext = EncryptMessage(message, params);
string plaintext = DecryptMessage(ciphertext, params);
EXPECT_EQ(message, plaintext);
}
TEST_F(ImportWrappedKeyTest, SuccessMasked) {
auto wrapping_key_desc = AuthorizationSetBuilder()
.RsaEncryptionKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)
.Authorization(TAG_PURPOSE, KeyPurpose::WRAP_KEY);
ASSERT_EQ(ErrorCode::OK,
ImportWrappedKey(
wrapped_key_masked, wrapping_key, wrapping_key_desc, masking_key,
AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)));
}
TEST_F(ImportWrappedKeyTest, WrongMask) {
auto wrapping_key_desc = AuthorizationSetBuilder()
.RsaEncryptionKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)
.Authorization(TAG_PURPOSE, KeyPurpose::WRAP_KEY);
ASSERT_EQ(ErrorCode::VERIFICATION_FAILED,
ImportWrappedKey(
wrapped_key_masked, wrapping_key, wrapping_key_desc, zero_masking_key,
AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)));
}
TEST_F(ImportWrappedKeyTest, WrongPurpose) {
auto wrapping_key_desc = AuthorizationSetBuilder()
.RsaEncryptionKey(2048, 65537)
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP);
ASSERT_EQ(ErrorCode::INCOMPATIBLE_PURPOSE,
ImportWrappedKey(
wrapped_key_masked, wrapping_key, wrapping_key_desc, zero_masking_key,
AuthorizationSetBuilder()
.Digest(Digest::SHA_2_256)
.Padding(PaddingMode::RSA_OAEP)));
}
typedef KeymasterHidlTest EncryptionOperationsTest;
/*
* EncryptionOperationsTest.RsaNoPaddingSuccess
*
* Verifies that raw RSA encryption works.
*/
TEST_F(EncryptionOperationsTest, RsaNoPaddingSuccess) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::NONE)));
string message = string(2048 / 8, 'a');
auto params = AuthorizationSetBuilder().Padding(PaddingMode::NONE);
string ciphertext1 = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext2.size());
// Unpadded RSA is deterministic
EXPECT_EQ(ciphertext1, ciphertext2);
}
/*
* EncryptionOperationsTest.RsaNoPaddingShortMessage
*
* Verifies that raw RSA encryption of short messages works.
*/
TEST_F(EncryptionOperationsTest, RsaNoPaddingShortMessage) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::NONE)));
string message = "1";
auto params = AuthorizationSetBuilder().Padding(PaddingMode::NONE);
string ciphertext = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext.size());
string expected_plaintext = string(2048U / 8 - 1, 0) + message;
string plaintext = DecryptMessage(ciphertext, params);
EXPECT_EQ(expected_plaintext, plaintext);
// Degenerate case, encrypting a numeric 1 yields 0x00..01 as the ciphertext.
message = static_cast<char>(1);
ciphertext = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext.size());
EXPECT_EQ(ciphertext, string(2048U / 8 - 1, 0) + message);
}
/*
* EncryptionOperationsTest.RsaNoPaddingTooLong
*
* Verifies that raw RSA encryption of too-long messages fails in the expected way.
*/
TEST_F(EncryptionOperationsTest, RsaNoPaddingTooLong) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::NONE)));
string message(2048 / 8 + 1, 'a');
auto params = AuthorizationSetBuilder().Padding(PaddingMode::NONE);
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params));
string result;
EXPECT_EQ(ErrorCode::INVALID_INPUT_LENGTH, Finish(message, &result));
}
/*
* EncryptionOperationsTest.RsaNoPaddingTooLarge
*
* Verifies that raw RSA encryption of too-large (numerically) messages fails in the expected way.
*/
TEST_F(EncryptionOperationsTest, RsaNoPaddingTooLarge) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::NONE)));
HidlBuf exported;
ASSERT_EQ(ErrorCode::OK, ExportKey(KeyFormat::X509, &exported));
const uint8_t* p = exported.data();
EVP_PKEY_Ptr pkey(d2i_PUBKEY(nullptr /* alloc new */, &p, exported.size()));
RSA_Ptr rsa(EVP_PKEY_get1_RSA(pkey.get()));
size_t modulus_len = BN_num_bytes(rsa->n);
ASSERT_EQ(2048U / 8, modulus_len);
std::unique_ptr<uint8_t[]> modulus_buf(new uint8_t[modulus_len]);
BN_bn2bin(rsa->n, modulus_buf.get());
// The modulus is too big to encrypt.
string message(reinterpret_cast<const char*>(modulus_buf.get()), modulus_len);
auto params = AuthorizationSetBuilder().Padding(PaddingMode::NONE);
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params));
string result;
EXPECT_EQ(ErrorCode::INVALID_ARGUMENT, Finish(message, &result));
// One smaller than the modulus is okay.
BN_sub(rsa->n, rsa->n, BN_value_one());
modulus_len = BN_num_bytes(rsa->n);
ASSERT_EQ(2048U / 8, modulus_len);
BN_bn2bin(rsa->n, modulus_buf.get());
message = string(reinterpret_cast<const char*>(modulus_buf.get()), modulus_len);
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params));
EXPECT_EQ(ErrorCode::OK, Finish(message, &result));
}
/*
* EncryptionOperationsTest.RsaOaepSuccess
*
* Verifies that RSA-OAEP encryption operations work, with all digests.
*/
TEST_F(EncryptionOperationsTest, RsaOaepSuccess) {
auto digests = ValidDigests(false /* withNone */, true /* withMD5 */);
size_t key_size = 2048; // Need largish key for SHA-512 test.
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(key_size, 65537)
.Padding(PaddingMode::RSA_OAEP)
.Digest(digests)));
string message = "Hello";
for (auto digest : digests) {
auto params = AuthorizationSetBuilder().Digest(digest).Padding(PaddingMode::RSA_OAEP);
string ciphertext1 = EncryptMessage(message, params);
if (HasNonfatalFailure()) std::cout << "-->" << digest << std::endl;
EXPECT_EQ(key_size / 8, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, params);
EXPECT_EQ(key_size / 8, ciphertext2.size());
// OAEP randomizes padding so every result should be different (with astronomically high
// probability).
EXPECT_NE(ciphertext1, ciphertext2);
string plaintext1 = DecryptMessage(ciphertext1, params);
EXPECT_EQ(message, plaintext1) << "RSA-OAEP failed with digest " << digest;
string plaintext2 = DecryptMessage(ciphertext2, params);
EXPECT_EQ(message, plaintext2) << "RSA-OAEP failed with digest " << digest;
// Decrypting corrupted ciphertext should fail.
size_t offset_to_corrupt = random() % ciphertext1.size();
char corrupt_byte;
do {
corrupt_byte = static_cast<char>(random() % 256);
} while (corrupt_byte == ciphertext1[offset_to_corrupt]);
ciphertext1[offset_to_corrupt] = corrupt_byte;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::DECRYPT, params));
string result;
EXPECT_EQ(ErrorCode::UNKNOWN_ERROR, Finish(ciphertext1, &result));
EXPECT_EQ(0U, result.size());
}
}
/*
* EncryptionOperationsTest.RsaOaepInvalidDigest
*
* Verifies that RSA-OAEP encryption operations fail in the correct way when asked to operate
* without a digest.
*/
TEST_F(EncryptionOperationsTest, RsaOaepInvalidDigest) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::RSA_OAEP)
.Digest(Digest::NONE)));
string message = "Hello World!";
auto params = AuthorizationSetBuilder().Padding(PaddingMode::RSA_OAEP).Digest(Digest::NONE);
EXPECT_EQ(ErrorCode::INCOMPATIBLE_DIGEST, Begin(KeyPurpose::ENCRYPT, params));
}
/*
* EncryptionOperationsTest.RsaOaepInvalidDigest
*
* Verifies that RSA-OAEP encryption operations fail in the correct way when asked to decrypt with a
* different digest than was used to encrypt.
*/
TEST_F(EncryptionOperationsTest, RsaOaepDecryptWithWrongDigest) {
if (SecLevel() == SecurityLevel::STRONGBOX) return;
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(1024, 65537)
.Padding(PaddingMode::RSA_OAEP)
.Digest(Digest::SHA_2_224, Digest::SHA_2_256)));
string message = "Hello World!";
string ciphertext = EncryptMessage(
message,
AuthorizationSetBuilder().Digest(Digest::SHA_2_224).Padding(PaddingMode::RSA_OAEP));
EXPECT_EQ(
ErrorCode::OK,
Begin(KeyPurpose::DECRYPT,
AuthorizationSetBuilder().Digest(Digest::SHA_2_256).Padding(PaddingMode::RSA_OAEP)));
string result;
EXPECT_EQ(ErrorCode::UNKNOWN_ERROR, Finish(ciphertext, &result));
EXPECT_EQ(0U, result.size());
}
/*
* EncryptionOperationsTest.RsaOaepTooLarge
*
* Verifies that RSA-OAEP encryption operations fail in the correct way when asked to encrypt a
* too-large message.
*/
TEST_F(EncryptionOperationsTest, RsaOaepTooLarge) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::RSA_OAEP)
.Digest(Digest::SHA_2_256)));
constexpr size_t digest_size = 256 /* SHA_2_256 */ / 8;
constexpr size_t oaep_overhead = 2 * digest_size + 2;
string message(2048 / 8 - oaep_overhead + 1, 'a');
EXPECT_EQ(ErrorCode::OK,
Begin(KeyPurpose::ENCRYPT,
AuthorizationSetBuilder().Padding(PaddingMode::RSA_OAEP).Digest(Digest::SHA_2_256)));
string result;
auto error = Finish(message, &result);
EXPECT_TRUE(error == ErrorCode::INVALID_INPUT_LENGTH || error == ErrorCode::INVALID_ARGUMENT);
EXPECT_EQ(0U, result.size());
}
/*
* EncryptionOperationsTest.RsaPkcs1Success
*
* Verifies that RSA PKCS encryption/decrypts works.
*/
TEST_F(EncryptionOperationsTest, RsaPkcs1Success) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::RSA_PKCS1_1_5_ENCRYPT)));
string message = "Hello World!";
auto params = AuthorizationSetBuilder().Padding(PaddingMode::RSA_PKCS1_1_5_ENCRYPT);
string ciphertext1 = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext1.size());
string ciphertext2 = EncryptMessage(message, params);
EXPECT_EQ(2048U / 8, ciphertext2.size());
// PKCS1 v1.5 randomizes padding so every result should be different.
EXPECT_NE(ciphertext1, ciphertext2);
string plaintext = DecryptMessage(ciphertext1, params);
EXPECT_EQ(message, plaintext);
// Decrypting corrupted ciphertext should fail.
size_t offset_to_corrupt = random() % ciphertext1.size();
char corrupt_byte;
do {
corrupt_byte = static_cast<char>(random() % 256);
} while (corrupt_byte == ciphertext1[offset_to_corrupt]);
ciphertext1[offset_to_corrupt] = corrupt_byte;
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::DECRYPT, params));
string result;
EXPECT_EQ(ErrorCode::UNKNOWN_ERROR, Finish(ciphertext1, &result));
EXPECT_EQ(0U, result.size());
}
/*
* EncryptionOperationsTest.RsaPkcs1TooLarge
*
* Verifies that RSA PKCS encryption fails in the correct way when the mssage is too large.
*/
TEST_F(EncryptionOperationsTest, RsaPkcs1TooLarge) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.RsaEncryptionKey(2048, 65537)
.Padding(PaddingMode::RSA_PKCS1_1_5_ENCRYPT)));
string message(2048 / 8 - 10, 'a');
auto params = AuthorizationSetBuilder().Padding(PaddingMode::RSA_PKCS1_1_5_ENCRYPT);
EXPECT_EQ(ErrorCode::OK, Begin(KeyPurpose::ENCRYPT, params));
string result;
auto error = Finish(message, &result);
EXPECT_TRUE(error == ErrorCode::INVALID_INPUT_LENGTH || error == ErrorCode::INVALID_ARGUMENT);
EXPECT_EQ(0U, result.size());
}
/*
* EncryptionOperationsTest.EcdsaEncrypt
*
* Verifies that attempting to use ECDSA keys to encrypt fails in the correct way.
*/
TEST_F(EncryptionOperationsTest, EcdsaEncrypt) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)
.EcdsaSigningKey(256)
.Digest(Digest::NONE)));
auto params = AuthorizationSetBuilder().Digest(Digest::NONE);
ASSERT_EQ(ErrorCode::UNSUPPORTED_PURPOSE, Begin(KeyPurpose::ENCRYPT, params));
ASSERT_EQ(ErrorCode::UNSUPPORTED_PURPOSE, Begin(KeyPurpose::DECRYPT, params));
}
/*
* EncryptionOperationsTest.HmacEncrypt
*
* Verifies that attempting to use HMAC keys to encrypt fails in the correct way.
*/
TEST_F(EncryptionOperationsTest, HmacEncrypt) {
ASSERT_EQ(ErrorCode::OK, GenerateKey(AuthorizationSetBuilder()
.Authorization(TAG_NO_AUTH_REQUIRED)