blob: 7cdafb6dc705c43bea4896b70a9e281e85428c98 [file] [log] [blame] [edit]
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "irq.h"
#include "mmu.h"
#include "cpuid.h"
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/ftrace_event.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include "kvm_cache_regs.h"
#include "x86.h"
#include <asm/io.h>
#include <asm/desc.h>
#include <asm/vmx.h>
#include <asm/virtext.h>
#include <asm/mce.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/perf_event.h>
#include <asm/kexec.h>
#include "trace.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
#define __ex_clear(x, reg) \
____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_VMX),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
static bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
static bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, S_IRUGO);
static bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, S_IRUGO);
static bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
static bool __read_mostly vmm_exclusive = 1;
module_param(vmm_exclusive, bool, S_IRUGO);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 0;
module_param(nested, bool, S_IRUGO);
#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_CR4_GUEST_OWNED_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT)
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
#define KVM_VMX_DEFAULT_PLE_GAP 128
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
extern const ulong vmx_return;
#define NR_AUTOLOAD_MSRS 8
#define VMCS02_POOL_SIZE 1
struct vmcs {
u32 revision_id;
u32 abort;
char data[0];
};
/*
* Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
* remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
* loaded on this CPU (so we can clear them if the CPU goes down).
*/
struct loaded_vmcs {
struct vmcs *vmcs;
int cpu;
int launched;
struct list_head loaded_vmcss_on_cpu_link;
};
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
/*
* struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
* single nested guest (L2), hence the name vmcs12. Any VMX implementation has
* a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
* stored in guest memory specified by VMPTRLD, but is opaque to the guest,
* which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
* More than one of these structures may exist, if L1 runs multiple L2 guests.
* nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
* underlying hardware which will be used to run L2.
* This structure is packed to ensure that its layout is identical across
* machines (necessary for live migration).
* If there are changes in this struct, VMCS12_REVISION must be changed.
*/
typedef u64 natural_width;
struct __packed vmcs12 {
/* According to the Intel spec, a VMCS region must start with the
* following two fields. Then follow implementation-specific data.
*/
u32 revision_id;
u32 abort;
u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
u32 padding[7]; /* room for future expansion */
u64 io_bitmap_a;
u64 io_bitmap_b;
u64 msr_bitmap;
u64 vm_exit_msr_store_addr;
u64 vm_exit_msr_load_addr;
u64 vm_entry_msr_load_addr;
u64 tsc_offset;
u64 virtual_apic_page_addr;
u64 apic_access_addr;
u64 ept_pointer;
u64 guest_physical_address;
u64 vmcs_link_pointer;
u64 guest_ia32_debugctl;
u64 guest_ia32_pat;
u64 guest_ia32_efer;
u64 guest_ia32_perf_global_ctrl;
u64 guest_pdptr0;
u64 guest_pdptr1;
u64 guest_pdptr2;
u64 guest_pdptr3;
u64 host_ia32_pat;
u64 host_ia32_efer;
u64 host_ia32_perf_global_ctrl;
u64 padding64[8]; /* room for future expansion */
/*
* To allow migration of L1 (complete with its L2 guests) between
* machines of different natural widths (32 or 64 bit), we cannot have
* unsigned long fields with no explict size. We use u64 (aliased
* natural_width) instead. Luckily, x86 is little-endian.
*/
natural_width cr0_guest_host_mask;
natural_width cr4_guest_host_mask;
natural_width cr0_read_shadow;
natural_width cr4_read_shadow;
natural_width cr3_target_value0;
natural_width cr3_target_value1;
natural_width cr3_target_value2;
natural_width cr3_target_value3;
natural_width exit_qualification;
natural_width guest_linear_address;
natural_width guest_cr0;
natural_width guest_cr3;
natural_width guest_cr4;
natural_width guest_es_base;
natural_width guest_cs_base;
natural_width guest_ss_base;
natural_width guest_ds_base;
natural_width guest_fs_base;
natural_width guest_gs_base;
natural_width guest_ldtr_base;
natural_width guest_tr_base;
natural_width guest_gdtr_base;
natural_width guest_idtr_base;
natural_width guest_dr7;
natural_width guest_rsp;
natural_width guest_rip;
natural_width guest_rflags;
natural_width guest_pending_dbg_exceptions;
natural_width guest_sysenter_esp;
natural_width guest_sysenter_eip;
natural_width host_cr0;
natural_width host_cr3;
natural_width host_cr4;
natural_width host_fs_base;
natural_width host_gs_base;
natural_width host_tr_base;
natural_width host_gdtr_base;
natural_width host_idtr_base;
natural_width host_ia32_sysenter_esp;
natural_width host_ia32_sysenter_eip;
natural_width host_rsp;
natural_width host_rip;
natural_width paddingl[8]; /* room for future expansion */
u32 pin_based_vm_exec_control;
u32 cpu_based_vm_exec_control;
u32 exception_bitmap;
u32 page_fault_error_code_mask;
u32 page_fault_error_code_match;
u32 cr3_target_count;
u32 vm_exit_controls;
u32 vm_exit_msr_store_count;
u32 vm_exit_msr_load_count;
u32 vm_entry_controls;
u32 vm_entry_msr_load_count;
u32 vm_entry_intr_info_field;
u32 vm_entry_exception_error_code;
u32 vm_entry_instruction_len;
u32 tpr_threshold;
u32 secondary_vm_exec_control;
u32 vm_instruction_error;
u32 vm_exit_reason;
u32 vm_exit_intr_info;
u32 vm_exit_intr_error_code;
u32 idt_vectoring_info_field;
u32 idt_vectoring_error_code;
u32 vm_exit_instruction_len;
u32 vmx_instruction_info;
u32 guest_es_limit;
u32 guest_cs_limit;
u32 guest_ss_limit;
u32 guest_ds_limit;
u32 guest_fs_limit;
u32 guest_gs_limit;
u32 guest_ldtr_limit;
u32 guest_tr_limit;
u32 guest_gdtr_limit;
u32 guest_idtr_limit;
u32 guest_es_ar_bytes;
u32 guest_cs_ar_bytes;
u32 guest_ss_ar_bytes;
u32 guest_ds_ar_bytes;
u32 guest_fs_ar_bytes;
u32 guest_gs_ar_bytes;
u32 guest_ldtr_ar_bytes;
u32 guest_tr_ar_bytes;
u32 guest_interruptibility_info;
u32 guest_activity_state;
u32 guest_sysenter_cs;
u32 host_ia32_sysenter_cs;
u32 vmx_preemption_timer_value;
u32 padding32[7]; /* room for future expansion */
u16 virtual_processor_id;
u16 guest_es_selector;
u16 guest_cs_selector;
u16 guest_ss_selector;
u16 guest_ds_selector;
u16 guest_fs_selector;
u16 guest_gs_selector;
u16 guest_ldtr_selector;
u16 guest_tr_selector;
u16 host_es_selector;
u16 host_cs_selector;
u16 host_ss_selector;
u16 host_ds_selector;
u16 host_fs_selector;
u16 host_gs_selector;
u16 host_tr_selector;
};
/*
* VMCS12_REVISION is an arbitrary id that should be changed if the content or
* layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
* VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
*/
#define VMCS12_REVISION 0x11e57ed0
/*
* VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
* and any VMCS region. Although only sizeof(struct vmcs12) are used by the
* current implementation, 4K are reserved to avoid future complications.
*/
#define VMCS12_SIZE 0x1000
/* Used to remember the last vmcs02 used for some recently used vmcs12s */
struct vmcs02_list {
struct list_head list;
gpa_t vmptr;
struct loaded_vmcs vmcs02;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/* The host-usable pointer to the above */
struct page *current_vmcs12_page;
struct vmcs12 *current_vmcs12;
struct vmcs *current_shadow_vmcs;
/*
* Indicates if the shadow vmcs must be updated with the
* data hold by vmcs12
*/
bool sync_shadow_vmcs;
/* vmcs02_list cache of VMCSs recently used to run L2 guests */
struct list_head vmcs02_pool;
int vmcs02_num;
u64 vmcs01_tsc_offset;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/*
* Guest pages referred to in vmcs02 with host-physical pointers, so
* we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
};
#define POSTED_INTR_ON 0
/* Posted-Interrupt Descriptor */
struct pi_desc {
u32 pir[8]; /* Posted interrupt requested */
u32 control; /* bit 0 of control is outstanding notification bit */
u32 rsvd[7];
} __aligned(64);
static bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
return test_and_set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
return test_and_clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
struct vcpu_vmx {
struct kvm_vcpu vcpu;
unsigned long host_rsp;
u8 fail;
u8 cpl;
bool nmi_known_unmasked;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
struct shared_msr_entry *guest_msrs;
int nmsrs;
int save_nmsrs;
unsigned long host_idt_base;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
bool __launched; /* temporary, used in vmx_vcpu_run */
struct msr_autoload {
unsigned nr;
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
} msr_autoload;
struct {
int loaded;
u16 fs_sel, gs_sel, ldt_sel;
#ifdef CONFIG_X86_64
u16 ds_sel, es_sel;
#endif
int gs_ldt_reload_needed;
int fs_reload_needed;
} host_state;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
/* Support for vnmi-less CPUs */
int soft_vnmi_blocked;
ktime_t entry_time;
s64 vnmi_blocked_time;
u32 exit_reason;
bool rdtscp_enabled;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
[number##_HIGH] = VMCS12_OFFSET(name)+4
static const unsigned long shadow_read_only_fields[] = {
/*
* We do NOT shadow fields that are modified when L0
* traps and emulates any vmx instruction (e.g. VMPTRLD,
* VMXON...) executed by L1.
* For example, VM_INSTRUCTION_ERROR is read
* by L1 if a vmx instruction fails (part of the error path).
* Note the code assumes this logic. If for some reason
* we start shadowing these fields then we need to
* force a shadow sync when L0 emulates vmx instructions
* (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
* by nested_vmx_failValid)
*/
VM_EXIT_REASON,
VM_EXIT_INTR_INFO,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_INFO_FIELD,
IDT_VECTORING_ERROR_CODE,
VM_EXIT_INTR_ERROR_CODE,
EXIT_QUALIFICATION,
GUEST_LINEAR_ADDRESS,
GUEST_PHYSICAL_ADDRESS
};
static const int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static const unsigned long shadow_read_write_fields[] = {
GUEST_RIP,
GUEST_RSP,
GUEST_CR0,
GUEST_CR3,
GUEST_CR4,
GUEST_INTERRUPTIBILITY_INFO,
GUEST_RFLAGS,
GUEST_CS_SELECTOR,
GUEST_CS_AR_BYTES,
GUEST_CS_LIMIT,
GUEST_CS_BASE,
GUEST_ES_BASE,
CR0_GUEST_HOST_MASK,
CR0_READ_SHADOW,
CR4_READ_SHADOW,
TSC_OFFSET,
EXCEPTION_BITMAP,
CPU_BASED_VM_EXEC_CONTROL,
VM_ENTRY_EXCEPTION_ERROR_CODE,
VM_ENTRY_INTR_INFO_FIELD,
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE,
HOST_FS_BASE,
HOST_GS_BASE,
HOST_FS_SELECTOR,
HOST_GS_SELECTOR
};
static const int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
FIELD(GUEST_ES_SELECTOR, guest_es_selector),
FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
FIELD(HOST_ES_SELECTOR, host_es_selector),
FIELD(HOST_CS_SELECTOR, host_cs_selector),
FIELD(HOST_SS_SELECTOR, host_ss_selector),
FIELD(HOST_DS_SELECTOR, host_ds_selector),
FIELD(HOST_FS_SELECTOR, host_fs_selector),
FIELD(HOST_GS_SELECTOR, host_gs_selector),
FIELD(HOST_TR_SELECTOR, host_tr_selector),
FIELD64(IO_BITMAP_A, io_bitmap_a),
FIELD64(IO_BITMAP_B, io_bitmap_b),
FIELD64(MSR_BITMAP, msr_bitmap),
FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
FIELD64(TSC_OFFSET, tsc_offset),
FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
FIELD64(EPT_POINTER, ept_pointer),
FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
FIELD64(GUEST_PDPTR0, guest_pdptr0),
FIELD64(GUEST_PDPTR1, guest_pdptr1),
FIELD64(GUEST_PDPTR2, guest_pdptr2),
FIELD64(GUEST_PDPTR3, guest_pdptr3),
FIELD64(HOST_IA32_PAT, host_ia32_pat),
FIELD64(HOST_IA32_EFER, host_ia32_efer),
FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
FIELD(EXCEPTION_BITMAP, exception_bitmap),
FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
FIELD(CR3_TARGET_COUNT, cr3_target_count),
FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
FIELD(TPR_THRESHOLD, tpr_threshold),
FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
FIELD(VM_EXIT_REASON, vm_exit_reason),
FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
FIELD(GUEST_ES_LIMIT, guest_es_limit),
FIELD(GUEST_CS_LIMIT, guest_cs_limit),
FIELD(GUEST_SS_LIMIT, guest_ss_limit),
FIELD(GUEST_DS_LIMIT, guest_ds_limit),
FIELD(GUEST_FS_LIMIT, guest_fs_limit),
FIELD(GUEST_GS_LIMIT, guest_gs_limit),
FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
FIELD(GUEST_TR_LIMIT, guest_tr_limit),
FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
FIELD(CR0_READ_SHADOW, cr0_read_shadow),
FIELD(CR4_READ_SHADOW, cr4_read_shadow),
FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
FIELD(EXIT_QUALIFICATION, exit_qualification),
FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
FIELD(GUEST_CR0, guest_cr0),
FIELD(GUEST_CR3, guest_cr3),
FIELD(GUEST_CR4, guest_cr4),
FIELD(GUEST_ES_BASE, guest_es_base),
FIELD(GUEST_CS_BASE, guest_cs_base),
FIELD(GUEST_SS_BASE, guest_ss_base),
FIELD(GUEST_DS_BASE, guest_ds_base),
FIELD(GUEST_FS_BASE, guest_fs_base),
FIELD(GUEST_GS_BASE, guest_gs_base),
FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
FIELD(GUEST_TR_BASE, guest_tr_base),
FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
FIELD(GUEST_IDTR_BASE, guest_idtr_base),
FIELD(GUEST_DR7, guest_dr7),
FIELD(GUEST_RSP, guest_rsp),
FIELD(GUEST_RIP, guest_rip),
FIELD(GUEST_RFLAGS, guest_rflags),
FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
FIELD(HOST_CR0, host_cr0),
FIELD(HOST_CR3, host_cr3),
FIELD(HOST_CR4, host_cr4),
FIELD(HOST_FS_BASE, host_fs_base),
FIELD(HOST_GS_BASE, host_gs_base),
FIELD(HOST_TR_BASE, host_tr_base),
FIELD(HOST_GDTR_BASE, host_gdtr_base),
FIELD(HOST_IDTR_BASE, host_idtr_base),
FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
FIELD(HOST_RSP, host_rsp),
FIELD(HOST_RIP, host_rip),
};
static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
static inline short vmcs_field_to_offset(unsigned long field)
{
if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
return -1;
return vmcs_field_to_offset_table[field];
}
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->nested.current_vmcs12;
}
static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
if (is_error_page(page))
return NULL;
return page;
}
static void nested_release_page(struct page *page)
{
kvm_release_page_dirty(page);
}
static void nested_release_page_clean(struct page *page)
{
kvm_release_page_clean(page);
}
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
static unsigned long *vmx_io_bitmap_a;
static unsigned long *vmx_io_bitmap_b;
static unsigned long *vmx_msr_bitmap_legacy;
static unsigned long *vmx_msr_bitmap_longmode;
static unsigned long *vmx_msr_bitmap_legacy_x2apic;
static unsigned long *vmx_msr_bitmap_longmode_x2apic;
static unsigned long *vmx_vmread_bitmap;
static unsigned long *vmx_vmwrite_bitmap;
static bool cpu_has_load_ia32_efer;
static bool cpu_has_load_perf_global_ctrl;
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
static struct vmcs_config {
int size;
int order;
u32 revision_id;
u32 pin_based_exec_ctrl;
u32 cpu_based_exec_ctrl;
u32 cpu_based_2nd_exec_ctrl;
u32 vmexit_ctrl;
u32 vmentry_ctrl;
} vmcs_config;
static struct vmx_capability {
u32 ept;
u32 vpid;
} vmx_capability;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static u64 host_efer;
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
/*
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
static inline bool is_page_fault(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_no_device(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_invalid_opcode(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static inline bool is_machine_check(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool cpu_has_vmx_msr_bitmap(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
}
static inline bool cpu_has_vmx_tpr_shadow(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
}
static inline bool vm_need_tpr_shadow(struct kvm *kvm)
{
return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
}
static inline bool cpu_has_secondary_exec_ctrls(void)
{
return vmcs_config.cpu_based_exec_ctrl &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
}
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
}
static inline bool cpu_has_vmx_apic_register_virt(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_APIC_REGISTER_VIRT;
}
static inline bool cpu_has_vmx_virtual_intr_delivery(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
}
static inline bool cpu_has_vmx_posted_intr(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
}
static inline bool cpu_has_vmx_apicv(void)
{
return cpu_has_vmx_apic_register_virt() &&
cpu_has_vmx_virtual_intr_delivery() &&
cpu_has_vmx_posted_intr();
}
static inline bool cpu_has_vmx_flexpriority(void)
{
return cpu_has_vmx_tpr_shadow() &&
cpu_has_vmx_virtualize_apic_accesses();
}
static inline bool cpu_has_vmx_ept_execute_only(void)
{
return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
}
static inline bool cpu_has_vmx_eptp_uncacheable(void)
{
return vmx_capability.ept & VMX_EPTP_UC_BIT;
}
static inline bool cpu_has_vmx_eptp_writeback(void)
{
return vmx_capability.ept & VMX_EPTP_WB_BIT;
}
static inline bool cpu_has_vmx_ept_2m_page(void)
{
return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_1g_page(void)
{
return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_4levels(void)
{
return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}
static inline bool cpu_has_vmx_ept_ad_bits(void)
{
return vmx_capability.ept & VMX_EPT_AD_BIT;
}
static inline bool cpu_has_vmx_invept_context(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invept_global(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
}
static inline bool cpu_has_vmx_invvpid_single(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invvpid_global(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_ept(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_EPT;
}
static inline bool cpu_has_vmx_unrestricted_guest(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_UNRESTRICTED_GUEST;
}
static inline bool cpu_has_vmx_ple(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}
static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
{
return flexpriority_enabled && irqchip_in_kernel(kvm);
}
static inline bool cpu_has_vmx_vpid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_VPID;
}
static inline bool cpu_has_vmx_rdtscp(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_RDTSCP;
}
static inline bool cpu_has_vmx_invpcid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_INVPCID;
}
static inline bool cpu_has_virtual_nmis(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_WBINVD_EXITING;
}
static inline bool cpu_has_vmx_shadow_vmcs(void)
{
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
/* check if the cpu supports writing r/o exit information fields */
if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
return false;
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_SHADOW_VMCS;
}
static inline bool report_flexpriority(void)
{
return flexpriority_enabled;
}
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
return vmcs12->cpu_based_vm_exec_control & bit;
}
static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
return (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
(vmcs12->secondary_vm_exec_control & bit);
}
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
struct kvm_vcpu *vcpu)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool is_exception(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
}
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification);
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
return i;
return -1;
}
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
struct {
u64 vpid : 16;
u64 rsvd : 48;
u64 gva;
} operand = { vpid, 0, gva };
asm volatile (__ex(ASM_VMX_INVVPID)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:"
: : "a"(&operand), "c"(ext) : "cc", "memory");
}
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
struct {
u64 eptp, gpa;
} operand = {eptp, gpa};
asm volatile (__ex(ASM_VMX_INVEPT)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:\n"
: : "a" (&operand), "c" (ext) : "cc", "memory");
}
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
static void vmcs_load(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
#ifdef CONFIG_KEXEC
/*
* This bitmap is used to indicate whether the vmclear
* operation is enabled on all cpus. All disabled by
* default.
*/
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
static inline void crash_enable_local_vmclear(int cpu)
{
cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline void crash_disable_local_vmclear(int cpu)
{
cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline int crash_local_vmclear_enabled(int cpu)
{
return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static void crash_vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
if (!crash_local_vmclear_enabled(cpu))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
#endif /* CONFIG_KEXEC */
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
crash_disable_local_vmclear(cpu);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
* is before setting loaded_vmcs->vcpu to -1 which is done in
* loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
* then adds the vmcs into percpu list before it is deleted.
*/
smp_wmb();
loaded_vmcs_init(loaded_vmcs);
crash_enable_local_vmclear(cpu);
}
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
{
if (vmx->vpid == 0)
return;
if (cpu_has_vmx_invvpid_single())
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
}
static inline void vpid_sync_vcpu_global(void)
{
if (cpu_has_vmx_invvpid_global())
__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}
static inline void vpid_sync_context(struct vcpu_vmx *vmx)
{
if (cpu_has_vmx_invvpid_single())
vpid_sync_vcpu_single(vmx);
else
vpid_sync_vcpu_global();
}
static inline void ept_sync_global(void)
{
if (cpu_has_vmx_invept_global())
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}
static inline void ept_sync_context(u64 eptp)
{
if (enable_ept) {
if (cpu_has_vmx_invept_context())
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
else
ept_sync_global();
}
}
static __always_inline unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
: "=a"(value) : "d"(field) : "cc");
return value;
}
static __always_inline u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static void vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (unlikely(error))
vmwrite_error(field, value);
}
static void vmcs_write16(unsigned long field, u16 value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, u32 value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, u64 value)
{
vmcs_writel(field, value);
#ifndef CONFIG_X86_64
asm volatile ("");
vmcs_writel(field+1, value >> 32);
#endif
}
static void vmcs_clear_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) & ~mask);
}
static void vmcs_set_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) | mask);
}
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << NM_VECTOR) | (1u << DB_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
if (vcpu->fpu_active)
eb &= ~(1u << NM_VECTOR);
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
static void clear_atomic_switch_msr_special(unsigned long entry,
unsigned long exit)
{
vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
clear_atomic_switch_msr_special(
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == m->nr)
return;
--m->nr;
m->guest[i] = m->guest[m->nr];
m->host[i] = m->host[m->nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
static void add_atomic_switch_msr_special(unsigned long entry,
unsigned long exit, unsigned long guest_val_vmcs,
unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
vmcs_write64(host_val_vmcs, host_val);
vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
vmcs_set_bits(VM_EXIT_CONTROLS, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
add_atomic_switch_msr_special(
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == NR_AUTOLOAD_MSRS) {
printk_once(KERN_WARNING"Not enough mst switch entries. "
"Can't add msr %x\n", msr);
return;
} else if (i == m->nr) {
++m->nr;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
m->guest[i].index = msr;
m->guest[i].value = guest_val;
m->host[i].index = msr;
m->host[i].value = host_val;
}
static void reload_tss(void)
{
/*
* VT restores TR but not its size. Useless.
*/
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
struct desc_struct *descs;
descs = (void *)gdt->address;
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
load_TR_desc();
}
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer;
u64 ignore_bits;
guest_efer = vmx->vcpu.arch.efer;
/*
* NX is emulated; LMA and LME handled by hardware; SCE meaningless
* outside long mode
*/
ignore_bits = EFER_NX | EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_msrs[efer_offset].data = guest_efer;
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
clear_atomic_switch_msr(vmx, MSR_EFER);
/* On ept, can't emulate nx, and must switch nx atomically */
if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
guest_efer = vmx->vcpu.arch.efer;
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
return false;
}
return true;
}
static unsigned long segment_base(u16 selector)
{
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
struct desc_struct *d;
unsigned long table_base;
unsigned long v;
if (!(selector & ~3))
return 0;
table_base = gdt->address;
if (selector & 4) { /* from ldt */
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~3))
return 0;
table_base = segment_base(ldt_selector);
}
d = (struct desc_struct *)(table_base + (selector & ~7));
v = get_desc_base(d);
#ifdef CONFIG_X86_64
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
return v;
}
static inline unsigned long kvm_read_tr_base(void)
{
u16 tr;
asm("str %0" : "=g"(tr));
return segment_base(tr);
}
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int i;
if (vmx->host_state.loaded)
return;
vmx->host_state.loaded = 1;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
vmx->host_state.ldt_sel = kvm_read_ldt();
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
savesegment(fs, vmx->host_state.fs_sel);
if (!(vmx->host_state.fs_sel & 7)) {
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
vmx->host_state.fs_reload_needed = 0;
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmx->host_state.fs_reload_needed = 1;
}
savesegment(gs, vmx->host_state.gs_sel);
if (!(vmx->host_state.gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
else {
vmcs_write16(HOST_GS_SELECTOR, 0);
vmx->host_state.gs_ldt_reload_needed = 1;
}
#ifdef CONFIG_X86_64
savesegment(ds, vmx->host_state.ds_sel);
savesegment(es, vmx->host_state.es_sel);
#endif
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
#endif
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
if (is_long_mode(&vmx->vcpu))
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
for (i = 0; i < vmx->save_nmsrs; ++i)
kvm_set_shared_msr(vmx->guest_msrs[i].index,
vmx->guest_msrs[i].data,
vmx->guest_msrs[i].mask);
}
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
{
if (!vmx->host_state.loaded)
return;
++vmx->vcpu.stat.host_state_reload;
vmx->host_state.loaded = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu))
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (vmx->host_state.gs_ldt_reload_needed) {
kvm_load_ldt(vmx->host_state.ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(vmx->host_state.gs_sel);
#else
loadsegment(gs, vmx->host_state.gs_sel);
#endif
}
if (vmx->host_state.fs_reload_needed)
loadsegment(fs, vmx->host_state.fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
loadsegment(ds, vmx->host_state.ds_sel);
loadsegment(es, vmx->host_state.es_sel);
}
#endif
reload_tss();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
/*
* If the FPU is not active (through the host task or
* the guest vcpu), then restore the cr0.TS bit.
*/
if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
stts();
load_gdt(&__get_cpu_var(host_gdt));
}
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
preempt_disable();
__vmx_load_host_state(vmx);
preempt_enable();
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
if (!vmm_exclusive)
kvm_cpu_vmxon(phys_addr);
else if (vmx->loaded_vmcs->cpu != cpu)
loaded_vmcs_clear(vmx->loaded_vmcs);
if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
}
if (vmx->loaded_vmcs->cpu != cpu) {
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
local_irq_disable();
crash_disable_local_vmclear(cpu);
/*
* Read loaded_vmcs->cpu should be before fetching
* loaded_vmcs->loaded_vmcss_on_cpu_link.
* See the comments in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
crash_enable_local_vmclear(cpu);
local_irq_enable();
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
vmx->loaded_vmcs->cpu = cpu;
}
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
__vmx_load_host_state(to_vmx(vcpu));
if (!vmm_exclusive) {
__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
vcpu->cpu = -1;
kvm_cpu_vmxoff();
}
}
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
{
ulong cr0;
if (vcpu->fpu_active)
return;
vcpu->fpu_active = 1;
cr0 = vmcs_readl(GUEST_CR0);
cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
vmcs_writel(GUEST_CR0, cr0);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
if (is_guest_mode(vcpu))
vcpu->arch.cr0_guest_owned_bits &=
~get_vmcs12(vcpu)->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
/*
* Return the cr0 value that a nested guest would read. This is a combination
* of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
* its hypervisor (cr0_read_shadow).
*/
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
/* Note that there is no vcpu->fpu_active = 0 here. The caller must
* set this *before* calling this function.
*/
vmx_decache_cr0_guest_bits(vcpu);
vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = 0;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
if (is_guest_mode(vcpu)) {
/*
* L1's specified read shadow might not contain the TS bit,
* so now that we turned on shadowing of this bit, we need to
* set this bit of the shadow. Like in nested_vmx_run we need
* nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
* up-to-date here because we just decached cr0.TS (and we'll
* only update vmcs12->guest_cr0 on nested exit).
*/
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
(vcpu->arch.cr0 & X86_CR0_TS);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
} else
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
rflags = vmcs_readl(GUEST_RFLAGS);
if (to_vmx(vcpu)->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
to_vmx(vcpu)->rflags = rflags;
}
return to_vmx(vcpu)->rflags;
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
to_vmx(vcpu)->rflags = rflags;
if (to_vmx(vcpu)->rmode.vm86_active) {
to_vmx(vcpu)->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
}
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret & mask;
}
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_rip_write(vcpu, rip);
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
* This function assumes it is called with the exit reason in vmcs02 being
* a #PF exception (this is the only case in which KVM injects a #PF when L2
* is running).
*/
static int nested_pf_handled(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
return 0;
nested_vmx_vmexit(vcpu);
return 1;
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
!vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
return;
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(nr))
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
if (kvm_exception_is_soft(nr)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
}
static bool vmx_rdtscp_supported(void)
{
return cpu_has_vmx_rdtscp();
}
static bool vmx_invpcid_supported(void)
{
return cpu_has_vmx_invpcid() && enable_ept;
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct shared_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
}
static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
{
unsigned long *msr_bitmap;
if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode;
else
msr_bitmap = vmx_msr_bitmap_legacy;
}
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
}
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs, index;
save_nmsrs = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu)) {
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_CSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_TSC_AUX);
if (index >= 0 && vmx->rdtscp_enabled)
move_msr_up(vmx, index, save_nmsrs++);
/*
* MSR_STAR is only needed on long mode guests, and only
* if efer.sce is enabled.
*/
index = __find_msr_index(vmx, MSR_STAR);
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
index = __find_msr_index(vmx, MSR_EFER);
if (index >= 0 && update_transition_efer(vmx, index))
move_msr_up(vmx, index, save_nmsrs++);
vmx->save_nmsrs = save_nmsrs;
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(&vmx->vcpu);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset -- 21.3
*/
static u64 guest_read_tsc(void)
{
u64 host_tsc, tsc_offset;
rdtscll(host_tsc);
tsc_offset = vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* Like guest_read_tsc, but always returns L1's notion of the timestamp
* counter, even if a nested guest (L2) is currently running.
*/
u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
u64 tsc_offset;
tsc_offset = is_guest_mode(vcpu) ?
to_vmx(vcpu)->nested.vmcs01_tsc_offset :
vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* Engage any workarounds for mis-matched TSC rates. Currently limited to
* software catchup for faster rates on slower CPUs.
*/
static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
{
if (!scale)
return;
if (user_tsc_khz > tsc_khz) {
vcpu->arch.tsc_catchup = 1;
vcpu->arch.tsc_always_catchup = 1;
} else
WARN(1, "user requested TSC rate below hardware speed\n");
}
static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
{
return vmcs_read64(TSC_OFFSET);
}
/*
* writes 'offset' into guest's timestamp counter offset register
*/
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
if (is_guest_mode(vcpu)) {
/*
* We're here if L1 chose not to trap WRMSR to TSC. According
* to the spec, this should set L1's TSC; The offset that L1
* set for L2 remains unchanged, and still needs to be added
* to the newly set TSC to get L2's TSC.
*/
struct vmcs12 *vmcs12;
to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
/* recalculate vmcs02.TSC_OFFSET: */
vmcs12 = get_vmcs12(vcpu);
vmcs_write64(TSC_OFFSET, offset +
(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
vmcs12->tsc_offset : 0));
} else {
vmcs_write64(TSC_OFFSET, offset);
}
}
static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
{
u64 offset = vmcs_read64(TSC_OFFSET);
vmcs_write64(TSC_OFFSET, offset + adjustment);
if (is_guest_mode(vcpu)) {
/* Even when running L2, the adjustment needs to apply to L1 */
to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
}
}
static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
return target_tsc - native_read_tsc();
}
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}
/*
* nested_vmx_allowed() checks whether a guest should be allowed to use VMX
* instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
* all guests if the "nested" module option is off, and can also be disabled
* for a single guest by disabling its VMX cpuid bit.
*/
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
return nested && guest_cpuid_has_vmx(vcpu);
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
* TODO: allow these variables to be modified (downgraded) by module options
* or other means.
*/
static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
static u32 nested_vmx_misc_low, nested_vmx_misc_high;
static __init void nested_vmx_setup_ctls_msrs(void)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_exit_handled() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
/*
* According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
* in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
*/
nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
PIN_BASED_VMX_PREEMPTION_TIMER;
nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
/*
* Exit controls
* If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
* 17 must be 1.
*/
nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
#ifdef CONFIG_X86_64
nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
#else
nested_vmx_exit_ctls_high = 0;
#endif
nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
/* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
nested_vmx_entry_ctls_high &=
VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
nested_vmx_procbased_ctls_low = 0;
nested_vmx_procbased_ctls_high &=
CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
CPU_BASED_PAUSE_EXITING |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
/* secondary cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
nested_vmx_secondary_ctls_low = 0;
nested_vmx_secondary_ctls_high &=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_WBINVD_EXITING;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
VMX_MISC_SAVE_EFER_LMA;
nested_vmx_misc_high = 0;
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
/*
* Bits 0 in high must be 0, and bits 1 in low must be 1.
*/
return ((control & high) | low) == control;
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
/*
* If we allow our guest to use VMX instructions (i.e., nested VMX), we should
* also let it use VMX-specific MSRs.
* vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
* VMX-specific MSR, or 0 when we haven't (and the caller should handle it
* like all other MSRs).
*/
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
/*
* According to the spec, processors which do not support VMX
* should throw a #GP(0) when VMX capability MSRs are read.
*/
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
switch (msr_index) {
case MSR_IA32_FEATURE_CONTROL:
*pdata = 0;
break;
case MSR_IA32_VMX_BASIC:
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
*pdata = VMCS12_REVISION |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
nested_vmx_pinbased_ctls_high);
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
nested_vmx_procbased_ctls_high);
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
nested_vmx_exit_ctls_high);
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
nested_vmx_entry_ctls_high);
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(nested_vmx_misc_low,
nested_vmx_misc_high);
break;
/*
* These MSRs specify bits which the guest must keep fixed (on or off)
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = VMXON_CR0_ALWAYSON;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = -1ULL;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = VMXON_CR4_ALWAYSON;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = -1ULL;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = 0x1f;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
nested_vmx_secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
/* Currently, no nested ept or nested vpid */
*pdata = 0;
break;
default:
return 0;
}
return 1;
}
static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
if (!nested_vmx_allowed(vcpu))
return 0;
if (msr_index == MSR_IA32_FEATURE_CONTROL)
/* TODO: the right thing. */
return 1;
/*
* No need to treat VMX capability MSRs specially: If we don't handle
* them, handle_wrmsr will #GP(0), which is correct (they are readonly)
*/
return 0;
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
u64 data;
struct shared_msr_entry *msr;
if (!pdata) {
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
return -EINVAL;
}
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(to_vmx(vcpu));
data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_index, pdata);
case MSR_IA32_TSC:
data = guest_read_tsc();
break;
case MSR_IA32_SYSENTER_CS:
data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_TSC_AUX:
if (!to_vmx(vcpu)->rdtscp_enabled)
return 1;
/* Otherwise falls through */
default:
if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
return 0;
msr = find_msr_entry(to_vmx(vcpu), msr_index);
if (msr) {
data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_index, pdata);
}
*pdata = data;
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(vmx);
vmx->msr_guest_kernel_gs_base = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_TSC:
kvm_write_tsc(vcpu, msr_info);
break;
case MSR_IA32_CR_PAT:
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, data);
vcpu->arch.pat = data;
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_TSC_ADJUST:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_TSC_AUX:
if (!vmx->rdtscp_enabled)
return 1;
/* Check reserved bit, higher 32 bits should be zero */
if ((data >> 32) != 0)
return 1;
/* Otherwise falls through */
default:
if (vmx_set_vmx_msr(vcpu, msr_index, data))
break;
msr = find_msr_entry(vmx, msr_index);
if (msr) {
msr->data = data;
if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
preempt_disable();
kvm_set_shared_msr(msr->index, msr->data,
msr->mask);
preempt_enable();
}
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
}
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
default:
break;
}
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
if (msr & FEATURE_CONTROL_LOCKED) {
/* launched w/ TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& tboot_enabled())
return 1;
/* launched w/o TXT and VMX only enabled w/ TXT */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& !tboot_enabled()) {
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
"activate TXT before enabling KVM\n");
return 1;
}
/* launched w/o TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& !tboot_enabled())
return 1;
}
return 0;
}
static void kvm_cpu_vmxon(u64 addr)
{
asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&addr), "m"(addr)
: "memory", "cc");
}
static int hardware_enable(void *garbage)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old, test_bits;
if (read_cr4() & X86_CR4_VMXE)
return -EBUSY;
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
/*
* Now we can enable the vmclear operation in kdump
* since the loaded_vmcss_on_cpu list on this cpu
* has been initialized.
*
* Though the cpu is not in VMX operation now, there
* is no problem to enable the vmclear operation
* for the loaded_vmcss_on_cpu list is empty!
*/
crash_enable_local_vmclear(cpu);
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
if (vmm_exclusive) {
kvm_cpu_vmxon(phys_addr);
ept_sync_global();
}
native_store_gdt(&__get_cpu_var(host_gdt));
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
* tricks.
*/
static void kvm_cpu_vmxoff(void)
{
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
}
static void hardware_disable(void *garbage)
{
if (vmm_exclusive) {
vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
write_cr4(read_cr4() & ~X86_CR4_VMXE);
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
return vmx_msr_high & ctl;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt, min2, opt2;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_RDPMC_EXITING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min2 = 0;
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_SHADOW_VMCS;
if (adjust_vmx_controls(min2, opt2,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
enabled */
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
vmx_capability.ept, vmx_capability.vpid);
}
min = 0;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_ACK_INTR_ON_EXIT;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
min = 0;
opt = VM_ENTRY_LOAD_IA32_PAT;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_config.size);
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
cpu_has_load_ia32_efer =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_EFER)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_EFER);
cpu_has_load_perf_global_ctrl =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
/*
* Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
* but due to arrata below it can't be used. Workaround is to use
* msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*
* VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
*
* AAK155 (model 26)
* AAP115 (model 30)
* AAT100 (model 37)
* BC86,AAY89,BD102 (model 44)
* BA97 (model 46)
*
*/
if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case 26:
case 30:
case 37:
case 44:
case 46:
cpu_has_load_perf_global_ctrl = false;
printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
break;
default:
break;
}
}
return 0;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static __init int hardware_setup(void)
{
if (setup_vmcs_config(&vmcs_config) < 0)
return -EIO;
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (!cpu_has_vmx_vpid())
enable_vpid = 0;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels()) {
enable_ept = 0;
enable_unrestricted_guest = 0;
enable_ept_ad_bits = 0;
}
if (!cpu_has_vmx_ept_ad_bits())
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest())
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
if (!cpu_has_vmx_tpr_shadow())
kvm_x86_ops->update_cr8_intercept = NULL;
if (enable_ept && !cpu_has_vmx_ept_2m_page())
kvm_disable_largepages();
if (!cpu_has_vmx_ple())
ple_gap = 0;
if (!cpu_has_vmx_apicv())
enable_apicv = 0;
if (enable_apicv)
kvm_x86_ops->update_cr8_intercept = NULL;
else {
kvm_x86_ops->hwapic_irr_update = NULL;
kvm_x86_ops->deliver_posted_interrupt = NULL;
kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
}
if (nested)
nested_vmx_setup_ctls_msrs();
return alloc_kvm_area();
}
static __exit void hardware_unsetup(void)
{
free_kvm_area();
}
static bool emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SELECTOR_RPL_MASK;
save->dpl = save->selector & SELECTOR_RPL_MASK;
save->s = 1;
}
vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if sement
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
vmx_segment_cache_clear(vmx);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
/* CPL is always 0 when CPU enters protected mode */
__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
vmx->cpl = 0;
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
printk_once(KERN_WARNING "kvm: segment base is not "
"paragraph aligned when entering "
"protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_write32(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Warn the user that an update is overdue.
*/
if (!vcpu->kvm->arch.tss_addr)
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
"called before entering vcpu\n");
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
kvm_mmu_reset_context(vcpu);
}
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
if (!msr)
return;
/*
* Force kernel_gs_base reloading before EFER changes, as control
* of this msr depends on is_long_mode().
*/
vmx_load_host_state(to_vmx(vcpu));
vcpu->arch.efer = efer;
if (efer & EFER_LMA) {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) |
VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) &
~VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~AR_TYPE_MASK)
| AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
& ~VM_ENTRY_IA32E_MODE);
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vpid_sync_context(to_vmx(vcpu));
if (enable_ept) {
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
}
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
if (enable_ept && is_paging(vcpu))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;