| /* |
| * NET An implementation of the SOCKET network access protocol. |
| * |
| * Version: @(#)socket.c 1.1.93 18/02/95 |
| * |
| * Authors: Orest Zborowski, <obz@Kodak.COM> |
| * Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * |
| * Fixes: |
| * Anonymous : NOTSOCK/BADF cleanup. Error fix in |
| * shutdown() |
| * Alan Cox : verify_area() fixes |
| * Alan Cox : Removed DDI |
| * Jonathan Kamens : SOCK_DGRAM reconnect bug |
| * Alan Cox : Moved a load of checks to the very |
| * top level. |
| * Alan Cox : Move address structures to/from user |
| * mode above the protocol layers. |
| * Rob Janssen : Allow 0 length sends. |
| * Alan Cox : Asynchronous I/O support (cribbed from the |
| * tty drivers). |
| * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) |
| * Jeff Uphoff : Made max number of sockets command-line |
| * configurable. |
| * Matti Aarnio : Made the number of sockets dynamic, |
| * to be allocated when needed, and mr. |
| * Uphoff's max is used as max to be |
| * allowed to allocate. |
| * Linus : Argh. removed all the socket allocation |
| * altogether: it's in the inode now. |
| * Alan Cox : Made sock_alloc()/sock_release() public |
| * for NetROM and future kernel nfsd type |
| * stuff. |
| * Alan Cox : sendmsg/recvmsg basics. |
| * Tom Dyas : Export net symbols. |
| * Marcin Dalecki : Fixed problems with CONFIG_NET="n". |
| * Alan Cox : Added thread locking to sys_* calls |
| * for sockets. May have errors at the |
| * moment. |
| * Kevin Buhr : Fixed the dumb errors in the above. |
| * Andi Kleen : Some small cleanups, optimizations, |
| * and fixed a copy_from_user() bug. |
| * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) |
| * Tigran Aivazian : Made listen(2) backlog sanity checks |
| * protocol-independent |
| * |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * |
| * This module is effectively the top level interface to the BSD socket |
| * paradigm. |
| * |
| * Based upon Swansea University Computer Society NET3.039 |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/socket.h> |
| #include <linux/file.h> |
| #include <linux/net.h> |
| #include <linux/interrupt.h> |
| #include <linux/thread_info.h> |
| #include <linux/rcupdate.h> |
| #include <linux/netdevice.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/mutex.h> |
| #include <linux/if_bridge.h> |
| #include <linux/if_frad.h> |
| #include <linux/if_vlan.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/cache.h> |
| #include <linux/module.h> |
| #include <linux/highmem.h> |
| #include <linux/mount.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/compat.h> |
| #include <linux/kmod.h> |
| #include <linux/audit.h> |
| #include <linux/wireless.h> |
| #include <linux/nsproxy.h> |
| #include <linux/magic.h> |
| #include <linux/slab.h> |
| #include <linux/xattr.h> |
| #include <linux/qmp_sphinx_instrumentation.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| |
| #include <net/compat.h> |
| #include <net/wext.h> |
| #include <net/cls_cgroup.h> |
| |
| #include <net/sock.h> |
| #include <linux/netfilter.h> |
| |
| #include <linux/if_tun.h> |
| #include <linux/ipv6_route.h> |
| #include <linux/route.h> |
| #include <linux/sockios.h> |
| #include <linux/atalk.h> |
| |
| static BLOCKING_NOTIFIER_HEAD(sockev_notifier_list); |
| |
| static int sock_no_open(struct inode *irrelevant, struct file *dontcare); |
| static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, |
| unsigned long nr_segs, loff_t pos); |
| static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, |
| unsigned long nr_segs, loff_t pos); |
| static int sock_mmap(struct file *file, struct vm_area_struct *vma); |
| |
| static int sock_close(struct inode *inode, struct file *file); |
| static unsigned int sock_poll(struct file *file, |
| struct poll_table_struct *wait); |
| static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
| #ifdef CONFIG_COMPAT |
| static long compat_sock_ioctl(struct file *file, |
| unsigned int cmd, unsigned long arg); |
| #endif |
| static int sock_fasync(int fd, struct file *filp, int on); |
| static ssize_t sock_sendpage(struct file *file, struct page *page, |
| int offset, size_t size, loff_t *ppos, int more); |
| static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags); |
| |
| /* |
| * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear |
| * in the operation structures but are done directly via the socketcall() multiplexor. |
| */ |
| |
| static const struct file_operations socket_file_ops = { |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| .aio_read = sock_aio_read, |
| .aio_write = sock_aio_write, |
| .poll = sock_poll, |
| .unlocked_ioctl = sock_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = compat_sock_ioctl, |
| #endif |
| .mmap = sock_mmap, |
| .open = sock_no_open, /* special open code to disallow open via /proc */ |
| .release = sock_close, |
| .fasync = sock_fasync, |
| .sendpage = sock_sendpage, |
| .splice_write = generic_splice_sendpage, |
| .splice_read = sock_splice_read, |
| }; |
| |
| /* |
| * The protocol list. Each protocol is registered in here. |
| */ |
| |
| static DEFINE_SPINLOCK(net_family_lock); |
| static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; |
| |
| /* |
| * Statistics counters of the socket lists |
| */ |
| |
| static DEFINE_PER_CPU(int, sockets_in_use); |
| |
| /* |
| * Socket Event framework helpers |
| */ |
| static void sockev_notify(unsigned long event, struct socket *sk) |
| { |
| blocking_notifier_call_chain(&sockev_notifier_list, event, sk); |
| } |
| |
| /** |
| * Support routines. |
| * Move socket addresses back and forth across the kernel/user |
| * divide and look after the messy bits. |
| */ |
| |
| /** |
| * move_addr_to_kernel - copy a socket address into kernel space |
| * @uaddr: Address in user space |
| * @kaddr: Address in kernel space |
| * @ulen: Length in user space |
| * |
| * The address is copied into kernel space. If the provided address is |
| * too long an error code of -EINVAL is returned. If the copy gives |
| * invalid addresses -EFAULT is returned. On a success 0 is returned. |
| */ |
| |
| int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) |
| { |
| if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) |
| return -EINVAL; |
| if (ulen == 0) |
| return 0; |
| if (copy_from_user(kaddr, uaddr, ulen)) |
| return -EFAULT; |
| return audit_sockaddr(ulen, kaddr); |
| } |
| |
| /** |
| * move_addr_to_user - copy an address to user space |
| * @kaddr: kernel space address |
| * @klen: length of address in kernel |
| * @uaddr: user space address |
| * @ulen: pointer to user length field |
| * |
| * The value pointed to by ulen on entry is the buffer length available. |
| * This is overwritten with the buffer space used. -EINVAL is returned |
| * if an overlong buffer is specified or a negative buffer size. -EFAULT |
| * is returned if either the buffer or the length field are not |
| * accessible. |
| * After copying the data up to the limit the user specifies, the true |
| * length of the data is written over the length limit the user |
| * specified. Zero is returned for a success. |
| */ |
| |
| static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, |
| void __user *uaddr, int __user *ulen) |
| { |
| int err; |
| int len; |
| |
| BUG_ON(klen > sizeof(struct sockaddr_storage)); |
| err = get_user(len, ulen); |
| if (err) |
| return err; |
| if (len > klen) |
| len = klen; |
| if (len < 0) |
| return -EINVAL; |
| if (len) { |
| if (audit_sockaddr(klen, kaddr)) |
| return -ENOMEM; |
| if (copy_to_user(uaddr, kaddr, len)) |
| return -EFAULT; |
| } |
| /* |
| * "fromlen shall refer to the value before truncation.." |
| * 1003.1g |
| */ |
| return __put_user(klen, ulen); |
| } |
| |
| static struct kmem_cache *sock_inode_cachep __read_mostly; |
| |
| static struct inode *sock_alloc_inode(struct super_block *sb) |
| { |
| struct socket_alloc *ei; |
| struct socket_wq *wq; |
| |
| ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| wq = kmalloc(sizeof(*wq), GFP_KERNEL); |
| if (!wq) { |
| kmem_cache_free(sock_inode_cachep, ei); |
| return NULL; |
| } |
| init_waitqueue_head(&wq->wait); |
| wq->fasync_list = NULL; |
| RCU_INIT_POINTER(ei->socket.wq, wq); |
| |
| ei->socket.state = SS_UNCONNECTED; |
| ei->socket.flags = 0; |
| ei->socket.ops = NULL; |
| ei->socket.sk = NULL; |
| ei->socket.file = NULL; |
| |
| return &ei->vfs_inode; |
| } |
| |
| static void sock_destroy_inode(struct inode *inode) |
| { |
| struct socket_alloc *ei; |
| struct socket_wq *wq; |
| |
| ei = container_of(inode, struct socket_alloc, vfs_inode); |
| wq = rcu_dereference_protected(ei->socket.wq, 1); |
| kfree_rcu(wq, rcu); |
| kmem_cache_free(sock_inode_cachep, ei); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct socket_alloc *ei = (struct socket_alloc *)foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| static int init_inodecache(void) |
| { |
| sock_inode_cachep = kmem_cache_create("sock_inode_cache", |
| sizeof(struct socket_alloc), |
| 0, |
| (SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_MEM_SPREAD), |
| init_once); |
| if (sock_inode_cachep == NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static const struct super_operations sockfs_ops = { |
| .alloc_inode = sock_alloc_inode, |
| .destroy_inode = sock_destroy_inode, |
| .statfs = simple_statfs, |
| }; |
| |
| /* |
| * sockfs_dname() is called from d_path(). |
| */ |
| static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) |
| { |
| return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", |
| dentry->d_inode->i_ino); |
| } |
| |
| static const struct dentry_operations sockfs_dentry_operations = { |
| .d_dname = sockfs_dname, |
| }; |
| |
| static struct dentry *sockfs_mount(struct file_system_type *fs_type, |
| int flags, const char *dev_name, void *data) |
| { |
| return mount_pseudo(fs_type, "socket:", &sockfs_ops, |
| &sockfs_dentry_operations, SOCKFS_MAGIC); |
| } |
| |
| static struct vfsmount *sock_mnt __read_mostly; |
| |
| static struct file_system_type sock_fs_type = { |
| .name = "sockfs", |
| .mount = sockfs_mount, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| /* |
| * Obtains the first available file descriptor and sets it up for use. |
| * |
| * These functions create file structures and maps them to fd space |
| * of the current process. On success it returns file descriptor |
| * and file struct implicitly stored in sock->file. |
| * Note that another thread may close file descriptor before we return |
| * from this function. We use the fact that now we do not refer |
| * to socket after mapping. If one day we will need it, this |
| * function will increment ref. count on file by 1. |
| * |
| * In any case returned fd MAY BE not valid! |
| * This race condition is unavoidable |
| * with shared fd spaces, we cannot solve it inside kernel, |
| * but we take care of internal coherence yet. |
| */ |
| |
| struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) |
| { |
| struct qstr name = { .name = "" }; |
| struct path path; |
| struct file *file; |
| |
| if (dname) { |
| name.name = dname; |
| name.len = strlen(name.name); |
| } else if (sock->sk) { |
| name.name = sock->sk->sk_prot_creator->name; |
| name.len = strlen(name.name); |
| } |
| path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); |
| if (unlikely(!path.dentry)) |
| return ERR_PTR(-ENOMEM); |
| path.mnt = mntget(sock_mnt); |
| |
| d_instantiate(path.dentry, SOCK_INODE(sock)); |
| SOCK_INODE(sock)->i_fop = &socket_file_ops; |
| |
| file = alloc_file(&path, FMODE_READ | FMODE_WRITE, |
| &socket_file_ops); |
| if (unlikely(IS_ERR(file))) { |
| /* drop dentry, keep inode */ |
| ihold(path.dentry->d_inode); |
| path_put(&path); |
| return file; |
| } |
| |
| sock->file = file; |
| file->f_flags = O_RDWR | (flags & O_NONBLOCK); |
| file->private_data = sock; |
| return file; |
| } |
| EXPORT_SYMBOL(sock_alloc_file); |
| |
| static int sock_map_fd(struct socket *sock, int flags) |
| { |
| struct file *newfile; |
| int fd = get_unused_fd_flags(flags); |
| if (unlikely(fd < 0)) |
| return fd; |
| |
| newfile = sock_alloc_file(sock, flags, NULL); |
| if (likely(!IS_ERR(newfile))) { |
| fd_install(fd, newfile); |
| return fd; |
| } |
| |
| put_unused_fd(fd); |
| return PTR_ERR(newfile); |
| } |
| |
| struct socket *sock_from_file(struct file *file, int *err) |
| { |
| if (file->f_op == &socket_file_ops) |
| return file->private_data; /* set in sock_map_fd */ |
| |
| *err = -ENOTSOCK; |
| return NULL; |
| } |
| EXPORT_SYMBOL(sock_from_file); |
| |
| /** |
| * sockfd_lookup - Go from a file number to its socket slot |
| * @fd: file handle |
| * @err: pointer to an error code return |
| * |
| * The file handle passed in is locked and the socket it is bound |
| * too is returned. If an error occurs the err pointer is overwritten |
| * with a negative errno code and NULL is returned. The function checks |
| * for both invalid handles and passing a handle which is not a socket. |
| * |
| * On a success the socket object pointer is returned. |
| */ |
| |
| struct socket *sockfd_lookup(int fd, int *err) |
| { |
| struct file *file; |
| struct socket *sock; |
| |
| file = fget(fd); |
| if (!file) { |
| *err = -EBADF; |
| return NULL; |
| } |
| |
| sock = sock_from_file(file, err); |
| if (!sock) |
| fput(file); |
| return sock; |
| } |
| EXPORT_SYMBOL(sockfd_lookup); |
| |
| static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) |
| { |
| struct file *file; |
| struct socket *sock; |
| |
| *err = -EBADF; |
| file = fget_light(fd, fput_needed); |
| if (file) { |
| sock = sock_from_file(file, err); |
| if (sock) |
| return sock; |
| fput_light(file, *fput_needed); |
| } |
| return NULL; |
| } |
| |
| #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" |
| #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) |
| #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) |
| static ssize_t sockfs_getxattr(struct dentry *dentry, |
| const char *name, void *value, size_t size) |
| { |
| const char *proto_name; |
| size_t proto_size; |
| int error; |
| |
| error = -ENODATA; |
| if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { |
| proto_name = dentry->d_name.name; |
| proto_size = strlen(proto_name); |
| |
| if (value) { |
| error = -ERANGE; |
| if (proto_size + 1 > size) |
| goto out; |
| |
| strncpy(value, proto_name, proto_size + 1); |
| } |
| error = proto_size + 1; |
| } |
| |
| out: |
| return error; |
| } |
| |
| static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, |
| size_t size) |
| { |
| ssize_t len; |
| ssize_t used = 0; |
| |
| len = security_inode_listsecurity(dentry->d_inode, buffer, size); |
| if (len < 0) |
| return len; |
| used += len; |
| if (buffer) { |
| if (size < used) |
| return -ERANGE; |
| buffer += len; |
| } |
| |
| len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); |
| used += len; |
| if (buffer) { |
| if (size < used) |
| return -ERANGE; |
| memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); |
| buffer += len; |
| } |
| |
| return used; |
| } |
| |
| static const struct inode_operations sockfs_inode_ops = { |
| .getxattr = sockfs_getxattr, |
| .listxattr = sockfs_listxattr, |
| }; |
| |
| /** |
| * sock_alloc - allocate a socket |
| * |
| * Allocate a new inode and socket object. The two are bound together |
| * and initialised. The socket is then returned. If we are out of inodes |
| * NULL is returned. |
| */ |
| |
| static struct socket *sock_alloc(void) |
| { |
| struct inode *inode; |
| struct socket *sock; |
| |
| inode = new_inode_pseudo(sock_mnt->mnt_sb); |
| if (!inode) |
| return NULL; |
| |
| sock = SOCKET_I(inode); |
| |
| kmemcheck_annotate_bitfield(sock, type); |
| inode->i_ino = get_next_ino(); |
| inode->i_mode = S_IFSOCK | S_IRWXUGO; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = current_fsgid(); |
| inode->i_op = &sockfs_inode_ops; |
| |
| this_cpu_add(sockets_in_use, 1); |
| return sock; |
| } |
| |
| /* |
| * In theory you can't get an open on this inode, but /proc provides |
| * a back door. Remember to keep it shut otherwise you'll let the |
| * creepy crawlies in. |
| */ |
| |
| static int sock_no_open(struct inode *irrelevant, struct file *dontcare) |
| { |
| return -ENXIO; |
| } |
| |
| const struct file_operations bad_sock_fops = { |
| .owner = THIS_MODULE, |
| .open = sock_no_open, |
| .llseek = noop_llseek, |
| }; |
| |
| /** |
| * sock_release - close a socket |
| * @sock: socket to close |
| * |
| * The socket is released from the protocol stack if it has a release |
| * callback, and the inode is then released if the socket is bound to |
| * an inode not a file. |
| */ |
| |
| void sock_release(struct socket *sock) |
| { |
| if (sock->ops) { |
| struct module *owner = sock->ops->owner; |
| |
| sock->ops->release(sock); |
| sock->ops = NULL; |
| module_put(owner); |
| } |
| |
| if (rcu_dereference_protected(sock->wq, 1)->fasync_list) |
| printk(KERN_ERR "sock_release: fasync list not empty!\n"); |
| |
| if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) |
| return; |
| |
| this_cpu_sub(sockets_in_use, 1); |
| if (!sock->file) { |
| iput(SOCK_INODE(sock)); |
| return; |
| } |
| sock->file = NULL; |
| } |
| EXPORT_SYMBOL(sock_release); |
| |
| void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) |
| { |
| *tx_flags = 0; |
| if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) |
| *tx_flags |= SKBTX_HW_TSTAMP; |
| if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) |
| *tx_flags |= SKBTX_SW_TSTAMP; |
| if (sock_flag(sk, SOCK_WIFI_STATUS)) |
| *tx_flags |= SKBTX_WIFI_STATUS; |
| } |
| EXPORT_SYMBOL(sock_tx_timestamp); |
| |
| static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size) |
| { |
| struct sock_iocb *si = kiocb_to_siocb(iocb); |
| |
| si->sock = sock; |
| si->scm = NULL; |
| si->msg = msg; |
| si->size = size; |
| |
| return sock->ops->sendmsg(iocb, sock, msg, size); |
| } |
| |
| static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size) |
| { |
| int err = security_socket_sendmsg(sock, msg, size); |
| |
| return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); |
| } |
| |
| int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) |
| { |
| struct kiocb iocb; |
| struct sock_iocb siocb; |
| int ret; |
| |
| init_sync_kiocb(&iocb, NULL); |
| iocb.private = &siocb; |
| ret = __sock_sendmsg(&iocb, sock, msg, size); |
| if (-EIOCBQUEUED == ret) |
| ret = wait_on_sync_kiocb(&iocb); |
| return ret; |
| } |
| EXPORT_SYMBOL(sock_sendmsg); |
| |
| static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) |
| { |
| struct kiocb iocb; |
| struct sock_iocb siocb; |
| int ret; |
| |
| init_sync_kiocb(&iocb, NULL); |
| iocb.private = &siocb; |
| ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); |
| if (-EIOCBQUEUED == ret) |
| ret = wait_on_sync_kiocb(&iocb); |
| return ret; |
| } |
| |
| int kernel_sendmsg(struct socket *sock, struct msghdr *msg, |
| struct kvec *vec, size_t num, size_t size) |
| { |
| mm_segment_t oldfs = get_fs(); |
| int result; |
| |
| set_fs(KERNEL_DS); |
| /* |
| * the following is safe, since for compiler definitions of kvec and |
| * iovec are identical, yielding the same in-core layout and alignment |
| */ |
| msg->msg_iov = (struct iovec *)vec; |
| msg->msg_iovlen = num; |
| result = sock_sendmsg(sock, msg, size); |
| set_fs(oldfs); |
| return result; |
| } |
| EXPORT_SYMBOL(kernel_sendmsg); |
| |
| /* |
| * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) |
| */ |
| void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); |
| struct timespec ts[3]; |
| int empty = 1; |
| struct skb_shared_hwtstamps *shhwtstamps = |
| skb_hwtstamps(skb); |
| |
| /* Race occurred between timestamp enabling and packet |
| receiving. Fill in the current time for now. */ |
| if (need_software_tstamp && skb->tstamp.tv64 == 0) |
| __net_timestamp(skb); |
| |
| if (need_software_tstamp) { |
| if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { |
| struct timeval tv; |
| skb_get_timestamp(skb, &tv); |
| put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, |
| sizeof(tv), &tv); |
| } else { |
| skb_get_timestampns(skb, &ts[0]); |
| put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, |
| sizeof(ts[0]), &ts[0]); |
| } |
| } |
| |
| |
| memset(ts, 0, sizeof(ts)); |
| if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && |
| ktime_to_timespec_cond(skb->tstamp, ts + 0)) |
| empty = 0; |
| if (shhwtstamps) { |
| if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && |
| ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) |
| empty = 0; |
| if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && |
| ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) |
| empty = 0; |
| } |
| if (!empty) |
| put_cmsg(msg, SOL_SOCKET, |
| SCM_TIMESTAMPING, sizeof(ts), &ts); |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_timestamp); |
| |
| void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| int ack; |
| |
| if (!sock_flag(sk, SOCK_WIFI_STATUS)) |
| return; |
| if (!skb->wifi_acked_valid) |
| return; |
| |
| ack = skb->wifi_acked; |
| |
| put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); |
| |
| static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) |
| put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, |
| sizeof(__u32), &skb->dropcount); |
| } |
| |
| void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| sock_recv_timestamp(msg, sk, skb); |
| sock_recv_drops(msg, sk, skb); |
| } |
| EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); |
| |
| static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size, int flags) |
| { |
| struct sock_iocb *si = kiocb_to_siocb(iocb); |
| |
| si->sock = sock; |
| si->scm = NULL; |
| si->msg = msg; |
| si->size = size; |
| si->flags = flags; |
| |
| return sock->ops->recvmsg(iocb, sock, msg, size, flags); |
| } |
| |
| static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, |
| struct msghdr *msg, size_t size, int flags) |
| { |
| int err = security_socket_recvmsg(sock, msg, size, flags); |
| |
| return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); |
| } |
| |
| int sock_recvmsg(struct socket *sock, struct msghdr *msg, |
| size_t size, int flags) |
| { |
| struct kiocb iocb; |
| struct sock_iocb siocb; |
| int ret; |
| |
| init_sync_kiocb(&iocb, NULL); |
| iocb.private = &siocb; |
| ret = __sock_recvmsg(&iocb, sock, msg, size, flags); |
| if (-EIOCBQUEUED == ret) |
| ret = wait_on_sync_kiocb(&iocb); |
| return ret; |
| } |
| EXPORT_SYMBOL(sock_recvmsg); |
| |
| static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, |
| size_t size, int flags) |
| { |
| struct kiocb iocb; |
| struct sock_iocb siocb; |
| int ret; |
| |
| init_sync_kiocb(&iocb, NULL); |
| iocb.private = &siocb; |
| ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); |
| if (-EIOCBQUEUED == ret) |
| ret = wait_on_sync_kiocb(&iocb); |
| return ret; |
| } |
| |
| /** |
| * kernel_recvmsg - Receive a message from a socket (kernel space) |
| * @sock: The socket to receive the message from |
| * @msg: Received message |
| * @vec: Input s/g array for message data |
| * @num: Size of input s/g array |
| * @size: Number of bytes to read |
| * @flags: Message flags (MSG_DONTWAIT, etc...) |
| * |
| * On return the msg structure contains the scatter/gather array passed in the |
| * vec argument. The array is modified so that it consists of the unfilled |
| * portion of the original array. |
| * |
| * The returned value is the total number of bytes received, or an error. |
| */ |
| int kernel_recvmsg(struct socket *sock, struct msghdr *msg, |
| struct kvec *vec, size_t num, size_t size, int flags) |
| { |
| mm_segment_t oldfs = get_fs(); |
| int result; |
| |
| set_fs(KERNEL_DS); |
| /* |
| * the following is safe, since for compiler definitions of kvec and |
| * iovec are identical, yielding the same in-core layout and alignment |
| */ |
| msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; |
| result = sock_recvmsg(sock, msg, size, flags); |
| set_fs(oldfs); |
| return result; |
| } |
| EXPORT_SYMBOL(kernel_recvmsg); |
| |
| static void sock_aio_dtor(struct kiocb *iocb) |
| { |
| kfree(iocb->private); |
| } |
| |
| static ssize_t sock_sendpage(struct file *file, struct page *page, |
| int offset, size_t size, loff_t *ppos, int more) |
| { |
| struct socket *sock; |
| int flags; |
| |
| sock = file->private_data; |
| |
| flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; |
| /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ |
| flags |= more; |
| |
| return kernel_sendpage(sock, page, offset, size, flags); |
| } |
| |
| static ssize_t sock_splice_read(struct file *file, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags) |
| { |
| struct socket *sock = file->private_data; |
| |
| if (unlikely(!sock->ops->splice_read)) |
| return -EINVAL; |
| |
| return sock->ops->splice_read(sock, ppos, pipe, len, flags); |
| } |
| |
| static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, |
| struct sock_iocb *siocb) |
| { |
| if (!is_sync_kiocb(iocb)) { |
| siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); |
| if (!siocb) |
| return NULL; |
| iocb->ki_dtor = sock_aio_dtor; |
| } |
| |
| siocb->kiocb = iocb; |
| iocb->private = siocb; |
| return siocb; |
| } |
| |
| static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, |
| struct file *file, const struct iovec *iov, |
| unsigned long nr_segs) |
| { |
| struct socket *sock = file->private_data; |
| size_t size = 0; |
| int i; |
| |
| for (i = 0; i < nr_segs; i++) |
| size += iov[i].iov_len; |
| |
| msg->msg_name = NULL; |
| msg->msg_namelen = 0; |
| msg->msg_control = NULL; |
| msg->msg_controllen = 0; |
| msg->msg_iov = (struct iovec *)iov; |
| msg->msg_iovlen = nr_segs; |
| msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; |
| |
| return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); |
| } |
| |
| static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, |
| unsigned long nr_segs, loff_t pos) |
| { |
| struct sock_iocb siocb, *x; |
| |
| if (pos != 0) |
| return -ESPIPE; |
| |
| if (iocb->ki_left == 0) /* Match SYS5 behaviour */ |
| return 0; |
| |
| |
| x = alloc_sock_iocb(iocb, &siocb); |
| if (!x) |
| return -ENOMEM; |
| return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); |
| } |
| |
| static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, |
| struct file *file, const struct iovec *iov, |
| unsigned long nr_segs) |
| { |
| struct socket *sock = file->private_data; |
| size_t size = 0; |
| int i; |
| |
| for (i = 0; i < nr_segs; i++) |
| size += iov[i].iov_len; |
| |
| msg->msg_name = NULL; |
| msg->msg_namelen = 0; |
| msg->msg_control = NULL; |
| msg->msg_controllen = 0; |
| msg->msg_iov = (struct iovec *)iov; |
| msg->msg_iovlen = nr_segs; |
| msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; |
| if (sock->type == SOCK_SEQPACKET) |
| msg->msg_flags |= MSG_EOR; |
| |
| return __sock_sendmsg(iocb, sock, msg, size); |
| } |
| |
| static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, |
| unsigned long nr_segs, loff_t pos) |
| { |
| struct sock_iocb siocb, *x; |
| |
| if (pos != 0) |
| return -ESPIPE; |
| |
| x = alloc_sock_iocb(iocb, &siocb); |
| if (!x) |
| return -ENOMEM; |
| |
| return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); |
| } |
| |
| /* |
| * Atomic setting of ioctl hooks to avoid race |
| * with module unload. |
| */ |
| |
| static DEFINE_MUTEX(br_ioctl_mutex); |
| static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); |
| |
| void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) |
| { |
| mutex_lock(&br_ioctl_mutex); |
| br_ioctl_hook = hook; |
| mutex_unlock(&br_ioctl_mutex); |
| } |
| EXPORT_SYMBOL(brioctl_set); |
| |
| static DEFINE_MUTEX(vlan_ioctl_mutex); |
| static int (*vlan_ioctl_hook) (struct net *, void __user *arg); |
| |
| void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) |
| { |
| mutex_lock(&vlan_ioctl_mutex); |
| vlan_ioctl_hook = hook; |
| mutex_unlock(&vlan_ioctl_mutex); |
| } |
| EXPORT_SYMBOL(vlan_ioctl_set); |
| |
| static DEFINE_MUTEX(dlci_ioctl_mutex); |
| static int (*dlci_ioctl_hook) (unsigned int, void __user *); |
| |
| void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) |
| { |
| mutex_lock(&dlci_ioctl_mutex); |
| dlci_ioctl_hook = hook; |
| mutex_unlock(&dlci_ioctl_mutex); |
| } |
| EXPORT_SYMBOL(dlci_ioctl_set); |
| |
| static long sock_do_ioctl(struct net *net, struct socket *sock, |
| unsigned int cmd, unsigned long arg) |
| { |
| int err; |
| void __user *argp = (void __user *)arg; |
| |
| err = sock->ops->ioctl(sock, cmd, arg); |
| |
| /* |
| * If this ioctl is unknown try to hand it down |
| * to the NIC driver. |
| */ |
| if (err == -ENOIOCTLCMD) |
| err = dev_ioctl(net, cmd, argp); |
| |
| return err; |
| } |
| |
| /* |
| * With an ioctl, arg may well be a user mode pointer, but we don't know |
| * what to do with it - that's up to the protocol still. |
| */ |
| |
| static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) |
| { |
| struct socket *sock; |
| struct sock *sk; |
| void __user *argp = (void __user *)arg; |
| int pid, err; |
| struct net *net; |
| |
| sock = file->private_data; |
| sk = sock->sk; |
| net = sock_net(sk); |
| if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { |
| err = dev_ioctl(net, cmd, argp); |
| } else |
| #ifdef CONFIG_WEXT_CORE |
| if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { |
| err = dev_ioctl(net, cmd, argp); |
| } else |
| #endif |
| switch (cmd) { |
| case FIOSETOWN: |
| case SIOCSPGRP: |
| err = -EFAULT; |
| if (get_user(pid, (int __user *)argp)) |
| break; |
| err = f_setown(sock->file, pid, 1); |
| break; |
| case FIOGETOWN: |
| case SIOCGPGRP: |
| err = put_user(f_getown(sock->file), |
| (int __user *)argp); |
| break; |
| case SIOCGIFBR: |
| case SIOCSIFBR: |
| case SIOCBRADDBR: |
| case SIOCBRDELBR: |
| err = -ENOPKG; |
| if (!br_ioctl_hook) |
| request_module("bridge"); |
| |
| mutex_lock(&br_ioctl_mutex); |
| if (br_ioctl_hook) |
| err = br_ioctl_hook(net, cmd, argp); |
| mutex_unlock(&br_ioctl_mutex); |
| break; |
| case SIOCGIFVLAN: |
| case SIOCSIFVLAN: |
| err = -ENOPKG; |
| if (!vlan_ioctl_hook) |
| request_module("8021q"); |
| |
| mutex_lock(&vlan_ioctl_mutex); |
| if (vlan_ioctl_hook) |
| err = vlan_ioctl_hook(net, argp); |
| mutex_unlock(&vlan_ioctl_mutex); |
| break; |
| case SIOCADDDLCI: |
| case SIOCDELDLCI: |
| err = -ENOPKG; |
| if (!dlci_ioctl_hook) |
| request_module("dlci"); |
| |
| mutex_lock(&dlci_ioctl_mutex); |
| if (dlci_ioctl_hook) |
| err = dlci_ioctl_hook(cmd, argp); |
| mutex_unlock(&dlci_ioctl_mutex); |
| break; |
| default: |
| err = sock_do_ioctl(net, sock, cmd, arg); |
| break; |
| } |
| return err; |
| } |
| |
| int sock_create_lite(int family, int type, int protocol, struct socket **res) |
| { |
| int err; |
| struct socket *sock = NULL; |
| |
| err = security_socket_create(family, type, protocol, 1); |
| if (err) |
| goto out; |
| |
| sock = sock_alloc(); |
| if (!sock) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| sock->type = type; |
| err = security_socket_post_create(sock, family, type, protocol, 1); |
| if (err) |
| goto out_release; |
| |
| out: |
| *res = sock; |
| return err; |
| out_release: |
| sock_release(sock); |
| sock = NULL; |
| goto out; |
| } |
| EXPORT_SYMBOL(sock_create_lite); |
| |
| /* No kernel lock held - perfect */ |
| static unsigned int sock_poll(struct file *file, poll_table *wait) |
| { |
| struct socket *sock; |
| |
| /* |
| * We can't return errors to poll, so it's either yes or no. |
| */ |
| sock = file->private_data; |
| return sock->ops->poll(file, sock, wait); |
| } |
| |
| static int sock_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct socket *sock = file->private_data; |
| |
| return sock->ops->mmap(file, sock, vma); |
| } |
| |
| static int sock_close(struct inode *inode, struct file *filp) |
| { |
| sock_release(SOCKET_I(inode)); |
| return 0; |
| } |
| |
| /* |
| * Update the socket async list |
| * |
| * Fasync_list locking strategy. |
| * |
| * 1. fasync_list is modified only under process context socket lock |
| * i.e. under semaphore. |
| * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) |
| * or under socket lock |
| */ |
| |
| static int sock_fasync(int fd, struct file *filp, int on) |
| { |
| struct socket *sock = filp->private_data; |
| struct sock *sk = sock->sk; |
| struct socket_wq *wq; |
| |
| if (sk == NULL) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); |
| fasync_helper(fd, filp, on, &wq->fasync_list); |
| |
| if (!wq->fasync_list) |
| sock_reset_flag(sk, SOCK_FASYNC); |
| else |
| sock_set_flag(sk, SOCK_FASYNC); |
| |
| release_sock(sk); |
| return 0; |
| } |
| |
| /* This function may be called only under socket lock or callback_lock or rcu_lock */ |
| |
| int sock_wake_async(struct socket *sock, int how, int band) |
| { |
| struct socket_wq *wq; |
| |
| if (!sock) |
| return -1; |
| rcu_read_lock(); |
| wq = rcu_dereference(sock->wq); |
| if (!wq || !wq->fasync_list) { |
| rcu_read_unlock(); |
| return -1; |
| } |
| switch (how) { |
| case SOCK_WAKE_WAITD: |
| if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) |
| break; |
| goto call_kill; |
| case SOCK_WAKE_SPACE: |
| if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) |
| break; |
| /* fall through */ |
| case SOCK_WAKE_IO: |
| call_kill: |
| kill_fasync(&wq->fasync_list, SIGIO, band); |
| break; |
| case SOCK_WAKE_URG: |
| kill_fasync(&wq->fasync_list, SIGURG, band); |
| } |
| rcu_read_unlock(); |
| return 0; |
| } |
| EXPORT_SYMBOL(sock_wake_async); |
| |
| int __sock_create(struct net *net, int family, int type, int protocol, |
| struct socket **res, int kern) |
| { |
| int err; |
| struct socket *sock; |
| const struct net_proto_family *pf; |
| |
| /* |
| * Check protocol is in range |
| */ |
| if (family < 0 || family >= NPROTO) |
| return -EAFNOSUPPORT; |
| if (type < 0 || type >= SOCK_MAX) |
| return -EINVAL; |
| |
| /* Compatibility. |
| |
| This uglymoron is moved from INET layer to here to avoid |
| deadlock in module load. |
| */ |
| if (family == PF_INET && type == SOCK_PACKET) { |
| static int warned; |
| if (!warned) { |
| warned = 1; |
| printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", |
| current->comm); |
| } |
| family = PF_PACKET; |
| } |
| |
| err = security_socket_create(family, type, protocol, kern); |
| if (err) |
| return err; |
| |
| /* |
| * Allocate the socket and allow the family to set things up. if |
| * the protocol is 0, the family is instructed to select an appropriate |
| * default. |
| */ |
| sock = sock_alloc(); |
| if (!sock) { |
| net_warn_ratelimited("socket: no more sockets\n"); |
| return -ENFILE; /* Not exactly a match, but its the |
| closest posix thing */ |
| } |
| |
| sock->type = type; |
| |
| #ifdef CONFIG_MODULES |
| /* Attempt to load a protocol module if the find failed. |
| * |
| * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user |
| * requested real, full-featured networking support upon configuration. |
| * Otherwise module support will break! |
| */ |
| if (rcu_access_pointer(net_families[family]) == NULL) |
| request_module("net-pf-%d", family); |
| #endif |
| |
| rcu_read_lock(); |
| pf = rcu_dereference(net_families[family]); |
| err = -EAFNOSUPPORT; |
| if (!pf) |
| goto out_release; |
| |
| /* |
| * We will call the ->create function, that possibly is in a loadable |
| * module, so we have to bump that loadable module refcnt first. |
| */ |
| if (!try_module_get(pf->owner)) |
| goto out_release; |
| |
| /* Now protected by module ref count */ |
| rcu_read_unlock(); |
| |
| err = pf->create(net, sock, protocol, kern); |
| if (err < 0) |
| goto out_module_put; |
| |
| /* |
| * Now to bump the refcnt of the [loadable] module that owns this |
| * socket at sock_release time we decrement its refcnt. |
| */ |
| if (!try_module_get(sock->ops->owner)) |
| goto out_module_busy; |
| |
| /* |
| * Now that we're done with the ->create function, the [loadable] |
| * module can have its refcnt decremented |
| */ |
| module_put(pf->owner); |
| err = security_socket_post_create(sock, family, type, protocol, kern); |
| if (err) |
| goto out_sock_release; |
| *res = sock; |
| |
| return 0; |
| |
| out_module_busy: |
| err = -EAFNOSUPPORT; |
| out_module_put: |
| sock->ops = NULL; |
| module_put(pf->owner); |
| out_sock_release: |
| sock_release(sock); |
| return err; |
| |
| out_release: |
| rcu_read_unlock(); |
| goto out_sock_release; |
| } |
| EXPORT_SYMBOL(__sock_create); |
| |
| int sock_create(int family, int type, int protocol, struct socket **res) |
| { |
| return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); |
| } |
| EXPORT_SYMBOL(sock_create); |
| |
| int sock_create_kern(int family, int type, int protocol, struct socket **res) |
| { |
| return __sock_create(&init_net, family, type, protocol, res, 1); |
| } |
| EXPORT_SYMBOL(sock_create_kern); |
| |
| SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) |
| { |
| int retval; |
| struct socket *sock; |
| int flags; |
| |
| /* Check the SOCK_* constants for consistency. */ |
| BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); |
| BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); |
| BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); |
| BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); |
| |
| flags = type & ~SOCK_TYPE_MASK; |
| if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return -EINVAL; |
| type &= SOCK_TYPE_MASK; |
| |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| retval = sock_create(family, type, protocol, &sock); |
| if (retval < 0) |
| goto out; |
| |
| if (retval == 0) |
| sockev_notify(SOCKEV_SOCKET, sock); |
| |
| retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); |
| if (retval < 0) |
| goto out_release; |
| |
| out: |
| /* It may be already another descriptor 8) Not kernel problem. */ |
| return retval; |
| |
| out_release: |
| sock_release(sock); |
| return retval; |
| } |
| |
| /* |
| * Create a pair of connected sockets. |
| */ |
| |
| SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, |
| int __user *, usockvec) |
| { |
| struct socket *sock1, *sock2; |
| int fd1, fd2, err; |
| struct file *newfile1, *newfile2; |
| int flags; |
| |
| flags = type & ~SOCK_TYPE_MASK; |
| if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return -EINVAL; |
| type &= SOCK_TYPE_MASK; |
| |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| /* |
| * Obtain the first socket and check if the underlying protocol |
| * supports the socketpair call. |
| */ |
| |
| err = sock_create(family, type, protocol, &sock1); |
| if (err < 0) |
| goto out; |
| |
| err = sock_create(family, type, protocol, &sock2); |
| if (err < 0) |
| goto out_release_1; |
| |
| err = sock1->ops->socketpair(sock1, sock2); |
| if (err < 0) |
| goto out_release_both; |
| |
| fd1 = get_unused_fd_flags(flags); |
| if (unlikely(fd1 < 0)) { |
| err = fd1; |
| goto out_release_both; |
| } |
| fd2 = get_unused_fd_flags(flags); |
| if (unlikely(fd2 < 0)) { |
| err = fd2; |
| put_unused_fd(fd1); |
| goto out_release_both; |
| } |
| |
| newfile1 = sock_alloc_file(sock1, flags, NULL); |
| if (unlikely(IS_ERR(newfile1))) { |
| err = PTR_ERR(newfile1); |
| put_unused_fd(fd1); |
| put_unused_fd(fd2); |
| goto out_release_both; |
| } |
| |
| newfile2 = sock_alloc_file(sock2, flags, NULL); |
| if (IS_ERR(newfile2)) { |
| err = PTR_ERR(newfile2); |
| fput(newfile1); |
| put_unused_fd(fd1); |
| put_unused_fd(fd2); |
| sock_release(sock2); |
| goto out; |
| } |
| |
| audit_fd_pair(fd1, fd2); |
| fd_install(fd1, newfile1); |
| fd_install(fd2, newfile2); |
| /* fd1 and fd2 may be already another descriptors. |
| * Not kernel problem. |
| */ |
| |
| err = put_user(fd1, &usockvec[0]); |
| if (!err) |
| err = put_user(fd2, &usockvec[1]); |
| if (!err) |
| return 0; |
| |
| sys_close(fd2); |
| sys_close(fd1); |
| return err; |
| |
| out_release_both: |
| sock_release(sock2); |
| out_release_1: |
| sock_release(sock1); |
| out: |
| return err; |
| } |
| |
| /* |
| * Bind a name to a socket. Nothing much to do here since it's |
| * the protocol's responsibility to handle the local address. |
| * |
| * We move the socket address to kernel space before we call |
| * the protocol layer (having also checked the address is ok). |
| */ |
| |
| SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int err, fput_needed; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock) { |
| err = move_addr_to_kernel(umyaddr, addrlen, &address); |
| if (err >= 0) { |
| err = security_socket_bind(sock, |
| (struct sockaddr *)&address, |
| addrlen); |
| if (!err) |
| err = sock->ops->bind(sock, |
| (struct sockaddr *) |
| &address, addrlen); |
| } |
| if (!err) { |
| if (sock->sk) |
| sock_hold(sock->sk); |
| sockev_notify(SOCKEV_BIND, sock); |
| if (sock->sk) |
| sock_put(sock->sk); |
| } |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* |
| * Perform a listen. Basically, we allow the protocol to do anything |
| * necessary for a listen, and if that works, we mark the socket as |
| * ready for listening. |
| */ |
| |
| SYSCALL_DEFINE2(listen, int, fd, int, backlog) |
| { |
| struct socket *sock; |
| int err, fput_needed; |
| int somaxconn; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock) { |
| somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; |
| if ((unsigned int)backlog > somaxconn) |
| backlog = somaxconn; |
| |
| err = security_socket_listen(sock, backlog); |
| if (!err) |
| err = sock->ops->listen(sock, backlog); |
| |
| if (!err) { |
| if (sock->sk) |
| sock_hold(sock->sk); |
| sockev_notify(SOCKEV_LISTEN, sock); |
| if (sock->sk) |
| sock_put(sock->sk); |
| } |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* |
| * For accept, we attempt to create a new socket, set up the link |
| * with the client, wake up the client, then return the new |
| * connected fd. We collect the address of the connector in kernel |
| * space and move it to user at the very end. This is unclean because |
| * we open the socket then return an error. |
| * |
| * 1003.1g adds the ability to recvmsg() to query connection pending |
| * status to recvmsg. We need to add that support in a way thats |
| * clean when we restucture accept also. |
| */ |
| |
| SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, |
| int __user *, upeer_addrlen, int, flags) |
| { |
| struct socket *sock, *newsock; |
| struct file *newfile; |
| int err, len, newfd, fput_needed; |
| struct sockaddr_storage address; |
| |
| if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) |
| return -EINVAL; |
| |
| if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) |
| flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| err = -ENFILE; |
| newsock = sock_alloc(); |
| if (!newsock) |
| goto out_put; |
| |
| newsock->type = sock->type; |
| newsock->ops = sock->ops; |
| |
| /* |
| * We don't need try_module_get here, as the listening socket (sock) |
| * has the protocol module (sock->ops->owner) held. |
| */ |
| __module_get(newsock->ops->owner); |
| |
| newfd = get_unused_fd_flags(flags); |
| if (unlikely(newfd < 0)) { |
| err = newfd; |
| sock_release(newsock); |
| goto out_put; |
| } |
| newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); |
| if (unlikely(IS_ERR(newfile))) { |
| err = PTR_ERR(newfile); |
| put_unused_fd(newfd); |
| sock_release(newsock); |
| goto out_put; |
| } |
| |
| err = security_socket_accept(sock, newsock); |
| if (err) |
| goto out_fd; |
| |
| err = sock->ops->accept(sock, newsock, sock->file->f_flags); |
| if (err < 0) |
| goto out_fd; |
| |
| if (upeer_sockaddr) { |
| if (newsock->ops->getname(newsock, (struct sockaddr *)&address, |
| &len, 2) < 0) { |
| err = -ECONNABORTED; |
| goto out_fd; |
| } |
| err = move_addr_to_user(&address, |
| len, upeer_sockaddr, upeer_addrlen); |
| if (err < 0) |
| goto out_fd; |
| } |
| |
| /* File flags are not inherited via accept() unlike another OSes. */ |
| |
| fd_install(newfd, newfile); |
| err = newfd; |
| if (!err) |
| sockev_notify(SOCKEV_ACCEPT, sock); |
| out_put: |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| out_fd: |
| fput(newfile); |
| put_unused_fd(newfd); |
| goto out_put; |
| } |
| |
| SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, |
| int __user *, upeer_addrlen) |
| { |
| return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); |
| } |
| |
| /* |
| * Attempt to connect to a socket with the server address. The address |
| * is in user space so we verify it is OK and move it to kernel space. |
| * |
| * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to |
| * break bindings |
| * |
| * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and |
| * other SEQPACKET protocols that take time to connect() as it doesn't |
| * include the -EINPROGRESS status for such sockets. |
| */ |
| |
| SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, |
| int, addrlen) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int err, fput_needed; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| err = move_addr_to_kernel(uservaddr, addrlen, &address); |
| if (err < 0) |
| goto out_put; |
| |
| err = |
| security_socket_connect(sock, (struct sockaddr *)&address, addrlen); |
| if (err) |
| goto out_put; |
| |
| err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, |
| sock->file->f_flags); |
| if (!err) |
| sockev_notify(SOCKEV_CONNECT, sock); |
| out_put: |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| /* |
| * Get the local address ('name') of a socket object. Move the obtained |
| * name to user space. |
| */ |
| |
| SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, |
| int __user *, usockaddr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int len, err, fput_needed; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| err = security_socket_getsockname(sock); |
| if (err) |
| goto out_put; |
| |
| err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); |
| if (err) |
| goto out_put; |
| err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); |
| |
| out_put: |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| /* |
| * Get the remote address ('name') of a socket object. Move the obtained |
| * name to user space. |
| */ |
| |
| SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, |
| int __user *, usockaddr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int len, err, fput_needed; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock != NULL) { |
| err = security_socket_getpeername(sock); |
| if (err) { |
| fput_light(sock->file, fput_needed); |
| return err; |
| } |
| |
| err = |
| sock->ops->getname(sock, (struct sockaddr *)&address, &len, |
| 1); |
| if (!err) |
| err = move_addr_to_user(&address, len, usockaddr, |
| usockaddr_len); |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* |
| * Send a datagram to a given address. We move the address into kernel |
| * space and check the user space data area is readable before invoking |
| * the protocol. |
| */ |
| |
| SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, |
| unsigned int, flags, struct sockaddr __user *, addr, |
| int, addr_len) |
| { |
| struct socket *sock; |
| struct sockaddr_storage address; |
| int err; |
| struct msghdr msg; |
| struct iovec iov; |
| int fput_needed; |
| |
| qmp_sphinx_logk_sendto(fd, buff, len, flags, addr, addr_len); |
| |
| if (len > INT_MAX) |
| len = INT_MAX; |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| iov.iov_base = buff; |
| iov.iov_len = len; |
| msg.msg_name = NULL; |
| msg.msg_iov = &iov; |
| msg.msg_iovlen = 1; |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_namelen = 0; |
| if (addr) { |
| err = move_addr_to_kernel(addr, addr_len, &address); |
| if (err < 0) |
| goto out_put; |
| msg.msg_name = (struct sockaddr *)&address; |
| msg.msg_namelen = addr_len; |
| } |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| msg.msg_flags = flags; |
| err = sock_sendmsg(sock, &msg, len); |
| |
| out_put: |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| /* |
| * Send a datagram down a socket. |
| */ |
| |
| SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, |
| unsigned int, flags) |
| { |
| return sys_sendto(fd, buff, len, flags, NULL, 0); |
| } |
| |
| /* |
| * Receive a frame from the socket and optionally record the address of the |
| * sender. We verify the buffers are writable and if needed move the |
| * sender address from kernel to user space. |
| */ |
| |
| SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, |
| unsigned int, flags, struct sockaddr __user *, addr, |
| int __user *, addr_len) |
| { |
| struct socket *sock; |
| struct iovec iov; |
| struct msghdr msg; |
| struct sockaddr_storage address; |
| int err, err2; |
| int fput_needed; |
| |
| qmp_sphinx_logk_recvfrom(fd, ubuf, size, flags, addr, addr_len); |
| |
| if (size > INT_MAX) |
| size = INT_MAX; |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_iovlen = 1; |
| msg.msg_iov = &iov; |
| iov.iov_len = size; |
| iov.iov_base = ubuf; |
| /* Save some cycles and don't copy the address if not needed */ |
| msg.msg_name = addr ? (struct sockaddr *)&address : NULL; |
| /* We assume all kernel code knows the size of sockaddr_storage */ |
| msg.msg_namelen = 0; |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| err = sock_recvmsg(sock, &msg, size, flags); |
| |
| if (err >= 0 && addr != NULL) { |
| err2 = move_addr_to_user(&address, |
| msg.msg_namelen, addr, addr_len); |
| if (err2 < 0) |
| err = err2; |
| } |
| |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| /* |
| * Receive a datagram from a socket. |
| */ |
| |
| asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, |
| unsigned int flags) |
| { |
| return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); |
| } |
| |
| /* |
| * Set a socket option. Because we don't know the option lengths we have |
| * to pass the user mode parameter for the protocols to sort out. |
| */ |
| |
| SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, |
| char __user *, optval, int, optlen) |
| { |
| int err, fput_needed; |
| struct socket *sock; |
| |
| if (optlen < 0) |
| return -EINVAL; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock != NULL) { |
| err = security_socket_setsockopt(sock, level, optname); |
| if (err) |
| goto out_put; |
| |
| if (level == SOL_SOCKET) |
| err = |
| sock_setsockopt(sock, level, optname, optval, |
| optlen); |
| else |
| err = |
| sock->ops->setsockopt(sock, level, optname, optval, |
| optlen); |
| out_put: |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* |
| * Get a socket option. Because we don't know the option lengths we have |
| * to pass a user mode parameter for the protocols to sort out. |
| */ |
| |
| SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, |
| char __user *, optval, int __user *, optlen) |
| { |
| int err, fput_needed; |
| struct socket *sock; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock != NULL) { |
| err = security_socket_getsockopt(sock, level, optname); |
| if (err) |
| goto out_put; |
| |
| if (level == SOL_SOCKET) |
| err = |
| sock_getsockopt(sock, level, optname, optval, |
| optlen); |
| else |
| err = |
| sock->ops->getsockopt(sock, level, optname, optval, |
| optlen); |
| out_put: |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* |
| * Shutdown a socket. |
| */ |
| |
| SYSCALL_DEFINE2(shutdown, int, fd, int, how) |
| { |
| int err, fput_needed; |
| struct socket *sock; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (sock != NULL) { |
| sockev_notify(SOCKEV_SHUTDOWN, sock); |
| err = security_socket_shutdown(sock, how); |
| if (!err) |
| err = sock->ops->shutdown(sock, how); |
| fput_light(sock->file, fput_needed); |
| } |
| return err; |
| } |
| |
| /* A couple of helpful macros for getting the address of the 32/64 bit |
| * fields which are the same type (int / unsigned) on our platforms. |
| */ |
| #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) |
| #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) |
| #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) |
| |
| struct used_address { |
| struct sockaddr_storage name; |
| unsigned int name_len; |
| }; |
| |
| static int copy_msghdr_from_user(struct msghdr *kmsg, |
| struct msghdr __user *umsg) |
| { |
| if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) |
| return -EFAULT; |
| |
| if (kmsg->msg_namelen < 0) |
| return -EINVAL; |
| |
| if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) |
| kmsg->msg_namelen = sizeof(struct sockaddr_storage); |
| return 0; |
| } |
| |
| static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, |
| struct msghdr *msg_sys, unsigned int flags, |
| struct used_address *used_address) |
| { |
| struct compat_msghdr __user *msg_compat = |
| (struct compat_msghdr __user *)msg; |
| struct sockaddr_storage address; |
| struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; |
| unsigned char ctl[sizeof(struct cmsghdr) + 20] |
| __attribute__ ((aligned(sizeof(__kernel_size_t)))); |
| /* 20 is size of ipv6_pktinfo */ |
| unsigned char *ctl_buf = ctl; |
| int err, ctl_len, total_len; |
| |
| err = -EFAULT; |
| if (MSG_CMSG_COMPAT & flags) { |
| if (get_compat_msghdr(msg_sys, msg_compat)) |
| return -EFAULT; |
| } else { |
| err = copy_msghdr_from_user(msg_sys, msg); |
| if (err) |
| return err; |
| } |
| |
| if (msg_sys->msg_iovlen > UIO_FASTIOV) { |
| err = -EMSGSIZE; |
| if (msg_sys->msg_iovlen > UIO_MAXIOV) |
| goto out; |
| err = -ENOMEM; |
| iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), |
| GFP_KERNEL); |
| if (!iov) |
| goto out; |
| } |
| |
| /* This will also move the address data into kernel space */ |
| if (MSG_CMSG_COMPAT & flags) { |
| err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); |
| } else |
| err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); |
| if (err < 0) |
| goto out_freeiov; |
| total_len = err; |
| |
| err = -ENOBUFS; |
| |
| if (msg_sys->msg_controllen > INT_MAX) |
| goto out_freeiov; |
| ctl_len = msg_sys->msg_controllen; |
| if ((MSG_CMSG_COMPAT & flags) && ctl_len) { |
| err = |
| cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, |
| sizeof(ctl)); |
| if (err) |
| goto out_freeiov; |
| ctl_buf = msg_sys->msg_control; |
| ctl_len = msg_sys->msg_controllen; |
| } else if (ctl_len) { |
| if (ctl_len > sizeof(ctl)) { |
| ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); |
| if (ctl_buf == NULL) |
| goto out_freeiov; |
| } |
| err = -EFAULT; |
| /* |
| * Careful! Before this, msg_sys->msg_control contains a user pointer. |
| * Afterwards, it will be a kernel pointer. Thus the compiler-assisted |
| * checking falls down on this. |
| */ |
| if (copy_from_user(ctl_buf, |
| (void __user __force *)msg_sys->msg_control, |
| ctl_len)) |
| goto out_freectl; |
| msg_sys->msg_control = ctl_buf; |
| } |
| msg_sys->msg_flags = flags; |
| |
| if (sock->file->f_flags & O_NONBLOCK) |
| msg_sys->msg_flags |= MSG_DONTWAIT; |
| /* |
| * If this is sendmmsg() and current destination address is same as |
| * previously succeeded address, omit asking LSM's decision. |
| * used_address->name_len is initialized to UINT_MAX so that the first |
| * destination address never matches. |
| */ |
| if (used_address && msg_sys->msg_name && |
| used_address->name_len == msg_sys->msg_namelen && |
| !memcmp(&used_address->name, msg_sys->msg_name, |
| used_address->name_len)) { |
| err = sock_sendmsg_nosec(sock, msg_sys, total_len); |
| goto out_freectl; |
| } |
| err = sock_sendmsg(sock, msg_sys, total_len); |
| /* |
| * If this is sendmmsg() and sending to current destination address was |
| * successful, remember it. |
| */ |
| if (used_address && err >= 0) { |
| used_address->name_len = msg_sys->msg_namelen; |
| if (msg_sys->msg_name) |
| memcpy(&used_address->name, msg_sys->msg_name, |
| used_address->name_len); |
| } |
| |
| out_freectl: |
| if (ctl_buf != ctl) |
| sock_kfree_s(sock->sk, ctl_buf, ctl_len); |
| out_freeiov: |
| if (iov != iovstack) |
| kfree(iov); |
| out: |
| return err; |
| } |
| |
| /* |
| * BSD sendmsg interface |
| */ |
| |
| long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) |
| { |
| int fput_needed, err; |
| struct msghdr msg_sys; |
| struct socket *sock; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); |
| |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) |
| { |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| return __sys_sendmsg(fd, msg, flags); |
| } |
| |
| /* |
| * Linux sendmmsg interface |
| */ |
| |
| int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, |
| unsigned int flags) |
| { |
| int fput_needed, err, datagrams; |
| struct socket *sock; |
| struct mmsghdr __user *entry; |
| struct compat_mmsghdr __user *compat_entry; |
| struct msghdr msg_sys; |
| struct used_address used_address; |
| |
| if (vlen > UIO_MAXIOV) |
| vlen = UIO_MAXIOV; |
| |
| datagrams = 0; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| return err; |
| |
| used_address.name_len = UINT_MAX; |
| entry = mmsg; |
| compat_entry = (struct compat_mmsghdr __user *)mmsg; |
| err = 0; |
| |
| while (datagrams < vlen) { |
| if (MSG_CMSG_COMPAT & flags) { |
| err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, |
| &msg_sys, flags, &used_address); |
| if (err < 0) |
| break; |
| err = __put_user(err, &compat_entry->msg_len); |
| ++compat_entry; |
| } else { |
| err = ___sys_sendmsg(sock, |
| (struct msghdr __user *)entry, |
| &msg_sys, flags, &used_address); |
| if (err < 0) |
| break; |
| err = put_user(err, &entry->msg_len); |
| ++entry; |
| } |
| |
| if (err) |
| break; |
| ++datagrams; |
| } |
| |
| fput_light(sock->file, fput_needed); |
| |
| /* We only return an error if no datagrams were able to be sent */ |
| if (datagrams != 0) |
| return datagrams; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, |
| unsigned int, vlen, unsigned int, flags) |
| { |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| return __sys_sendmmsg(fd, mmsg, vlen, flags); |
| } |
| |
| static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, |
| struct msghdr *msg_sys, unsigned int flags, int nosec) |
| { |
| struct compat_msghdr __user *msg_compat = |
| (struct compat_msghdr __user *)msg; |
| struct iovec iovstack[UIO_FASTIOV]; |
| struct iovec *iov = iovstack; |
| unsigned long cmsg_ptr; |
| int err, total_len, len; |
| |
| /* kernel mode address */ |
| struct sockaddr_storage addr; |
| |
| /* user mode address pointers */ |
| struct sockaddr __user *uaddr; |
| int __user *uaddr_len; |
| |
| if (MSG_CMSG_COMPAT & flags) { |
| if (get_compat_msghdr(msg_sys, msg_compat)) |
| return -EFAULT; |
| } else { |
| err = copy_msghdr_from_user(msg_sys, msg); |
| if (err) |
| return err; |
| } |
| |
| if (msg_sys->msg_iovlen > UIO_FASTIOV) { |
| err = -EMSGSIZE; |
| if (msg_sys->msg_iovlen > UIO_MAXIOV) |
| goto out; |
| err = -ENOMEM; |
| iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), |
| GFP_KERNEL); |
| if (!iov) |
| goto out; |
| } |
| |
| /* Save the user-mode address (verify_iovec will change the |
| * kernel msghdr to use the kernel address space) |
| */ |
| uaddr = (__force void __user *)msg_sys->msg_name; |
| uaddr_len = COMPAT_NAMELEN(msg); |
| if (MSG_CMSG_COMPAT & flags) |
| err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); |
| else |
| err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); |
| if (err < 0) |
| goto out_freeiov; |
| total_len = err; |
| |
| cmsg_ptr = (unsigned long)msg_sys->msg_control; |
| msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); |
| |
| /* We assume all kernel code knows the size of sockaddr_storage */ |
| msg_sys->msg_namelen = 0; |
| |
| if (sock->file->f_flags & O_NONBLOCK) |
| flags |= MSG_DONTWAIT; |
| err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, |
| total_len, flags); |
| if (err < 0) |
| goto out_freeiov; |
| len = err; |
| |
| if (uaddr != NULL) { |
| err = move_addr_to_user(&addr, |
| msg_sys->msg_namelen, uaddr, |
| uaddr_len); |
| if (err < 0) |
| goto out_freeiov; |
| } |
| err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), |
| COMPAT_FLAGS(msg)); |
| if (err) |
| goto out_freeiov; |
| if (MSG_CMSG_COMPAT & flags) |
| err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
| &msg_compat->msg_controllen); |
| else |
| err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, |
| &msg->msg_controllen); |
| if (err) |
| goto out_freeiov; |
| err = len; |
| |
| out_freeiov: |
| if (iov != iovstack) |
| kfree(iov); |
| out: |
| return err; |
| } |
| |
| /* |
| * BSD recvmsg interface |
| */ |
| |
| long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) |
| { |
| int fput_needed, err; |
| struct msghdr msg_sys; |
| struct socket *sock; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| goto out; |
| |
| err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); |
| |
| fput_light(sock->file, fput_needed); |
| out: |
| return err; |
| } |
| |
| SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, |
| unsigned int, flags) |
| { |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| return __sys_recvmsg(fd, msg, flags); |
| } |
| |
| /* |
| * Linux recvmmsg interface |
| */ |
| |
| int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, |
| unsigned int flags, struct timespec *timeout) |
| { |
| int fput_needed, err, datagrams; |
| struct socket *sock; |
| struct mmsghdr __user *entry; |
| struct compat_mmsghdr __user *compat_entry; |
| struct msghdr msg_sys; |
| struct timespec end_time; |
| |
| if (timeout && |
| poll_select_set_timeout(&end_time, timeout->tv_sec, |
| timeout->tv_nsec)) |
| return -EINVAL; |
| |
| datagrams = 0; |
| |
| sock = sockfd_lookup_light(fd, &err, &fput_needed); |
| if (!sock) |
| return err; |
| |
| err = sock_error(sock->sk); |
| if (err) |
| goto out_put; |
| |
| entry = mmsg; |
| compat_entry = (struct compat_mmsghdr __user *)mmsg; |
| |
| while (datagrams < vlen) { |
| /* |
| * No need to ask LSM for more than the first datagram. |
| */ |
| if (MSG_CMSG_COMPAT & flags) { |
| err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, |
| &msg_sys, flags & ~MSG_WAITFORONE, |
| datagrams); |
| if (err < 0) |
| break; |
| err = __put_user(err, &compat_entry->msg_len); |
| ++compat_entry; |
| } else { |
| err = ___sys_recvmsg(sock, |
| (struct msghdr __user *)entry, |
| &msg_sys, flags & ~MSG_WAITFORONE, |
| datagrams); |
| if (err < 0) |
| break; |
| err = put_user(err, &entry->msg_len); |
| ++entry; |
| } |
| |
| if (err) |
| break; |
| ++datagrams; |
| |
| /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ |
| if (flags & MSG_WAITFORONE) |
| flags |= MSG_DONTWAIT; |
| |
| if (timeout) { |
| ktime_get_ts(timeout); |
| *timeout = timespec_sub(end_time, *timeout); |
| if (timeout->tv_sec < 0) { |
| timeout->tv_sec = timeout->tv_nsec = 0; |
| break; |
| } |
| |
| /* Timeout, return less than vlen datagrams */ |
| if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) |
| break; |
| } |
| |
| /* Out of band data, return right away */ |
| if (msg_sys.msg_flags & MSG_OOB) |
| break; |
| } |
| |
| out_put: |
| fput_light(sock->file, fput_needed); |
| |
| if (err == 0) |
| return datagrams; |
| |
| if (datagrams != 0) { |
| /* |
| * We may return less entries than requested (vlen) if the |
| * sock is non block and there aren't enough datagrams... |
| */ |
| if (err != -EAGAIN) { |
| /* |
| * ... or if recvmsg returns an error after we |
| * received some datagrams, where we record the |
| * error to return on the next call or if the |
| * app asks about it using getsockopt(SO_ERROR). |
| */ |
| sock->sk->sk_err = -err; |
| } |
| |
| return datagrams; |
| } |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, |
| unsigned int, vlen, unsigned int, flags, |
| struct timespec __user *, timeout) |
| { |
| int datagrams; |
| struct timespec timeout_sys; |
| |
| if (flags & MSG_CMSG_COMPAT) |
| return -EINVAL; |
| |
| if (!timeout) |
| return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); |
| |
| if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) |
| return -EFAULT; |
| |
| datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); |
| |
| if (datagrams > 0 && |
| copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) |
| datagrams = -EFAULT; |
| |
| return datagrams; |
| } |
| |
| #ifdef __ARCH_WANT_SYS_SOCKETCALL |
| /* Argument list sizes for sys_socketcall */ |
| #define AL(x) ((x) * sizeof(unsigned long)) |
| static const unsigned char nargs[21] = { |
| AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), |
| AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), |
| AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), |
| AL(4), AL(5), AL(4) |
| }; |
| |
| #undef AL |
| |
| /* |
| * System call vectors. |
| * |
| * Argument checking cleaned up. Saved 20% in size. |
| * This function doesn't need to set the kernel lock because |
| * it is set by the callees. |
| */ |
| |
| SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) |
| { |
| unsigned long a[AUDITSC_ARGS]; |
| unsigned long a0, a1; |
| int err; |
| unsigned int len; |
| |
| if (call < 1 || call > SYS_SENDMMSG) |
| return -EINVAL; |
| |
| len = nargs[call]; |
| if (len > sizeof(a)) |
| return -EINVAL; |
| |
| /* copy_from_user should be SMP safe. */ |
| if (copy_from_user(a, args, len)) |
| return -EFAULT; |
| |
| err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); |
| if (err) |
| return err; |
| |
| a0 = a[0]; |
| a1 = a[1]; |
| |
| switch (call) { |
| case SYS_SOCKET: |
| err = sys_socket(a0, a1, a[2]); |
| break; |
| case SYS_BIND: |
| err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); |
| break; |
| case SYS_CONNECT: |
| err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); |
| break; |
| case SYS_LISTEN: |
| err = sys_listen(a0, a1); |
| break; |
| case SYS_ACCEPT: |
| err = sys_accept4(a0, (struct sockaddr __user *)a1, |
| (int __user *)a[2], 0); |
| break; |
| case SYS_GETSOCKNAME: |
| err = |
| sys_getsockname(a0, (struct sockaddr __user *)a1, |
| (int __user *)a[2]); |
| break; |
| case SYS_GETPEERNAME: |
| err = |
| sys_getpeername(a0, (struct sockaddr __user *)a1, |
| (int __user *)a[2]); |
| break; |
| case SYS_SOCKETPAIR: |
| err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); |
| break; |
| case SYS_SEND: |
| err = sys_send(a0, (void __user *)a1, a[2], a[3]); |
| break; |
| case SYS_SENDTO: |
| err = sys_sendto(a0, (void __user *)a1, a[2], a[3], |
| (struct sockaddr __user *)a[4], a[5]); |
| break; |
| case SYS_RECV: |
| err = sys_recv(a0, (void __user *)a1, a[2], a[3]); |
| break; |
| case SYS_RECVFROM: |
| err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], |
| (struct sockaddr __user *)a[4], |
| (int __user *)a[5]); |
| break; |
| case SYS_SHUTDOWN: |
| err = sys_shutdown(a0, a1); |
| break; |
| case SYS_SETSOCKOPT: |
| err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); |
| break; |
| case SYS_GETSOCKOPT: |
| err = |
| sys_getsockopt(a0, a1, a[2], (char __user *)a[3], |
| (int __user *)a[4]); |
| break; |
| case SYS_SENDMSG: |
| err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); |
| break; |
| case SYS_SENDMMSG: |
| err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); |
| break; |
| case SYS_RECVMSG: |
| err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); |
| break; |
| case SYS_RECVMMSG: |
| err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], |
| (struct timespec __user *)a[4]); |
| break; |
| case SYS_ACCEPT4: |
| err = sys_accept4(a0, (struct sockaddr __user *)a1, |
| (int __user *)a[2], a[3]); |
| break; |
| default: |
| err = -EINVAL; |
| break; |
| } |
| return err; |
| } |
| |
| #endif /* __ARCH_WANT_SYS_SOCKETCALL */ |
| |
| /** |
| * sock_register - add a socket protocol handler |
| * @ops: description of protocol |
| * |
| * This function is called by a protocol handler that wants to |
| * advertise its address family, and have it linked into the |
| * socket interface. The value ops->family coresponds to the |
| * socket system call protocol family. |
| */ |
| int sock_register(const struct net_proto_family *ops) |
| { |
| int err; |
| |
| if (ops->family >= NPROTO) { |
| printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, |
| NPROTO); |
| return -ENOBUFS; |
| } |
| |
| spin_lock(&net_family_lock); |
| if (rcu_dereference_protected(net_families[ops->family], |
| lockdep_is_held(&net_family_lock))) |
| err = -EEXIST; |
| else { |
| rcu_assign_pointer(net_families[ops->family], ops); |
| err = 0; |
| } |
| spin_unlock(&net_family_lock); |
| |
| printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); |
| return err; |
| } |
| EXPORT_SYMBOL(sock_register); |
| |
| /** |
| * sock_unregister - remove a protocol handler |
| * @family: protocol family to remove |
| * |
| * This function is called by a protocol handler that wants to |
| * remove its address family, and have it unlinked from the |
| * new socket creation. |
| * |
| * If protocol handler is a module, then it can use module reference |
| * counts to protect against new references. If protocol handler is not |
| * a module then it needs to provide its own protection in |
| * the ops->create routine. |
| */ |
| void sock_unregister(int family) |
| { |
| BUG_ON(family < 0 || family >= NPROTO); |
| |
| spin_lock(&net_family_lock); |
| RCU_INIT_POINTER(net_families[family], NULL); |
| spin_unlock(&net_family_lock); |
| |
| synchronize_rcu(); |
| |
| printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); |
| } |
| EXPORT_SYMBOL(sock_unregister); |
| |
| static int __init sock_init(void) |
| { |
| int err; |
| /* |
| * Initialize the network sysctl infrastructure. |
| */ |
| err = net_sysctl_init(); |
| if (err) |
| goto out; |
| |
| /* |
| * Initialize skbuff SLAB cache |
| */ |
| skb_init(); |
| |
| /* |
| * Initialize the protocols module. |
| */ |
| |
| init_inodecache(); |
| |
| err = register_filesystem(&sock_fs_type); |
| if (err) |
| goto out_fs; |
| sock_mnt = kern_mount(&sock_fs_type); |
| if (IS_ERR(sock_mnt)) { |
| err = PTR_ERR(sock_mnt); |
| goto out_mount; |
| } |
| |
| /* The real protocol initialization is performed in later initcalls. |
| */ |
| |
| #ifdef CONFIG_NETFILTER |
| netfilter_init(); |
| #endif |
| |
| #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING |
| skb_timestamping_init(); |
| #endif |
| |
| out: |
| return err; |
| |
| out_mount: |
| unregister_filesystem(&sock_fs_type); |
| out_fs: |
| goto out; |
| } |
| |
| core_initcall(sock_init); /* early initcall */ |
| |
| #ifdef CONFIG_PROC_FS |
| void socket_seq_show(struct seq_file *seq) |
| { |
| int cpu; |
| int counter = 0; |
| |
| for_each_possible_cpu(cpu) |
| counter += per_cpu(sockets_in_use, cpu); |
| |
| /* It can be negative, by the way. 8) */ |
| if (counter < 0) |
| counter = 0; |
| |
| seq_printf(seq, "sockets: used %d\n", counter); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef CONFIG_COMPAT |
| static int do_siocgstamp(struct net *net, struct socket *sock, |
| unsigned int cmd, void __user *up) |
| { |
| mm_segment_t old_fs = get_fs(); |
| struct timeval ktv; |
| int err; |
| |
| set_fs(KERNEL_DS); |
| err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); |
| set_fs(old_fs); |
| if (!err) |
| err = compat_put_timeval(&ktv, up); |
| |
| return err; |
| } |
| |
| static int do_siocgstampns(struct net *net, struct socket *sock, |
| unsigned int cmd, void __user *up) |
| { |
| mm_segment_t old_fs = get_fs(); |
| struct timespec kts; |
| int err; |
| |
| set_fs(KERNEL_DS); |
| err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); |
| set_fs(old_fs); |
| if (!err) |
| err = compat_put_timespec(&kts, up); |
| |
| return err; |
| } |
| |
| static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) |
| { |
| struct ifreq __user *uifr; |
| int err; |
| |
| uifr = compat_alloc_user_space(sizeof(struct ifreq)); |
| if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| |
| err = dev_ioctl(net, SIOCGIFNAME, uifr); |
| if (err) |
| return err; |
| |
| if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) |
| { |
| struct compat_ifconf ifc32; |
| struct ifconf ifc; |
| struct ifconf __user *uifc; |
| struct compat_ifreq __user *ifr32; |
| struct ifreq __user *ifr; |
| unsigned int i, j; |
| int err; |
| |
| if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) |
| return -EFAULT; |
| |
| memset(&ifc, 0, sizeof(ifc)); |
| if (ifc32.ifcbuf == 0) { |
| ifc32.ifc_len = 0; |
| ifc.ifc_len = 0; |
| ifc.ifc_req = NULL; |
| uifc = compat_alloc_user_space(sizeof(struct ifconf)); |
| } else { |
| size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * |
| sizeof(struct ifreq); |
| uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); |
| ifc.ifc_len = len; |
| ifr = ifc.ifc_req = (void __user *)(uifc + 1); |
| ifr32 = compat_ptr(ifc32.ifcbuf); |
| for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { |
| if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| ifr++; |
| ifr32++; |
| } |
| } |
| if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) |
| return -EFAULT; |
| |
| err = dev_ioctl(net, SIOCGIFCONF, uifc); |
| if (err) |
| return err; |
| |
| if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) |
| return -EFAULT; |
| |
| ifr = ifc.ifc_req; |
| ifr32 = compat_ptr(ifc32.ifcbuf); |
| for (i = 0, j = 0; |
| i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; |
| i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { |
| if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| ifr32++; |
| ifr++; |
| } |
| |
| if (ifc32.ifcbuf == 0) { |
| /* Translate from 64-bit structure multiple to |
| * a 32-bit one. |
| */ |
| i = ifc.ifc_len; |
| i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); |
| ifc32.ifc_len = i; |
| } else { |
| ifc32.ifc_len = i; |
| } |
| if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) |
| { |
| struct compat_ethtool_rxnfc __user *compat_rxnfc; |
| bool convert_in = false, convert_out = false; |
| size_t buf_size = ALIGN(sizeof(struct ifreq), 8); |
| struct ethtool_rxnfc __user *rxnfc; |
| struct ifreq __user *ifr; |
| u32 rule_cnt = 0, actual_rule_cnt; |
| u32 ethcmd; |
| u32 data; |
| int ret; |
| |
| if (get_user(data, &ifr32->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| |
| compat_rxnfc = compat_ptr(data); |
| |
| if (get_user(ethcmd, &compat_rxnfc->cmd)) |
| return -EFAULT; |
| |
| /* Most ethtool structures are defined without padding. |
| * Unfortunately struct ethtool_rxnfc is an exception. |
| */ |
| switch (ethcmd) { |
| default: |
| break; |
| case ETHTOOL_GRXCLSRLALL: |
| /* Buffer size is variable */ |
| if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) |
| return -EFAULT; |
| if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) |
| return -ENOMEM; |
| buf_size += rule_cnt * sizeof(u32); |
| /* fall through */ |
| case ETHTOOL_GRXRINGS: |
| case ETHTOOL_GRXCLSRLCNT: |
| case ETHTOOL_GRXCLSRULE: |
| case ETHTOOL_SRXCLSRLINS: |
| convert_out = true; |
| /* fall through */ |
| case ETHTOOL_SRXCLSRLDEL: |
| buf_size += sizeof(struct ethtool_rxnfc); |
| convert_in = true; |
| break; |
| } |
| |
| ifr = compat_alloc_user_space(buf_size); |
| rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); |
| |
| if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) |
| return -EFAULT; |
| |
| if (put_user(convert_in ? rxnfc : compat_ptr(data), |
| &ifr->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| |
| if (convert_in) { |
| /* We expect there to be holes between fs.m_ext and |
| * fs.ring_cookie and at the end of fs, but nowhere else. |
| */ |
| BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + |
| sizeof(compat_rxnfc->fs.m_ext) != |
| offsetof(struct ethtool_rxnfc, fs.m_ext) + |
| sizeof(rxnfc->fs.m_ext)); |
| BUILD_BUG_ON( |
| offsetof(struct compat_ethtool_rxnfc, fs.location) - |
| offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != |
| offsetof(struct ethtool_rxnfc, fs.location) - |
| offsetof(struct ethtool_rxnfc, fs.ring_cookie)); |
| |
| if (copy_in_user(rxnfc, compat_rxnfc, |
| (void __user *)(&rxnfc->fs.m_ext + 1) - |
| (void __user *)rxnfc) || |
| copy_in_user(&rxnfc->fs.ring_cookie, |
| &compat_rxnfc->fs.ring_cookie, |
| (void __user *)(&rxnfc->fs.location + 1) - |
| (void __user *)&rxnfc->fs.ring_cookie) || |
| copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, |
| sizeof(rxnfc->rule_cnt))) |
| return -EFAULT; |
| } |
| |
| ret = dev_ioctl(net, SIOCETHTOOL, ifr); |
| if (ret) |
| return ret; |
| |
| if (convert_out) { |
| if (copy_in_user(compat_rxnfc, rxnfc, |
| (const void __user *)(&rxnfc->fs.m_ext + 1) - |
| (const void __user *)rxnfc) || |
| copy_in_user(&compat_rxnfc->fs.ring_cookie, |
| &rxnfc->fs.ring_cookie, |
| (const void __user *)(&rxnfc->fs.location + 1) - |
| (const void __user *)&rxnfc->fs.ring_cookie) || |
| copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, |
| sizeof(rxnfc->rule_cnt))) |
| return -EFAULT; |
| |
| if (ethcmd == ETHTOOL_GRXCLSRLALL) { |
| /* As an optimisation, we only copy the actual |
| * number of rules that the underlying |
| * function returned. Since Mallory might |
| * change the rule count in user memory, we |
| * check that it is less than the rule count |
| * originally given (as the user buffer size), |
| * which has been range-checked. |
| */ |
| if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) |
| return -EFAULT; |
| if (actual_rule_cnt < rule_cnt) |
| rule_cnt = actual_rule_cnt; |
| if (copy_in_user(&compat_rxnfc->rule_locs[0], |
| &rxnfc->rule_locs[0], |
| rule_cnt * sizeof(u32))) |
| return -EFAULT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) |
| { |
| void __user *uptr; |
| compat_uptr_t uptr32; |
| struct ifreq __user *uifr; |
| |
| uifr = compat_alloc_user_space(sizeof(*uifr)); |
| if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| |
| if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) |
| return -EFAULT; |
| |
| uptr = compat_ptr(uptr32); |
| |
| if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) |
| return -EFAULT; |
| |
| return dev_ioctl(net, SIOCWANDEV, uifr); |
| } |
| |
| static int bond_ioctl(struct net *net, unsigned int cmd, |
| struct compat_ifreq __user *ifr32) |
| { |
| struct ifreq kifr; |
| struct ifreq __user *uifr; |
| mm_segment_t old_fs; |
| int err; |
| u32 data; |
| void __user *datap; |
| |
| switch (cmd) { |
| case SIOCBONDENSLAVE: |
| case SIOCBONDRELEASE: |
| case SIOCBONDSETHWADDR: |
| case SIOCBONDCHANGEACTIVE: |
| if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) |
| return -EFAULT; |
| |
| old_fs = get_fs(); |
| set_fs(KERNEL_DS); |
| err = dev_ioctl(net, cmd, |
| (struct ifreq __user __force *) &kifr); |
| set_fs(old_fs); |
| |
| return err; |
| case SIOCBONDSLAVEINFOQUERY: |
| case SIOCBONDINFOQUERY: |
| uifr = compat_alloc_user_space(sizeof(*uifr)); |
| if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) |
| return -EFAULT; |
| |
| if (get_user(data, &ifr32->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| |
| datap = compat_ptr(data); |
| if (put_user(datap, &uifr->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| |
| return dev_ioctl(net, cmd, uifr); |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, |
| struct compat_ifreq __user *u_ifreq32) |
| { |
| struct ifreq __user *u_ifreq64; |
| char tmp_buf[IFNAMSIZ]; |
| void __user *data64; |
| u32 data32; |
| |
| if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), |
| IFNAMSIZ)) |
| return -EFAULT; |
| if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| data64 = compat_ptr(data32); |
| |
| u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); |
| |
| /* Don't check these user accesses, just let that get trapped |
| * in the ioctl handler instead. |
| */ |
| if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], |
| IFNAMSIZ)) |
| return -EFAULT; |
| if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) |
| return -EFAULT; |
| |
| return dev_ioctl(net, cmd, u_ifreq64); |
| } |
| |
| static int dev_ifsioc(struct net *net, struct socket *sock, |
| unsigned int cmd, struct compat_ifreq __user *uifr32) |
| { |
| struct ifreq __user *uifr; |
| int err; |
| |
| uifr = compat_alloc_user_space(sizeof(*uifr)); |
| if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) |
| return -EFAULT; |
| |
| err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); |
| |
| if (!err) { |