blob: 03e7f58846778c9cc295fbf6df870e49ff315ef0 [file] [log] [blame]
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include "h803x.hpp"
using namespace upm;
using namespace std;
// We can't use the modbus float conversion functions since they
// assume the first word is the LSW. On this device, the first word
// is MSW. In addition, the data is already IEEE 754 formatted, which
// won't work with just the bit shuffling modbus_get_float*() does.
static float regs2float(uint16_t h, uint16_t l)
{
// this function will fail horribly if the following isn't true
assert(sizeof(float) == sizeof(uint32_t));
// we can't use a cast here, since the data is already IEEE 754
// formatted, so use a union instead.
union {
uint32_t i;
float f;
} converter;
converter.i = ((uint32_t)h << 16) | l;
return converter.f;
}
H803X::H803X(std::string device, int address, int baud, int bits, char parity,
int stopBits) :
m_mbContext(0)
{
// check some of the parameters
if (!(bits == 7 || bits == 8))
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": bits must be 7 or 8");
}
if (!(parity == 'N' || parity == 'E' || parity == 'O'))
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": parity must be 'N', 'O', or 'E'");
}
if (!(stopBits == 1 || stopBits == 2))
{
throw std::out_of_range(std::string(__FUNCTION__)
+ ": stopBits must be 1 or 2");
}
// now, open/init the device and modbus context
if (!(m_mbContext = modbus_new_rtu(device.c_str(), baud, parity, bits,
stopBits)))
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_new_rtu() failed");
}
// set the slave address of the device we want to talk to
// addresses are only 8bits wide
address &= 0xff;
if (modbus_set_slave(m_mbContext, address))
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_set_slave() failed");
}
// set the serial mode
modbus_rtu_set_serial_mode(m_mbContext, MODBUS_RTU_RS232);
// now connect..
if (modbus_connect(m_mbContext))
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_connect() failed");
}
// will set m_isH8036 appropriately
testH8036();
clearData();
// turn off debugging
setDebug(false);
}
H803X::~H803X()
{
if (m_mbContext)
{
modbus_close(m_mbContext);
modbus_free(m_mbContext);
}
}
int H803X::readHoldingRegs(HOLDING_REGS_T reg, int len, uint16_t *buf)
{
int rv;
int retries = 5;
// Sometimes it seems the device goes to sleep, and therefore a read
// will timeout, so we will retry up to 5 times.
while (retries >= 0)
{
if ((rv = modbus_read_registers(m_mbContext, reg, len, buf)) < 0)
{
if (errno == ETIMEDOUT)
{
// timeout
retries--;
sleep(1);
}
else if (errno == EMBXILADD)
{
// invalid registers will return a EMBXILADD (modbus)
// error. We want to detect these as a way to determine
// whether we are dealing with an H8035 or H8036.
return -1;
}
else
{
// anything else is a failure.
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_read_registers() failed: "
+ modbus_strerror(errno));
}
}
else
return rv; // success
}
// if we're here, then all the retries were exhausted
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_read_registers() timed out after "
+ "5 retries");
}
void H803X::writeHoldingReg(HOLDING_REGS_T reg, int value)
{
if (modbus_write_register(m_mbContext, reg, value) != 1)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_write_register() failed: "
+ modbus_strerror(errno));
}
}
void H803X::update()
{
static const int h8035NumRegs = 4; // 2 regs * 2
static const int h8036NumRegs = 52; // 26 regs * 2
int numRegs = (isH8036() ? h8036NumRegs : h8035NumRegs);
uint16_t buf[numRegs];
// This should only fail (return -1) if we got isH8036() wrong
if (readHoldingRegs(HOLDING_CONSUMPTION_KWH, numRegs, buf) < 0)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": readHoldingRegs() failed: "
+ modbus_strerror(errno));
}
// And so it begins...
// H8035 / H8036
m_consumptionkWh = regs2float(buf[0], buf[1]);
m_realPowerkW = regs2float(buf[2], buf[3]);
// H8036 only
if (isH8036())
{
m_reactivePowerkVAR = regs2float(buf[4], buf[5]);
m_apparentPowerkVA = regs2float(buf[6], buf[7]);
m_powerFactor = regs2float(buf[8], buf[9]);
m_voltsLineToLine = regs2float(buf[10], buf[11]);
m_voltsLineToNeutral = regs2float(buf[12], buf[13]);
m_current = regs2float(buf[14], buf[15]);
m_realPowerPhaseAkW = regs2float(buf[16], buf[17]);
m_realPowerPhaseBkW = regs2float(buf[18], buf[19]);
m_realPowerPhaseCkW = regs2float(buf[20], buf[21]);
m_powerFactorPhaseA = regs2float(buf[22], buf[23]);
m_powerFactorPhaseB = regs2float(buf[24], buf[25]);
m_powerFactorPhaseC = regs2float(buf[26], buf[27]);
m_voltsPhaseAB = regs2float(buf[28], buf[29]);
m_voltsPhaseBC = regs2float(buf[30], buf[31]);
m_voltsPhaseAC = regs2float(buf[32], buf[33]);
m_voltsPhaseAN = regs2float(buf[34], buf[35]);
m_voltsPhaseBN = regs2float(buf[36], buf[37]);
m_voltsPhaseCN = regs2float(buf[38], buf[39]);
m_currentPhaseA = regs2float(buf[40], buf[41]);
m_currentPhaseB = regs2float(buf[42], buf[43]);
m_currentPhaseC = regs2float(buf[44], buf[45]);
m_avgRealPowerkW = regs2float(buf[46], buf[47]);
m_minRealPowerkW = regs2float(buf[48], buf[49]);
m_maxRealPowerkW = regs2float(buf[50], buf[51]);
}
}
string H803X::getSlaveID()
{
uint8_t id[MODBUS_MAX_PDU_LENGTH];
int rv;
if ((rv = modbus_report_slave_id(m_mbContext, MODBUS_MAX_PDU_LENGTH, id)) < 0)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_report_slave_id() failed: "
+ modbus_strerror(errno));
}
// the first byte is the number of bytes in the response, the second
// byte is the active indicator (00 = off, ff = on), and the rest
// are ascii identification (company, model, and serial number) data.
if (rv > 2)
{
string retID((char *)&id[2], rv - 2);
return retID;
}
else
return "";
}
void H803X::setSlaveAddress(int addr)
{
// addresses are only 8bits wide
addr &= 0xff;
if (modbus_set_slave(m_mbContext, addr))
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": modbus_set_slave() failed: "
+ modbus_strerror(errno));
}
// retest H8036
testH8036();
// clear out any previously stored data
clearData();
}
void H803X::setDebug(bool enable)
{
m_debugging = enable;
if (enable)
modbus_set_debug(m_mbContext, 1);
else
modbus_set_debug(m_mbContext, 0);
}
void H803X::clearData()
{
// H8035
m_consumptionkWh = 0.0;
m_realPowerkW = 0.0;
// H8036
m_reactivePowerkVAR = 0.0;
m_apparentPowerkVA = 0.0;
m_powerFactor = 0.0;
m_voltsLineToLine = 0.0;
m_voltsLineToNeutral = 0.0;
m_current = 0.0;
m_realPowerPhaseAkW = 0.0;
m_realPowerPhaseBkW = 0.0;
m_realPowerPhaseCkW = 0.0;
m_powerFactorPhaseA = 0.0;
m_powerFactorPhaseB = 0.0;
m_powerFactorPhaseC = 0.0;
m_voltsPhaseAB = 0.0;
m_voltsPhaseBC = 0.0;
m_voltsPhaseAC = 0.0;
m_voltsPhaseAN = 0.0;
m_voltsPhaseBN = 0.0;
m_voltsPhaseCN = 0.0;
m_currentPhaseA = 0.0;
m_currentPhaseB = 0.0;
m_currentPhaseC = 0.0;
m_avgRealPowerkW = 0.0;
m_minRealPowerkW = 0.0;
m_maxRealPowerkW = 0.0;
}
void H803X::testH8036()
{
// here we test a register read to see if we are on an H8036 device,
// which can provide much more information.
uint16_t regs[2];
// here, we'll read 2 registers that only exist on the H8036. Any
// failure other than a illegal data access will generate an
// exception. A valid request will return >0, and an illegal
// register read will return -1.
if (readHoldingRegs(HOLDING_REACTIVE_POWER_KVAR, 2, regs) == -1)
m_isH8036 = false;
else
m_isH8036 = true;
}
void H803X::presetConsumption(float value, MULTIPLIERS_T multiplier)
{
uint32_t i = uint32_t(value * float(multiplier));
uint16_t h = uint16_t(i >> 16);
uint16_t l = uint16_t(i & 0xffff);
// always write the LSW first
writeHoldingReg(HOLDING_CONSUMPTION_KWH_INT_L, l);
writeHoldingReg(HOLDING_CONSUMPTION_KWH_INT_H, h);
}