blob: 0848fe34218a26fe02b92e66d2e9f08a41421909 [file] [log] [blame]
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <iostream>
#include <time.h>
#include <stdexcept>
#include "ds18b20.hpp"
using namespace upm;
using namespace std;
// conversion from celcius to fahrenheit
static float c2f(float c)
{
return (c * (9.0 / 5.0) + 32.0);
}
DS18B20::DS18B20(int uart) :
m_uart(uart)
{
m_devicesFound = 0;
// check basic access to the 1-wire bus (presence detect)
mraa::Result rv;
if ((rv = m_uart.reset()) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": reset() failed, no devices on bus?");
}
}
DS18B20::~DS18B20()
{
}
void DS18B20::init()
{
// iterate through the bus and build up a list of detected DS18B20
// devices (only)
// empty the map, in case this method has already been run once
// before
m_devicesFound = 0;
m_deviceMap.clear();
sensor_info_t sinfo;
// defaults
sinfo.temperature = 0.0;
sinfo.resolution = RESOLUTION_12BITS;
// start the search from scratch
string id = m_uart.search(true);
if (id.empty())
{
throw std::runtime_error(std::string(__FUNCTION__) +
": no devices detected on bus");
}
while (!id.empty())
{
// The first byte (id[0]]) is the device type (family) code. We
// are only interested in the family code for these devices.
if ((uint8_t)id[0] == DS18B20_FAMILY_CODE)
{
// we have a winner, add it to our map and continue searching
sinfo.id = id;
m_deviceMap[m_devicesFound] = sinfo;
m_devicesFound++;
}
// continue search
id = m_uart.search(false);
}
if (!m_devicesFound)
{
throw std::runtime_error(std::string(__FUNCTION__) +
": no DS18B20 devices found on bus");
}
// iterate through the found devices and query their resolutions
for (int i=0; i<m_devicesFound; i++)
{
// read only the first 5 bytes of the scratchpad
static const int numScratch = 5;
uint8_t scratch[numScratch];
m_uart.command(CMD_READ_SCRATCHPAD, m_deviceMap[i].id);
for (int j=0; j<numScratch; j++)
scratch[j] = m_uart.readByte();
// config byte, shift the resolution to bit 0
scratch[4] >>= _CFG_RESOLUTION_SHIFT;
switch (scratch[4] & _CFG_RESOLUTION_MASK)
{
case 0: m_deviceMap[i].resolution = RESOLUTION_9BITS; break;
case 1: m_deviceMap[i].resolution = RESOLUTION_10BITS; break;
case 2: m_deviceMap[i].resolution = RESOLUTION_11BITS; break;
case 3: m_deviceMap[i].resolution = RESOLUTION_12BITS; break;
}
// reset the bus
m_uart.reset();
}
}
void DS18B20::update(int index)
{
if (index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
// should we update all of them?
bool doAll = (index < 0) ? true : false;
if (doAll)
{
// if we want to update all of them, we will first send the
// convert command to all of them, then wait. This will be
// faster, timey-wimey wise, then converting, sleeping, and
// reading each individual sensor.
for (int i=0; i<m_devicesFound; i++)
m_uart.command(CMD_CONVERT, m_deviceMap[i].id);
}
else
m_uart.command(CMD_CONVERT, m_deviceMap[index].id);
// wait for conversion(s) to finish
usleep(750000); // 750ms max
if (doAll)
{
for (int i=0; i<m_devicesFound; i++)
m_deviceMap[i].temperature = readSingleTemp(i);
}
else
m_deviceMap[index].temperature = readSingleTemp(index);
}
// utility function to read temp data from a single sensor
float DS18B20::readSingleTemp(int index)
{
if (index < 0 || index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
static const int numScratch = 9;
uint8_t scratch[numScratch];
// read the 9-byte scratchpad
m_uart.command(CMD_READ_SCRATCHPAD, m_deviceMap[index].id);
for (int i=0; i<numScratch; i++)
scratch[i] = m_uart.readByte();
// validate cksum -- if we get an error, we will warn and simply
// return the current (previously read) temperature
uint8_t crc = m_uart.crc8(scratch, 8);
if (crc != scratch[8])
{
cerr << __FUNCTION__ << ": crc check failed for device "
<< index << ", returning previously measured temperature" << endl;
return m_deviceMap[index].temperature;
}
// check the sign bit(s)
bool negative = (scratch[1] & 0x80) ? true : false;
// shift everything into position
int16_t temp = (scratch[1] << 8) | scratch[0];
// grab the fractional
uint8_t frac = temp & 0x0f;
// depending on the resolution, some frac bits should be ignored, so
// we mask them off. For 12bits, all bits are valid so we leve them
// alone.
switch (m_deviceMap[index].resolution)
{
case RESOLUTION_9BITS: frac &= 0x08; break;
case RESOLUTION_10BITS: frac &= 0x0c; break;
case RESOLUTION_11BITS: frac &= 0x0e; break;
}
// remove the fractional with extreme prejudice
temp >>= 4;
// compensate for sign
if (negative)
temp -= 65536; // 2^^16
// convert
return ( float(temp) + (float(frac) * 0.0625) );
}
float DS18B20::getTemperature(int index, bool fahrenheit)
{
if (index < 0 || index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
if (fahrenheit)
return c2f(m_deviceMap[index].temperature);
else
return m_deviceMap[index].temperature;
}
void DS18B20::setResolution(int index, RESOLUTIONS_T res)
{
if (index < 0 || index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
static const int numScratch = 9;
uint8_t scratch[numScratch];
// read the 9-byte scratchpad
m_uart.command(CMD_READ_SCRATCHPAD, m_deviceMap[index].id);
for (int i=0; i<numScratch; i++)
scratch[i] = m_uart.readByte();
// resolution is stored in byte 4
scratch[4] = ((scratch[4] & ~(_CFG_RESOLUTION_MASK << _CFG_RESOLUTION_SHIFT))
| (res << _CFG_RESOLUTION_SHIFT));
// now, write back, we only write 3 bytes (2-4), no cksum.
m_uart.command(CMD_WRITE_SCRATCHPAD, m_deviceMap[index].id);
for (int i=0; i<3; i++)
m_uart.writeByte(scratch[i+2]);
}
void DS18B20::copyScratchPad(int index)
{
if (index < 0 || index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
// issue the command
m_uart.command(CMD_COPY_SCRATCHPAD, m_deviceMap[index].id);
sleep(1); // to be safe...
}
void DS18B20::recallEEPROM(int index)
{
if (index < 0 || index >= m_devicesFound)
{
throw std::out_of_range(std::string(__FUNCTION__) +
": device index out of range");
}
// issue the command
m_uart.command(CMD_RECALL_EEPROM, m_deviceMap[index].id);
// issue read timeslots until a '1' is read back, indicating completion
while (!m_uart.writeBit(1))
usleep(100);
}