blob: 9b7b3893d0cf8e52dc62fdbc9d7cbd61946c0d10 [file] [log] [blame]
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <string>
#include <mraa/i2c.hpp>
#include <mraa/spi.hpp>
#include <mraa/gpio.hpp>
#define BMG160_I2C_BUS 0
#define BMG160_SPI_BUS 0
#define BMG160_DEFAULT_ADDR 0x68
namespace upm {
/**
* @library bmx050
* @sensor bmg160
* @comname BMG160 16 bit Trixial Gyroscope
* @type gyro
* @man bosch
* @con i2c spi gpio
*
* @brief API for the BMG160 16 bit Trixial Gyroscope
*
* The BMG160 is a 3-axis angular rate sensor that is made of a
* surface micro machined sensing element and an evaluation ASIC.
* Both parts are packed into one single LGA 3.0mm x 3.0mm x 0.95mm
* housing. The BMG160 is designed to meet requirements for
* consumer applications such as image stabilization (DSC and
* camera-phone), gaming and pointing devices. It is capable to
* measure angular rates in three perpendicular room dimensions, the
* x-, y- and z-axis, and to provide the corresponding output
* signals. The BMG160 is fitted with digital bi-directional SPI and
* I2C interfaces for optimum system integration.
*
* Not all functionality of this chip has been implemented in this
* driver, however all the pieces are present to add any desired
* functionality. This driver supports both I2C (default) and SPI
* operation.
*
* This device requires 3.3v operation.
*
* @snippet bmg160.cxx Interesting
*/
class BMG160 {
public:
// special reset byte
static const uint8_t BMG160_RESET_BYTE = 0xb6;
// NOTE: Reserved registers must not be written into. Reading
// from them may return indeterminate values. Registers
// containing reserved bitfields must be written as 0. Reading
// reserved bitfields may return indeterminate values.
/**
* BMG160 registers
*/
typedef enum : uint8_t {
REG_CHIP_ID = 0x00,
// 0x01 reserved
REG_RATE_X_LSB = 0x02,
REG_RATE_X_MSB = 0x03,
REG_RATE_Y_LSB = 0x04,
REG_RATE_Y_MSB = 0x05,
REG_RATE_Z_LSB = 0x06,
REG_RATE_Z_MSB = 0x07,
REG_TEMP = 0x08,
REG_INT_STATUS_0 = 0x09,
REG_INT_STATUS_1 = 0x0a,
REG_INT_STATUS_2 = 0x0b,
REG_INT_STATUS_3 = 0x0c,
// 0x0d reserved
REG_FIFO_STATUS = 0x0e,
REG_GYR_RANGE = 0x0f,
REG_GYR_BW = 0x10,
REG_LPM1 = 0x11,
REG_LPM2 = 0x12,
REG_RATE_HBW = 0x13,
REG_SOFTRESET = 0x14,
REG_INT_EN_0 = 0x15,
REG_INT_EN_1 = 0x16,
REG_INT_MAP_0 = 0x17,
REG_INT_MAP_1 = 0x18,
REG_INT_MAP_2 = 0x19,
REG_INT_1A = 0x1a,
REG_INT_1B = 0x1b,
REG_INT_1C = 0x1c,
// 0x1d reserved
REG_INT_1E = 0x1e,
// 0x1f-0x20 reserved
REG_INT_RST_LATCH = 0x21,
REG_HIGH_TH_X = 0x22,
REG_HIGH_DUR_X = 0x23,
REG_HIGH_TH_Y = 0x24,
REG_HIGH_DUR_Y = 0x25,
REG_HIGH_TH_Z = 0x26,
REG_HIGH_DUR_Z = 0x27,
// 0x28-0x30 reserved
REG_SOC = 0x31,
REG_A_FOC = 0x32,
REG_TRIM_NVM_CTRL = 0x33,
REG_SPI3_WDT = 0x34,
// 0x35 reserved
REG_OFC1 = 0x36,
REG_OFC2 = 0x37,
REG_OFC3 = 0x38,
REG_OFC4 = 0x39,
REG_TRIM_GP0 = 0x3a,
REG_TRIM_GP1 = 0x3b,
REG_BIST = 0x3c,
REG_FIFO_CONFIG_0 = 0x3d,
REG_FIFO_CONFIG_1 = 0x3e,
REG_FIFO_DATA = 0x3f
} BMG160_REGS_T;
/**
* REG_INT_STATUS_0 bits
*/
typedef enum {
_INT_STATUS_0_RESERVED_BITS = 0xf0 | 0x08 | 0x01,
INT_STATUS_0_HIGH_INT = 0x02,
INT_STATUS_0_ANY_INT = 0x04
} INT_STATUS_0_BITS_T;
/**
* REG_INT_STATUS_1 bits
*/
typedef enum {
_INT_STATUS_1_RESERVED_BITS = 0x0f,
INT_STATUS_1_FIFO_INT = 0x10,
INT_STATUS_1_FAST_OFFSET_INT = 0x20,
INT_STATUS_1_AUTO_OFFSET_INT = 0x40,
INT_STATUS_1_DATA_INT = 0x80
} INT_STATUS_1_BITS_T;
/**
* REG_INT_STATUS_2 bits
*/
typedef enum {
_INT_STATUS_2_RESERVED_BITS = 0xf0,
INT_STATUS_2_ANY_FIRST_X = 0x01,
INT_STATUS_2_ANY_FIRST_Y = 0x02,
INT_STATUS_2_ANY_FIRST_Z = 0x04,
INT_STATUS_2_ANY_SIGN = 0x08
} INT_STATUS_2_BITS_T;
/**
* REG_INT_STATUS_3 bits
*/
typedef enum {
_INT_STATUS_3_RESERVED_BITS = 0xf0,
INT_STATUS_3_HIGH_FIRST_X = 0x01,
INT_STATUS_3_HIGH_FIRST_Y = 0x02,
INT_STATUS_3_HIGH_FIRST_Z = 0x04,
INT_STATUS_3_HIGH_SIGN = 0x08
} INT_STATUS_3_BITS_T;
/**
* REG_FIFO_STATUS bits
*/
typedef enum {
FIFO_STATUS_FRAME_COUNTER0 = 0x01,
FIFO_STATUS_FRAME_COUNTER1 = 0x02,
FIFO_STATUS_FRAME_COUNTER2 = 0x04,
FIFO_STATUS_FRAME_COUNTER3 = 0x08,
FIFO_STATUS_FRAME_COUNTER4 = 0x10,
FIFO_STATUS_FRAME_COUNTER5 = 0x20,
FIFO_STATUS_FRAME_COUNTER6 = 0x40,
_FIFO_STATUS_FRAME_COUNTER_MASK = 127,
_FIFO_STATUS_FRAME_COUNTER_SHIFT = 0,
FIFO_STATUS_FIFO_OVERRUN = 0x80
} FIFO_STATUS_BITS_T;
/**
* REG_GYR_RANGE bits
*/
typedef enum {
_GYR_RANGE_RESERVED_BITS = 0x20 | 0x10 | 0x08,
GYR_RANGE0 = 0x01,
GYR_RANGE1 = 0x02,
GYR_RANGE2 = 0x04,
_GYR_RANGE_MASK = 7,
_GYR_RANGE_SHIFT = 0,
GYR_RANGE_FIXED0 = 0x40, // bits need hardcoding to 0b10
GYR_RANGE_FIXED1 = 0x80, // for some odd reason...
_GYR_RANGE_FIXED_MASK = 3,
_GYR_RANGE_FIXED_SHIFT = 6,
_GYR_RANGE_FIXED_VALUE = 2 // 0b10
} GYR_RANGE_BITS_T;
/**
* GYR_RANGE (gyroscope deg/s range) values
*/
typedef enum {
RANGE_2000 = 0, // degrees/sec
RANGE_1000 = 1,
RANGE_500 = 2,
RANGE_250 = 3,
RANGE_125 = 4
} RANGE_T;
/**
* REG_GYR_BW bits
*/
typedef enum {
_GYR_BW_RESERVED_BITS = 0xf0,
GYR_BW0 = 0x01,
GYR_BW1 = 0x02,
GYR_BW2 = 0x04,
GYR_BW3 = 0x08,
_GYR_BW_MASK = 15,
_GYR_BW_SHIFT = 0
} GYR_BW_BITS_T;
/**
* GYR_BW (gyroscope filter bandwidth) values
*/
typedef enum {
BW_2000_UNFILTERED = 0, // ODR/Filter BW
BW_2000_230 = 1, // ODR 2000Hz, Filter BW 230Hz
BW_1000_116 = 2,
BW_400_47 = 3,
BW_200_23 = 4,
BW_100_12 = 5,
BW_200_64 = 6,
BW_100_32 = 7
} BW_T;
/**
* REG_LPM1 bits
*/
typedef enum {
// 0x01 reserved
_LPM1_RESERVED_MASK = 0x40 | 0x10 | 0x01,
LPM1_SLEEP_DUR0 = 0x02, // sleep dur in low power mode
LPM1_SLEEP_DUR1 = 0x04,
LPM1_SLEEP_DUR2 = 0x08,
_LPM1_SLEEP_MASK = 7,
_LPM1_SLEEP_SHIFT = 1,
// These are separate bits, deep_suspend and suspend (and if all
// 0, normal). Since only specific combinations are allowed, we
// will treat this as a 3 bit bitfield called POWER_MODE.
LPM1_POWER_MODE0 = 0x20, // deep_suspend
LPM1_POWER_MODE1 = 0x40, // must always be 0!
LPM1_POWER_MODE2 = 0x80, // suspend
_LPM1_POWER_MODE_MASK = 7,
_LPM1_POWER_MODE_SHIFT = 5
} LPM1_BITS_T;
/**
* SLEEP_DUR values
*/
typedef enum {
SLEEP_DUR_2 = 0, // 2ms
SLEEP_DUR_4 = 1,
SLEEP_DUR_5 = 2,
SLEEP_DUR_8 = 3,
SLEEP_DUR_10 = 4,
SLEEP_DUR_15 = 5,
SLEEP_DUR_18 = 6,
SLEEP_DUR_20 = 7
} SLEEP_DUR_T;
/**
* POWER_MODE values
*/
typedef enum {
POWER_MODE_NORMAL = 0,
POWER_MODE_DEEP_SUSPEND = 1,
POWER_MODE_SUSPEND = 4
} POWER_MODE_T;
/**
* REG_LPM2 bits
*/
typedef enum {
_LPM2_RESERVED_BITS = 0x08,
LPM2_AUTOSLEEP_DUR0 = 0x01,
LPM2_AUTOSLEEP_DUR1 = 0x02,
LPM2_AUTOSLEEP_DUR2 = 0x04,
_LPM2_AUTOSLEEP_DUR_MASK = 7,
_LPM2_AUTOSLEEP_DUR_SHIFT = 0,
LPM2_EXT_TRIG_SEL0 = 0x10,
LPM2_EXT_TRIG_SEL1 = 0x20,
_LPM2_EXT_TRIG_SEL_MASK = 3,
_LPM2_EXT_TRIG_SEL_SHIFT = 4,
LPM2_POWER_SAVE_MODE = 0x40,
LPM2_FAST_POWERUP = 0x80
} LPM2_BITS_T;
/**
* LPM2_AUTOSLEEP_DUR values
*/
typedef enum {
AUTOSLEEP_DUR_NONE = 0,
AUTOSLEEP_DUR_4MS = 1,
AUTOSLEEP_DUR_5MS = 2,
AUTOSLEEP_DUR_8MS = 3,
AUTOSLEEP_DUR_10MS = 4,
AUTOSLEEP_DUR_15MS = 5,
AUTOSLEEP_DUR_20MS = 6,
AUTOSLEEP_DUR_40MS = 7
} AUTOSLEEP_DUR_T;
/**
* LPM2_EXT_TRIG_SEL values
*/
typedef enum {
EXT_TRIG_SEL_NONE = 0,
EXT_TRIG_SEL_INT1 = 1,
EXT_TRIG_SEL_INT2 = 2,
EXT_TRIG_SEL_SDO = 3 // if SPI3 mode (unsupported)
} EXT_TRIG_SEL_T;
/**
* REG_RATE_HBW bits
*/
typedef enum {
_RATE_HBW_RESERVED_BITS = 0x0f | 0x10 | 0x20,
RATE_HBW_SHADOW_DIS = 0x40,
RATE_HBW_DATA_HIGH_BW = 0x80
} RATE_HBW_BITS_T;
/**
* REG_INT_EN_0 bits
*/
typedef enum {
_INT_EN_0_RESERVED_BITS = 0x20 | 0x10 | 0x08 | 0x02 | 0x01,
INT_EN_0_AUTO_OFFSET_EN = 0x04,
INT_EN_0_FIFO_EN = 0x40,
INT_EN_0_DATA_EN = 0x80
} INT_EN_0_BITS_T;
/**
* REG_INT_EN_1 bits
*/
typedef enum {
_INT_EN_1_INT1_RESERVED_BITS = 0xf0,
INT_EN_1_INT1_LVL = 0x01, // level or edge
INT_EN_1_INT1_OD = 0x02, // push-pull or open drain
INT_EN_1_INT2_LVL = 0x04,
INT_EN_1_INT2_OD = 0x08
} INT_EN_1_BITS_T;
/**
* REG_INT_MAP_0 bits
*/
typedef enum {
_INT_MAP_0_RESERVED_BITS = 0xf0 | 0x04 | 0x01,
INT_MAP_0_INT1_ANY = 0x02,
INT_MAP_0_INT1_HIGH = 0x08
} INT_MAP_0_BITS_T;
/**
* REG_INT_MAP_1 bits
*/
typedef enum {
INT_MAP_1_INT1_DATA = 0x01,
INT_MAP_1_INT1_FAST_OFFSET = 0x02,
INT_MAP_1_INT1_FIFO = 0x04,
INT_MAP_1_INT1_AUTO_OFFSET = 0x08,
INT_MAP_1_INT2_AUTO_OFFSET = 0x10,
INT_MAP_1_INT2_FIFO = 0x20,
INT_MAP_1_INT2_FAST_OFFSET = 0x40,
INT_MAP_1_INT2_DATA = 0x80
} INT_MAP_1_BITS_T;
/**
* REG_INT_1A bits
*/
typedef enum {
_INT_1A_RESERVED_BITS = 0xd5,
INT_1A_ANY_UNFILT_DATA = 0x02,
INT_1A_HIGH_UNFILT_DATA = 0x08,
INT_1A_SLOW_OFFSET_UNFILT = 0x20
} INT_1A_BITS_T;
/**
* REG_INT_1B bits
*/
typedef enum {
INT_1B_ANY_TH0 = 0x01,
INT_1B_ANY_TH1 = 0x02,
INT_1B_ANY_TH2 = 0x04,
INT_1B_ANY_TH3 = 0x08,
INT_1B_ANY_TH4 = 0x10,
INT_1B_ANY_TH5 = 0x20,
INT_1B_ANY_TH6 = 0x40,
_INT_1B_ANY_TH_MASK = 127,
_INT_1B_ANY_TH_SHIFT = 0,
INT_1B_FAST_OFFSET_UNFILT = 0x80
} INT_1B_BITS_T;
/**
* REG_INT_1C bits
*/
typedef enum {
_INT_1C_RESERVED_BITS = 0x08,
INT_1C_ANY_EN_X = 0x01,
INT_1C_ANY_EN_Y = 0x02,
INT_1C_ANY_EN_Z = 0x04,
INT_1C_ANY_DUR_SAMPLE0 = 0x10,
INT_1C_ANY_DUR_SAMPLE1 = 0x20,
INT_1C_ANY_DUR_SAMPLE_MASK = 3,
INT_1C_ANY_DUR_SAMPLE_SHIFT = 4,
INT_1C_AWAKE_DUR0 = 0x40,
INT_1C_AWAKE_DUR1 = 0x80,
INT_1C_AWAKE_DUR_MASK = 3,
INT_1C_AWAKE_DUR_SHIFT = 6
} INT_1C_BITS_T;
/**
* INT_1C_ANY_DUR_SAMPLE values
*/
typedef enum {
ANY_DUR_SAMPLE_4 = 0, // samples
ANY_DUR_SAMPLE_8 = 1,
ANY_DUR_SAMPLE_12 = 2,
ANY_DUR_SAMPLE_16 = 3
} ANY_DUR_SAMPLE_T;
/**
* INT_1C_AWAKE_DUR values
*/
typedef enum {
AWAKE_DUR_SAMPLE_8 = 0, // samples
AWAKE_DUR_SAMPLE_16 = 1,
AWAKE_DUR_SAMPLE_32 = 2,
AWAKE_DUR_SAMPLE_64 = 3
} AWAKE_DUR_SAMPLE_T;
/**
* REG_INT_1E bits
*/
typedef enum {
_INT_1E_RESERVED_BITS = 0x7f,
INT_1E_FIFO_WM_EN = 0x80
} INT_1E_BITS_T;
/**
* REG_INT_RST_LATCH bits
*/
typedef enum {
_INT_RST_LATCH_RESERVED_BITS = 0x20,
INT_RST_LATCH0 = 0x01,
INT_RST_LATCH1 = 0x02,
INT_RST_LATCH2 = 0x04,
INT_RST_LATCH3 = 0x08,
_INT_RST_LATCH_MASK = 15,
_INT_RST_LATCH_SHIFT = 0,
INT_RST_LATCH_STATUS_BIT = 0x10,
INT_RST_LATCH_OFFSET_RESET = 0x40,
INT_RST_LATCH_RESET_INT = 0x80
} INT_RST_LATCH_BITS_T;
/**
* RST_LATCH values
*/
typedef enum {
RST_LATCH_NON_LATCHED = 0,
RST_LATCH_TEMPORARY_250MS = 1,
RST_LATCH_TEMPORARY_500MS = 2,
RST_LATCH_TEMPORARY_1S = 3,
RST_LATCH_TEMPORARY_2S = 4,
RST_LATCH_TEMPORARY_4S = 5,
RST_LATCH_TEMPORARY_8S = 6,
RST_LATCH_LATCHED = 7,
// 8 == non latched
RST_LATCH_TEMPORARY_250US = 9,
RST_LATCH_TEMPORARY_500US = 10,
RST_LATCH_TEMPORARY_1MS = 11,
RST_LATCH_TEMPORARY_12_5MS = 12,
RST_LATCH_TEMPORARY_25MS = 13,
RST_LATCH_TEMPORARY_50MS = 14
// 15 == latched
} RST_LATCH_T;
/**
* REG_HIGH_TH_* (X, Y, and Z) register bits
*/
typedef enum {
HIGH_TH_EN = 0x01,
HIGH_TH_TH0 = 0x02,
HIGH_TH_TH1 = 0x04,
HIGH_TH_TH2 = 0x08,
HIGH_TH_TH3 = 0x10,
HIGH_TH_TH4 = 0x20,
_HIGH_TH_TH_MASK = 31,
_HIGH_TH_TH_SHIFT = 1,
HIGH_TH_HY0 = 0x40,
HIGH_TH_HY1 = 0x80,
_HIGH_TH_HY_MASK = 3,
_HIGH_TH_HY_SHIFT = 6
} HIGH_TH_BITS_T;
/**
* REG_SOC bits
*/
typedef enum {
SOC_SLOW_OFFSET_EN_X = 0x01,
SOC_SLOW_OFFSET_EN_Y = 0x02,
SOC_SLOW_OFFSET_EN_Z = 0x04,
SOC_SLOW_OFFSET_DUR0 = 0x08,
SOC_SLOW_OFFSET_DUR1 = 0x10,
SOC_SLOW_OFFSET_DUR2 = 0x20,
_SOC_SLOW_OFFSET_DUR_MASK = 7,
_SOC_SLOW_OFFSET_DUR_SHIFT = 3,
SOC_SLOW_OFFSET_TH0 = 0x40,
SOC_SLOW_OFFSET_TH1 = 0x80,
_SOC_SLOW_OFFSET_TH_MASK = 3,
_SOC_SLOW_OFFSET_TH_SHIFT = 6
} SOC_BITS_T;
/**
* SOC_SLOW_OFFSET_DUR values
*/
typedef enum {
SLOW_OFFSET_DUR_40MS = 0, // 40ms
SLOW_OFFSET_DUR_80MS = 1,
SLOW_OFFSET_DUR_160MS = 2,
SLOW_OFFSET_DUR_320MS = 3,
SLOW_OFFSET_DUR_640MS = 4,
SLOW_OFFSET_DUR_1280MS = 5
} SLOW_OFFSET_DUR_T;
/**
* SOC_SLOW_OFFSET_TH values
*/
typedef enum {
SLOW_OFFSET_TH_0_1 = 0, // 0.1 degree/s
SLOW_OFFSET_TH_0_2 = 1,
SLOW_OFFSET_TH_0_5 = 2,
SLOW_OFFSET_TH_1 = 3
} SLOW_OFFSET_TH_T;
/**
* REG_A_FOC bits
*/
typedef enum {
A_FOC_FAST_OFFSET_EN_X = 0x01,
A_FOC_FAST_OFFSET_EN_Y = 0x02,
A_FOC_FAST_OFFSET_EN_Z = 0x04,
A_FOC_FAST_OFFSET_EN = 0x08,
A_FOC_FAST_OFFSET_WORDLENGTH0 = 0x10,
A_FOC_FAST_OFFSET_WORDLENGTH1 = 0x20,
_A_FOC_FAST_OFFSET_WORDLENGTH_MASK = 3,
_A_FOC_FAST_OFFSET_WORDLENGTH_SHIFT = 4,
A_FOC_AUTO_OFFSET_WORDLENGTH0 = 0x40,
A_FOC_AUTO_OFFSET_WORDLENGTH1 = 0x80,
_A_FOC_AUTO_OFFSET_WORDLENGTH_MASK = 3,
_A_FOC_AUTO_OFFSET_WORDLENGTH_SHIFT = 6
} A_FOC_BITS_T;
/**
* FAST_OFFSET_WORDLENGTH values
*/
typedef enum {
FAST_OFFSET_WORDLENGTH_32 = 0, // samples
FAST_OFFSET_WORDLENGTH_64 = 1,
FAST_OFFSET_WORDLENGTH_128 = 2,
FAST_OFFSET_WORDLENGTH_256 = 3
} FAST_OFFSET_WORDLENGTH_T;
/**
* AUTO_OFFSET_WORDLENGTH values
*/
typedef enum {
AUTO_OFFSET_WORDLENGTH_32 = 0, // samples
AUTO_OFFSET_WORDLENGTH_64 = 1,
AUTO_OFFSET_WORDLENGTH_128 = 2,
AUTO_OFFSET_WORDLENGTH_256 = 3
} AUTO_OFFSET_WORDLENGTH_T;
/**
* REG_TRIM_NVM_CTRL bits
*/
typedef enum {
TRIM_NVM_CTRL_NVM_PROG_MODE = 0x01,
TRIM_NVM_CTRL_NVM_PROG_TRIG = 0x02,
TRIM_NVM_CTRL_NVM_PROG_RDY = 0x04,
TRIM_NVM_CTRL_NVM_PROG_LOAD = 0x08,
TRIM_NVM_CTRL_NVM_REMAIN0 = 0x10,
TRIM_NVM_CTRL_NVM_REMAIN1 = 0x20,
TRIM_NVM_CTRL_NVM_REMAIN2 = 0x40,
TRIM_NVM_CTRL_NVM_REMAIN3 = 0x80,
_TRIM_NVM_CTRL_NVM_REMAIN_MASK = 15,
_TRIM_NVM_CTRL_NVM_REMAIN_SHIFT = 4
} TRIM_NVM_CTRL_BITS_T;
/**
* REG_SPI3_WDT bits
*/
typedef enum {
_SPI3_WDT_RESERVED_BITS = 0xf0 | 0x08,
SPI3_WDT_SPI3 = 0x01, // 3-wire SPI - NOT SUPPORTED
SPI3_WDT_I2C_WDT_SEL = 0x02,
SPI3_WDT_I2C_WDT_EN = 0x04
// 0x08-0x80 reserved
} SPI3_WDT_BITS_T;
/**
* REG_OFC1 bits, the missing x, y, and z llsb bits are in GP0
*/
typedef enum {
OFC1_OFFSET_Z0 = 0x01, // Z lsb (3:1)
OFC1_OFFSET_Z1 = 0x02,
OFC1_OFFSET_Z2 = 0x04,
_OFC1_OFFSET_Z_MASK = 7,
_OFC1_OFFSET_Z_SHIFT = 0,
OFC1_OFFSET_Y0 = 0x08, // Y lsb (3:1)
OFC1_OFFSET_Y1 = 0x10,
OFC1_OFFSET_Y2 = 0x20,
_OFC1_OFFSET_Y_MASK = 7,
_OFC1_OFFSET_Y_SHIFT = 3,
OFC1_OFFSET_X0 = 0x08, // bits 3:2 of X lsb. geez
OFC1_OFFSET_X1 = 0x10,
_OFC1_OFFSET_X_MASK = 3,
_OFC1_OFFSET_X_SHIFT = 6
} OFC1_OFFSET_BITS_T;
/**
* REG_GP0 bits
*/
typedef enum {
GP0_OFFSET_Z = 0x01, // Z llsb (bit 0)
GP0_OFFSET_Y = 0x02, // Y llsb (bit 0)
GP0_OFFSET_X0 = 0x04, // X llsbs (bits 1:0)
GP0_OFFSET_X1 = 0x08,
_GP0_OFFSET_X_MASK = 3,
_GP0_OFFSET_X_SHIFT = 2,
GP0_GP00 = 0x10,
GP0_GP01 = 0x20,
GP0_GP02 = 0x40,
GP0_GP03 = 0x80,
_GP0_GP0_MASK = 15,
_GP0_GP0_SHIFT = 4
} GP0_BITS_T;
/**
* REG_BIST bits
*/
typedef enum {
_BIST_RESERVED_BITS = 0x80 | 0x40 | 0x20 | 0x08,
BIST_TRIG_BIST = 0x01,
BIST_BIST_RDY = 0x02,
BIST_BIST_FAIL = 0x04,
BIST_RATE_OK = 0x10
} BIST_BITS_T;
/**
* REG_FIFO_CONFIG_0 bits
*/
typedef enum {
FIFO_CONFIG_0_WATER_MARK0 = 0x01,
FIFO_CONFIG_0_WATER_MARK1 = 0x02,
FIFO_CONFIG_0_WATER_MARK2 = 0x04,
FIFO_CONFIG_0_WATER_MARK3 = 0x08,
FIFO_CONFIG_0_WATER_MARK4 = 0x10,
FIFO_CONFIG_0_WATER_MARK5 = 0x20,
FIFO_CONFIG_0_WATER_MARK6 = 0x40,
_FIFO_CONFIG_0_WATER_MARK_MASK = 127,
_FIFO_CONFIG_0_WATER_MARK_SHIFT = 0,
FIFO_CONFIG_0_TAG = 0x80
} FIFO_CONFIG_0_BITS_T;
/**
* REG_FIFO_CONFIG_1 bits
*/
typedef enum {
_FIFO_CONFIG_1_RESERVED_BITS = 0x20 | 0x10 |0x08 | 0x04,
FIFO_CONFIG_1_FIFO_DATA_SEL0 = 0x01,
FIFO_CONFIG_1_FIFO_DATA_SEL1 = 0x02,
_FIFO_CONFIG_1_FIFO_DATA_SEL = 3,
_FIFO_CONFIG_1_FIFO_DATA_SHIFT = 0,
FIFO_CONFIG_1_FIFO_MODE0 = 0x40,
FIFO_CONFIG_1_FIFO_MODE1 = 0x80,
_FIFO_CONFIG_1_FIFO_MODE_MASK = 3,
_FIFO_CONFIG_1_FIFO_MODE_SHIFT = 6
} FIFO_CONFIG_1_BITS_T;
/**
* FIFO_DATA_SEL values
*/
typedef enum {
FIFO_DATA_SEL_XYZ = 0,
FIFO_DATA_SEL_X = 1,
FIFO_DATA_SEL_Y = 2,
FIFO_DATA_SEL_Z = 3
} FIFO_DATA_SEL_T;
/**
* FIFO_MODE values
*/
typedef enum {
FIFO_MODE_BYPASS = 0,
FIFO_MODE_FIFO = 1,
FIFO_MODE_STREAM = 2
} FIFO_MODE_T;
// interrupt selection for installISR() and uninstallISR()
typedef enum {
INTERRUPT_INT1,
INTERRUPT_INT2
} INTERRUPT_PINS_T;
/**
* BMG160 constructor.
*
* This device can support both I2C and SPI. For SPI, set the addr
* to -1, and specify a positive integer representing the Chip
* Select (CS) pin for the cs argument. If you are using a
* hardware CS pin (like edison with arduino breakout), then you
* can connect the proper pin to the hardware CS pin on your MCU
* and supply -1 for cs. The default operating mode is I2C.
*
* @param bus I2C or SPI bus to use.
* @param addr The address for this device. -1 for SPI.
* @param cs The gpio pin to use for the SPI Chip Select. -1 for
* I2C or for SPI with a hardware controlled pin.
* @param theChipID The chip ID to use for validation
*/
BMG160(int bus=BMG160_I2C_BUS, uint8_t addr=BMG160_DEFAULT_ADDR,
int cs=-1);
/**
* BMG160 Destructor.
*/
~BMG160();
/**
* Update the internal stored values from sensor data.
*/
void update();
/**
* Return the chip ID.
*
* @return The chip ID (BMG160_CHIPID).
*/
uint8_t getChipID();
/**
* Return gyroscope data in degrees per second. update() must
* have been called prior to calling this method.
*
* @param x Pointer to a floating point value that will have the
* current x component placed into it.
* @param y Pointer to a floating point value that will have the
* current y component placed into it.
* @param z Pointer to a floating point value that will have the
* current z component placed into it.
*/
void getGyroscope(float *x, float *y, float *z);
/**
* Return gyroscope data in degrees per second in the form of a
* floating point array. The pointer returned by this function is
* statically allocated and will be rewritten on each call.
* update() must have been called prior to calling this method.
*
* @return A floating point array containing x, y, and z in
* that order.
*/
float *getGyroscope();
/**
* Return the current measured temperature. Note, this is not
* ambient temperature. update() must have been called prior to
* calling this method.
*
* @param fahrenheit true to return data in Fahrenheit, false for
* Celicus. Celcius is the default.
* @return The temperature in degrees Celcius or Fahrenheit.
*/
float getTemperature(bool fahrenheit=false);
/**
* Initialize the device and start operation. This function is
* called from the constructor so will not typically need to be
* called by a user unless the device is reset.
*
* @param pwr One of the POWER_MODE_T values. The default is
* POWER_MODE_NORMAL.
* @param range One of the RANGE_T values. The default is
* RANGE_250.
* @param bw One of the filtering BW_T values. The default is
* BW_400_47.
*/
void init(POWER_MODE_T pwr=POWER_MODE_NORMAL,
RANGE_T range=RANGE_250, BW_T bw=BW_400_47);
/**
* Reset the device as if during a power on reset. All configured
* values are lost when this happens. You should call init()
* afterwards, or at least perform the same initialization init()
* does before continuing.
*/
void reset();
/**
* Set the gyroscope detection scaling range. This device
* supports 125, 250, 500, 100, and 2000 degree/s ranges.
*
* @param range One of the RANGE_T values.
*/
void setRange(RANGE_T range);
/**
* Set the output filtering bandwidth of the device.
*
* @param bw One of the BW_T values.
*/
void setBandwidth(BW_T bw);
/**
* Set the power mode of the device. Care must be taken when
* setting a low power or suspend mode. See the datasheet for
* details. I ncertain power modes, register write must be
* drastically slowed down. which we cannot support.
*
* @param power One of the POWER_MODE_T values.
*/
void setPowerMode(POWER_MODE_T power);
/**
* Enable update() to read from the FIFO rather than the gyroscope
* axis registers directly. init() enables this mode by default.
* An advantage to this mode that all axis data is sampled from
* the same timeslice. When reading directly from the gyroscope
* output registers, it's possible for one axis to be updated
* while another is being read, causing a temporal
* inconsistancy..
*
* Using the FIFO removes this problem.
*
* @param useFIFO true to enable update() to read from the FIFO.
* When false, update will read from the gyroscope output
* registers directly.
*/
void enableFIFO(bool useFIFO);
/**
* Set the FIFO watermark. When the watermark is reached an
* interrupt (if enabled) will be generated.
*
* @param wm The FIFO watermark to use. The maximum value is 63.
*/
void fifoSetWatermark(int wm);
/**
* Set the FIFO configuration. init() uses the FIFO_MODE_BYPASS
* mode with axes set to FIFO_DATA_SEL_XYZ by default.
*
* @param mode One of the FIFO_MODE_T values.
* @param axes One of the FIFO_DATA_SEL_T values.
*/
void fifoConfig(FIFO_MODE_T mode, FIFO_DATA_SEL_T axes);
/**
* Return the Interrupt Enables 0 register. These resgisters
* allow you to enable various interrupt conditions. See the
* datasheet for details.
*
* @return A bitmask of INT_EN_0_BITS_T bits.
*/
uint8_t getInterruptEnable0();
/**
* Set the Interrupt Enables 0 register. See the datasheet for
* details.
*
* @param bits A bitmask of INT_EN_0_BITS_T bits.
*/
void setInterruptEnable0(uint8_t bits);
/**
* Return the Interrupt Map 0 register. These registers allow you
* to map specific interrupts to the interrupt 1 or interrupt 2
* pin. See the datasheet for details.
*
* @return A bitmask of INT_MAP_0_BITS_T bits.
*/
uint8_t getInterruptMap0();
/**
* Set the Interrupt Map 0 register. These registers allow you
* to map specific interrupts to the interrupt 1 or interrupt 2
* pin. See the datasheet for details.
*
* @param A bitmask of INT_MAP_0_BITS_T bits.
*/
void setInterruptMap0(uint8_t bits);
/**
* Return the Interrupt Map 1 register. See the datasheet for
* details.
*
* @return A bitmask of INT_MAP_1_BITS_T bits.
*/
uint8_t getInterruptMap1();
/**
* Set the Interrupt Map 1 register. See the datasheet for
* details.
*
* @param A bitmask of INT_MAP_1_BITS_T bits.
*/
void setInterruptMap1(uint8_t bits);
/**
* Return the Interrupt source register. This register allows
* determining where data comes from (filtered/unfiltered) for
* those interrupt sources where this is selectable. See the
* datasheet for details.
*
* @return A bitmask of INT_1A_BITS_T bits.
*/
uint8_t getInterruptSrc();
/**
* Set the Interrupt source register. This register allows
* determining where data comes from (filtered/unfiltered) for
* those interrupt sources where this is selectable. See the
* datasheet for details.
*
* @param bits A bitmask of INT_1A_BITS_T bits.
*/
void setInterruptSrc(uint8_t bits);
/**
* Return the Interrupt output control register. This register
* allows determining the electrical characteristics of the 2
* interrupt pins (open-drain/push-pull and level/edge
* triggering). See the datasheet for details.
*
* @return A bitmask of INT_EN_1_BITS_T bits.
*/
uint8_t getInterruptOutputControl();
/**
* Set the Interrupt output control register. This register
* allows determining the electrical characteristics of the 2
* interrupt pins (open-drain/push-pull and level/edge
* triggering). See the datasheet for details.
*
* @param bits A bitmask of INT_EN_1_BITS_T bits.
*/
void setInterruptOutputControl(uint8_t bits);
/**
* Clear all latched interrupts. See the datasheet for details.
*/
void clearInterruptLatches();
/**
* Return the current interrupt latching behavior. See the
* datasheet for details.
*
* @return One of the RST_LATCH_T values.
*/
RST_LATCH_T getInterruptLatchBehavior();
/**
* Set the current interrupt latching behavior. See the datasheet
* for details.
*
* @param latch One of the RST_LATCH_T values.
*/
void setInterruptLatchBehavior(RST_LATCH_T latch);
/**
* Return the interrupt status 0 register. These registers
* indicate which interrupts have been triggered. See the
* datasheet for details.
*
* @return a bitmask of INT_STATUS_0_BITS_T bits.
*/
uint8_t getInterruptStatus0();
/**
* Return the interrupt status 1 register. See the datasheet for
* details.
*
* @return a bitmask of INT_STATUS_1_BITS_T bits.
*/
uint8_t getInterruptStatus1();
/**
* Return the interrupt status 2 register. See the datasheet for
* details.
*
* @return a bitmask of INT_STATUS_2_BITS_T bits.
*/
uint8_t getInterruptStatus2();
/**
* Return the interrupt status 3 register. See the datasheet for
* details.
*
* @return a bitmask of INT_STATUS_3_BITS_T bits.
*/
uint8_t getInterruptStatus3();
/**
* Enable shadowing of the gyroscope output registers. When
* enabled, a read of an axis LSB register automatically locks the
* MSB register of that axis until it has been read. This is
* usually a good thing to have enabled. init() enables this by
* default. If disabled, then it becomes possible for part of an
* axis value to change while another part is being read, causing
* inconsistent data.
*
* @param shadow true to enable axis register shadowing, false otherwise.
*/
void enableRegisterShadowing(bool shadow);
/**
* Enable filtering of the gyroscope axis data. init()
* enables this by default. If disabled, then gyroscope data
* that is read will be raw and unfiltered (rated R). See the
* datasheet for details.
*
* @param filter true to enable filtering, false to disable.
*/
void enableOutputFiltering(bool filter);
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
jobject runnable);
#else
/**
* install an interrupt handler.
*
* @param intr one of the INTERRUPT_PINS_T values specifying which
* interrupt pin you are installing.
* @param gpio gpio pin to use as interrupt pin
* @param level the interrupt trigger level (one of mraa::Edge
* values). Make sure that you have configured the interrupt pin
* properly for whatever level you choose.
* @param isr the interrupt handler, accepting a void * argument
* @param arg the argument to pass the the interrupt handler
*/
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg);
#endif
/**
* uninstall a previously installed interrupt handler
*
* @param intr one of the INTERRUPT_PINS_T values specifying which
* interrupt pin you are removing.
*/
void uninstallISR(INTERRUPT_PINS_T intr);
/**
* Read a register.
*
* @param reg The register to read.
* @return The value of the register.
*/
uint8_t readReg(uint8_t reg);
/**
* Read contiguous registers into a buffer.
*
* @param buffer The buffer to store the results.
* @param len The number of registers to read.
* @return The number of bytes read.
*/
int readRegs(uint8_t reg, uint8_t *buffer, int len);
/**
* Write to a register
*
* @param reg The register to write to.
* @param val The value to write.
*/
void writeReg(uint8_t reg, uint8_t val);
protected:
mraa::I2c *m_i2c;
mraa::Spi *m_spi;
// spi chip select
mraa::Gpio *m_gpioCS;
mraa::Gpio *m_gpioIntr1;
mraa::Gpio *m_gpioIntr2;
uint8_t m_addr;
// SPI chip select
void csOn();
void csOff();
// acc data
float m_gyrX;
float m_gyrY;
float m_gyrZ;
float m_gyrScale;
float m_temperature;
private:
bool m_isSPI;
// use the FIFO by default?
bool m_useFIFO;
// return a reference to a gpio pin pointer depending on intr
mraa::Gpio*& getPin(INTERRUPT_PINS_T intr);
// Adding a private function definition for java bindings
#if defined(SWIGJAVA) || defined(JAVACALLBACK)
void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg);
#endif
};
}