blob: 45593b6a844cce51e504e950b03235b35bd8cfd8 [file] [log] [blame]
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <unistd.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <string.h>
#include "bmg160.hpp"
using namespace upm;
using namespace std;
#define BMG160_DEFAULT_CHIPID 0x0f
// conversion from celcius to fahrenheit
static float c2f(float c)
{
return (c * (9.0 / 5.0) + 32.0);
}
BMG160::BMG160(int bus, uint8_t addr, int cs) :
m_i2c(0), m_spi(0), m_gpioIntr1(0), m_gpioIntr2(0), m_gpioCS(0)
{
m_addr = addr;
m_isSPI = false;
m_gyrX = 0;
m_gyrY = 0;
m_gyrZ = 0;
m_gyrScale = 0;
m_temperature = 0.0;
if (addr < 0)
m_isSPI = true;
if (m_isSPI)
{
m_spi = new mraa::Spi(bus);
// Only create cs context if we are actually using a valid pin.
// A hardware controlled pin should specify cs as -1.
if (cs >= 0)
{
m_gpioCS = new mraa::Gpio(cs);
m_gpioCS->dir(mraa::DIR_OUT);
}
m_spi->mode(mraa::SPI_MODE0);
m_spi->frequency(5000000);
}
else
{
// I2C
m_i2c = new mraa::I2c(bus);
mraa::Result rv;
if ((rv = m_i2c->address(m_addr)) != mraa::SUCCESS)
{
throw std::runtime_error(string(__FUNCTION__) +
": I2c.address() failed");
}
}
// check the chip id
uint8_t chipID = getChipID();
if (chipID != BMG160_DEFAULT_CHIPID)
{
throw std::runtime_error(string(__FUNCTION__)
+ ": invalid chip ID. Expected "
+ std::to_string(int(BMG160_DEFAULT_CHIPID))
+ ", got "
+ std::to_string(int(chipID)));
}
// call init with default options
init();
}
BMG160::~BMG160()
{
uninstallISR(INTERRUPT_INT1);
uninstallISR(INTERRUPT_INT2);
}
void BMG160::init(POWER_MODE_T pwr, RANGE_T range, BW_T bw)
{
setPowerMode(pwr);
usleep(50000); // 50ms, in case we are waking up
// set our range and bandwidth
setRange(range);
setBandwidth(bw);
// make sure register shadowing is enabled
enableRegisterShadowing(true);
// enable output filtering
enableOutputFiltering(true);
// use the FIFO by default
fifoConfig(FIFO_MODE_BYPASS, FIFO_DATA_SEL_XYZ);
enableFIFO(true);
// settle
usleep(50000);
}
void BMG160::update()
{
int bufLen = 0;
uint8_t startReg = 0;
if (m_useFIFO)
{
bufLen = 6;
startReg = REG_FIFO_DATA;
}
else
{
// non FIFO, read acc regs directly (including temp)
bufLen = 7;
startReg = REG_RATE_X_LSB;
}
uint8_t buf[bufLen];
if (readRegs(startReg, buf, bufLen) != bufLen)
{
throw std::runtime_error(string(__FUNCTION__)
+ ": readRegs() failed to read "
+ std::to_string(bufLen)
+ " bytes");
}
int16_t val;
// x
val = int16_t(buf[1] << 8 | buf[0]);
m_gyrX = float(val);
// y
val = int16_t(buf[3] << 8 | buf[2]);
m_gyrY = float(val);
// z
val = int16_t(buf[5] << 8 | buf[4]);
m_gyrZ = float(val);
// get the temperature...
uint8_t temp = 0;
if (m_useFIFO)
{
// we have to read temperature separately...
temp = readReg(REG_TEMP);
}
else
{
// we already got it
temp = buf[6];
}
// .5K/LSB, 23C center point
m_temperature = (float(temp) / 2.0) + 23.0;
}
void BMG160::enableFIFO(bool useFIFO)
{
m_useFIFO = useFIFO;
}
uint8_t BMG160::readReg(uint8_t reg)
{
if (m_isSPI)
{
reg |= 0x80; // needed for read
uint8_t pkt[2] = {reg, 0};
csOn();
if (m_spi->transfer(pkt, pkt, 2))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer() failed");
}
csOff();
return pkt[1];
}
else
return m_i2c->readReg(reg);
}
int BMG160::readRegs(uint8_t reg, uint8_t *buffer, int len)
{
if (m_isSPI)
{
reg |= 0x80; // needed for read
uint8_t sbuf[len + 1];
memset((char *)sbuf, 0, len + 1);
sbuf[0] = reg;
// We need to do it this way for edison - ie: use a single
// transfer rather than breaking it up into two like we used to.
// This means a buffer copy is now required, but that's the way
// it goes.
csOn();
if (m_spi->transfer(sbuf, sbuf, len + 1))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer(buf) failed");
}
csOff();
// now copy it into user buffer
for (int i=0; i<len; i++)
buffer[i] = sbuf[i + 1];
return len;
}
else
return m_i2c->readBytesReg(reg, buffer, len);
}
void BMG160::writeReg(uint8_t reg, uint8_t val)
{
if (m_isSPI)
{
reg &= 0x7f; // mask off 0x80 for writing
uint8_t pkt[2] = {reg, val};
csOn();
if (m_spi->transfer(pkt, NULL, 2))
{
csOff();
throw std::runtime_error(string(__FUNCTION__)
+ ": Spi.transfer() failed");
}
csOff();
}
else
{
mraa::Result rv;
if ((rv = m_i2c->writeReg(reg, val)) != mraa::SUCCESS)
{
throw std::runtime_error(std::string(__FUNCTION__)
+ ": I2c.writeReg() failed");
}
}
}
void BMG160::csOn()
{
if (m_gpioCS)
m_gpioCS->write(0);
}
void BMG160::csOff()
{
if (m_gpioCS)
m_gpioCS->write(1);
}
uint8_t BMG160::getChipID()
{
return readReg(REG_CHIP_ID);
}
void BMG160::getGyroscope(float *x, float *y, float *z)
{
if (x)
*x = (m_gyrX * m_gyrScale) / 1000.0;
if (y)
*y = (m_gyrY * m_gyrScale) / 1000.0;
if (z)
*z = (m_gyrZ * m_gyrScale) / 1000.0;
}
float *BMG160::getGyroscope()
{
static float v[3];
getGyroscope(&v[0], &v[1], &v[2]);
return v;
}
float BMG160::getTemperature(bool fahrenheit)
{
if (fahrenheit)
return c2f(m_temperature);
else
return m_temperature;
}
void BMG160::reset()
{
writeReg(REG_SOFTRESET, BMG160_RESET_BYTE);
sleep(1);
}
void BMG160::setRange(RANGE_T range)
{
switch(range)
{
case RANGE_125:
m_gyrScale = 3.8; // milli-degrees
break;
case RANGE_250:
m_gyrScale = 7.6;
break;
case RANGE_500:
m_gyrScale = 15.3;
break;
case RANGE_1000:
m_gyrScale = 30.5;
break;
case RANGE_2000:
m_gyrScale = 61.0;
break;
}
// we also have to write a fixed '0x10' to the high-order bits for
// some reason (according to datasheet)
uint8_t reg = range | (_GYR_RANGE_FIXED_VALUE << _GYR_RANGE_FIXED_SHIFT);
writeReg(REG_GYR_RANGE, reg);
}
void BMG160::setBandwidth(BW_T bw)
{
writeReg(REG_GYR_BW, bw);
}
void BMG160::setPowerMode(POWER_MODE_T power)
{
// mask off reserved bits
uint8_t reg = readReg(REG_LPM1) & ~_LPM1_RESERVED_MASK;
reg &= ~(_LPM1_POWER_MODE_MASK << _LPM1_POWER_MODE_SHIFT);
reg |= (power << _LPM1_POWER_MODE_SHIFT);
writeReg(REG_LPM1, power);
}
void BMG160::fifoSetWatermark(int wm)
{
// mask off illegal values
uint8_t reg = uint8_t(wm) & _FIFO_CONFIG_0_WATER_MARK_MASK;
writeReg(REG_FIFO_CONFIG_0, reg);
}
void BMG160::fifoConfig(FIFO_MODE_T mode, FIFO_DATA_SEL_T axes)
{
uint8_t reg = ( (mode << _FIFO_CONFIG_1_FIFO_MODE_SHIFT) |
(axes << _FIFO_CONFIG_1_FIFO_DATA_SHIFT) );
writeReg(REG_FIFO_CONFIG_1, reg);
}
uint8_t BMG160::getInterruptEnable0()
{
return readReg(REG_INT_EN_0) & ~_INT_EN_0_RESERVED_BITS;
}
void BMG160::setInterruptEnable0(uint8_t bits)
{
uint8_t reg = bits & ~_INT_EN_0_RESERVED_BITS;
writeReg(REG_INT_EN_0, reg);
}
uint8_t BMG160::getInterruptMap0()
{
return readReg(REG_INT_MAP_0) & ~_INT_MAP_0_RESERVED_BITS;
}
void BMG160::setInterruptMap0(uint8_t bits)
{
uint8_t reg = bits & ~_INT_MAP_0_RESERVED_BITS;
writeReg(REG_INT_MAP_0, reg);
}
uint8_t BMG160::getInterruptMap1()
{
return readReg(REG_INT_MAP_1);
}
void BMG160::setInterruptMap1(uint8_t bits)
{
writeReg(REG_INT_MAP_1, bits);
}
// REG_INT_EN1, for some strange reason
uint8_t BMG160::getInterruptSrc()
{
return readReg(REG_INT_EN_1) & ~_INT_EN_1_INT1_RESERVED_BITS;
}
void BMG160::setInterruptSrc(uint8_t bits)
{
uint8_t reg = bits & ~_INT_EN_1_INT1_RESERVED_BITS;
writeReg(REG_INT_EN_1, reg);
}
uint8_t BMG160::getInterruptOutputControl()
{
return readReg(REG_INT_EN_1) & ~_INT_EN_1_INT1_RESERVED_BITS;
}
void BMG160::setInterruptOutputControl(uint8_t bits)
{
uint8_t reg = bits & ~_INT_EN_1_INT1_RESERVED_BITS;
writeReg(REG_INT_EN_1, reg);
}
void BMG160::clearInterruptLatches()
{
uint8_t reg = readReg(REG_INT_RST_LATCH) & ~_INT_RST_LATCH_RESERVED_BITS;
reg |= INT_RST_LATCH_RESET_INT;
writeReg(REG_INT_RST_LATCH, reg);
}
BMG160::RST_LATCH_T BMG160::getInterruptLatchBehavior()
{
uint8_t reg = readReg(REG_INT_RST_LATCH) & ~_INT_RST_LATCH_RESERVED_BITS;
reg &= (_INT_RST_LATCH_MASK << _INT_RST_LATCH_SHIFT);
return static_cast<RST_LATCH_T>(reg);
}
void BMG160::setInterruptLatchBehavior(RST_LATCH_T latch)
{
uint8_t reg = readReg(REG_INT_RST_LATCH) & ~_INT_RST_LATCH_RESERVED_BITS;
reg &= ~(_INT_RST_LATCH_MASK << _INT_RST_LATCH_SHIFT);
reg |= (latch << _INT_RST_LATCH_SHIFT);
writeReg(REG_INT_RST_LATCH, reg);
}
void BMG160::enableRegisterShadowing(bool shadow)
{
uint8_t reg = readReg(REG_RATE_HBW) & ~_RATE_HBW_RESERVED_BITS;
if (shadow)
reg &= ~RATE_HBW_SHADOW_DIS;
else
reg |= RATE_HBW_SHADOW_DIS;
writeReg(REG_RATE_HBW, reg);
}
void BMG160::enableOutputFiltering(bool filter)
{
uint8_t reg = readReg(REG_RATE_HBW) & ~_RATE_HBW_RESERVED_BITS;
if (filter)
reg &= ~RATE_HBW_DATA_HIGH_BW;
else
reg |= RATE_HBW_DATA_HIGH_BW;
writeReg(REG_RATE_HBW, reg);
}
uint8_t BMG160::getInterruptStatus0()
{
return readReg(REG_INT_STATUS_0) & ~_INT_STATUS_0_RESERVED_BITS;
}
uint8_t BMG160::getInterruptStatus1()
{
return readReg(REG_INT_STATUS_1) & ~_INT_STATUS_1_RESERVED_BITS;
}
uint8_t BMG160::getInterruptStatus2()
{
return readReg(REG_INT_STATUS_2) & ~_INT_STATUS_2_RESERVED_BITS;
}
uint8_t BMG160::getInterruptStatus3()
{
return readReg(REG_INT_STATUS_3) & ~_INT_STATUS_3_RESERVED_BITS;
}
#if defined(SWIGJAVA) || (JAVACALLBACK)
void BMG160::installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
jobject runnable)
{
// delete any existing ISR and GPIO context
uninstallISR(intr);
// create gpio context
getPin(intr) = new mraa::Gpio(gpio);
getPin(intr)->dir(mraa::DIR_IN);
getPin(intr)->isr(level, runnable);
}
#else
void BMG160::installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level,
void (*isr)(void *), void *arg)
{
// delete any existing ISR and GPIO context
uninstallISR(intr);
// create gpio context
getPin(intr) = new mraa::Gpio(gpio);
getPin(intr)->dir(mraa::DIR_IN);
getPin(intr)->isr(level, isr, arg);
}
#endif
void BMG160::uninstallISR(INTERRUPT_PINS_T intr)
{
if (getPin(intr))
{
getPin(intr)->isrExit();
delete getPin(intr);
getPin(intr) = 0;
}
}
mraa::Gpio*& BMG160::getPin(INTERRUPT_PINS_T intr)
{
switch(intr)
{
case INTERRUPT_INT1:
return m_gpioIntr1;
break;
case INTERRUPT_INT2:
return m_gpioIntr2;
break;
default:
throw std::out_of_range(string(__FUNCTION__) +
": Invalid interrupt enum passed");
}
}