blob: b9a9f32bdec8a1f781925de343798ff3dc8e935f [file] [log] [blame]
/*jslint node:true, vars:true, bitwise:true, unparam:true */
/*jshint unused:true */
/*
* Author: Jon Trulson <jtrulson@ics.com>
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
var sensorObj = require('jsupm_bno055');
// Instantiate an BNO055 using default parameters (bus 0, addr
// 0x28). The default running mode is NDOF absolute orientation
// mode.
var sensor = new sensorObj.BNO055();
var mag = new sensorObj.new_intp();
var acc = new sensorObj.new_intp();
var gyr = new sensorObj.new_intp();
var syst = new sensorObj.new_intp();
var w = new sensorObj.new_floatp();
var x = new sensorObj.new_floatp();
var y = new sensorObj.new_floatp();
var z = new sensorObj.new_floatp();
console.log("First we need to calibrate. 4 numbers will be output every");
console.log("second for each sensor. 0 means uncalibrated, and 3 means");
console.log("fully calibrated.");
console.log("See the UPM documentation on this sensor for instructions on");
console.log("what actions are required to calibrate.");
console.log("");
// do the calibration...
var calInterval = setInterval(function()
{
if (sensor.isFullyCalibrated())
{
clearInterval(calInterval);
console.log("");
console.log("Calibration complete.");
console.log("");
setInterval(outputData, 250)
}
else
{
sensor.getCalibrationStatus(mag, acc, gyr, syst);
console.log("Magnetometer: " + sensorObj.intp_value(mag) +
" Accelerometer: " + sensorObj.intp_value(acc) +
" Gyroscope: " + sensorObj.intp_value(gyr) +
" System: " + sensorObj.intp_value(syst));
}
}, 1000);
// now output various fusion data every 250 milliseconds
function outputData()
{
sensor.update();
sensor.getEulerAngles(x, y, z);
console.log("Euler: Heading: " + sensorObj.floatp_value(x) +
" Roll: " + sensorObj.floatp_value(y) +
" Pitch: " + sensorObj.floatp_value(z) +
" degrees");
sensor.getQuaternions(w, x, y, z);
console.log("Quaternion: W: " + sensorObj.floatp_value(w) +
" X:" + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z));
sensor.getLinearAcceleration(x, y, z);
console.log("Linear Acceleration: X: " + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z) +
" m/s^2");
sensor.getGravityVectors(x, y, z);
console.log("Gravity Vector: X: " + sensorObj.floatp_value(x) +
" Y: " + sensorObj.floatp_value(y) +
" Z: " + sensorObj.floatp_value(z) +
" m/s^2");
console.log("");
};
// exit on ^C
process.on('SIGINT', function()
{
sensor = null;
sensorObj.cleanUp();
sensorObj = null;
console.log("Exiting.");
process.exit(0);
});