blob: 6c1e37fe23f4fd04950fe1dbe3d69344704d2f66 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.core.graphics;
import android.annotation.SuppressLint;
import android.graphics.Color;
import androidx.annotation.ColorInt;
import androidx.annotation.FloatRange;
import androidx.annotation.IntRange;
import androidx.annotation.NonNull;
import androidx.annotation.RequiresApi;
import androidx.annotation.VisibleForTesting;
import java.util.Objects;
/**
* A set of color-related utility methods, building upon those available in {@code Color}.
*/
public final class ColorUtils {
private static final double XYZ_WHITE_REFERENCE_X = 95.047;
private static final double XYZ_WHITE_REFERENCE_Y = 100;
private static final double XYZ_WHITE_REFERENCE_Z = 108.883;
private static final double XYZ_EPSILON = 0.008856;
private static final double XYZ_KAPPA = 903.3;
private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10;
private static final int MIN_ALPHA_SEARCH_PRECISION = 1;
private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>();
private ColorUtils() {}
/**
* Composite two potentially translucent colors over each other and returns the result.
*/
public static int compositeColors(@ColorInt int foreground, @ColorInt int background) {
int bgAlpha = Color.alpha(background);
int fgAlpha = Color.alpha(foreground);
int a = compositeAlpha(fgAlpha, bgAlpha);
int r = compositeComponent(Color.red(foreground), fgAlpha,
Color.red(background), bgAlpha, a);
int g = compositeComponent(Color.green(foreground), fgAlpha,
Color.green(background), bgAlpha, a);
int b = compositeComponent(Color.blue(foreground), fgAlpha,
Color.blue(background), bgAlpha, a);
return Color.argb(a, r, g, b);
}
/**
* Composites two translucent colors together. More specifically, adds two colors using
* the {@linkplain android.graphics.PorterDuff.Mode#SRC_OVER source over} blending mode. The
* colors must not be pre-multiplied and the result is a non pre-multiplied color.
* <p>
* If the two colors have different color spaces, the foreground color is converted to the
* color space of the background color.
* <p>
* The following example creates a purple color by blending opaque blue with
* semi-translucent red:
*
* <pre>{@code
* Color purple = ColorUtils.compositeColors(
* Color.valueOf(1f, 0f, 0f, 0.5f),
* Color.valueOf(0f, 0f, 1f));
* }</pre>
*
* <em>Note:</em> This method requires API 26 or newer.
*
* @throws IllegalArgumentException if the
* {@linkplain android.graphics.Color#getModel models} of the colors do not match
*/
@RequiresApi(26)
@NonNull
public static Color compositeColors(@NonNull Color foreground, @NonNull Color background) {
if (!Objects.equals(foreground.getModel(), background.getModel())) {
throw new IllegalArgumentException(
"Color models must match (" + foreground.getModel() + " vs. "
+ background.getModel() + ")");
}
Color s = Objects.equals(background.getColorSpace(), foreground.getColorSpace())
? foreground
: foreground.convert(background.getColorSpace());
float[] src = s.getComponents();
float[] dst = background.getComponents();
float sa = s.alpha();
// Destination alpha pre-composited
float da = background.alpha() * (1.0f - sa);
// Index of the alpha component
@SuppressLint("Range") // TODO Remove after upgrading Android Gradle Plugin to 3.1 or newer.
int ai = background.getComponentCount() - 1;
// Final alpha: src_alpha + dst_alpha * (1 - src_alpha)
dst[ai] = sa + da;
// Divide by final alpha to return non pre-multiplied color
if (dst[ai] > 0) {
sa /= dst[ai];
da /= dst[ai];
}
// Composite non-alpha components
for (int i = 0; i < ai; i++) {
dst[i] = src[i] * sa + dst[i] * da;
}
return Color.valueOf(dst, background.getColorSpace());
}
private static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) {
return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF);
}
private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) {
if (a == 0) return 0;
return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF);
}
/**
* Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}.
* <p>Defined as the Y component in the XYZ representation of {@code color}.</p>
*/
@FloatRange(from = 0.0, to = 1.0)
public static double calculateLuminance(@ColorInt int color) {
final double[] result = getTempDouble3Array();
colorToXYZ(color, result);
// Luminance is the Y component
return result[1] / 100;
}
/**
* Returns the contrast ratio between {@code foreground} and {@code background}.
* {@code background} must be opaque.
* <p>
* Formula defined
* <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>.
*/
public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) {
if (Color.alpha(background) != 255) {
throw new IllegalArgumentException("background can not be translucent: #"
+ Integer.toHexString(background));
}
if (Color.alpha(foreground) < 255) {
// If the foreground is translucent, composite the foreground over the background
foreground = compositeColors(foreground, background);
}
final double luminance1 = calculateLuminance(foreground) + 0.05;
final double luminance2 = calculateLuminance(background) + 0.05;
// Now return the lighter luminance divided by the darker luminance
return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2);
}
/**
* Calculates the minimum alpha value which can be applied to {@code foreground} so that would
* have a contrast value of at least {@code minContrastRatio} when compared to
* {@code background}.
*
* @param foreground the foreground color
* @param background the opaque background color
* @param minContrastRatio the minimum contrast ratio
* @return the alpha value in the range 0-255, or -1 if no value could be calculated
*/
public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background,
float minContrastRatio) {
if (Color.alpha(background) != 255) {
throw new IllegalArgumentException("background can not be translucent: #"
+ Integer.toHexString(background));
}
// First lets check that a fully opaque foreground has sufficient contrast
int testForeground = setAlphaComponent(foreground, 255);
double testRatio = calculateContrast(testForeground, background);
if (testRatio < minContrastRatio) {
// Fully opaque foreground does not have sufficient contrast, return error
return -1;
}
// Binary search to find a value with the minimum value which provides sufficient contrast
int numIterations = 0;
int minAlpha = 0;
int maxAlpha = 255;
while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS &&
(maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) {
final int testAlpha = (minAlpha + maxAlpha) / 2;
testForeground = setAlphaComponent(foreground, testAlpha);
testRatio = calculateContrast(testForeground, background);
if (testRatio < minContrastRatio) {
minAlpha = testAlpha;
} else {
maxAlpha = testAlpha;
}
numIterations++;
}
// Conservatively return the max of the range of possible alphas, which is known to pass.
return maxAlpha;
}
/**
* Convert RGB components to HSL (hue-saturation-lightness).
* <ul>
* <li>outHsl[0] is Hue [0 .. 360)</li>
* <li>outHsl[1] is Saturation [0...1]</li>
* <li>outHsl[2] is Lightness [0...1]</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outHsl 3-element array which holds the resulting HSL components
*/
public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull float[] outHsl) {
final float rf = r / 255f;
final float gf = g / 255f;
final float bf = b / 255f;
final float max = Math.max(rf, Math.max(gf, bf));
final float min = Math.min(rf, Math.min(gf, bf));
final float deltaMaxMin = max - min;
float h, s;
float l = (max + min) / 2f;
if (max == min) {
// Monochromatic
h = s = 0f;
} else {
if (max == rf) {
h = ((gf - bf) / deltaMaxMin) % 6f;
} else if (max == gf) {
h = ((bf - rf) / deltaMaxMin) + 2f;
} else {
h = ((rf - gf) / deltaMaxMin) + 4f;
}
s = deltaMaxMin / (1f - Math.abs(2f * l - 1f));
}
h = (h * 60f) % 360f;
if (h < 0) {
h += 360f;
}
outHsl[0] = constrain(h, 0f, 360f);
outHsl[1] = constrain(s, 0f, 1f);
outHsl[2] = constrain(l, 0f, 1f);
}
/**
* Convert the ARGB color to its HSL (hue-saturation-lightness) components.
* <ul>
* <li>outHsl[0] is Hue [0 .. 360)</li>
* <li>outHsl[1] is Saturation [0...1]</li>
* <li>outHsl[2] is Lightness [0...1]</li>
* </ul>
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outHsl 3-element array which holds the resulting HSL components
*/
public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) {
RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl);
}
/**
* Convert HSL (hue-saturation-lightness) components to a RGB color.
* <ul>
* <li>hsl[0] is Hue [0 .. 360)</li>
* <li>hsl[1] is Saturation [0...1]</li>
* <li>hsl[2] is Lightness [0...1]</li>
* </ul>
* If hsv values are out of range, they are pinned.
*
* @param hsl 3-element array which holds the input HSL components
* @return the resulting RGB color
*/
@ColorInt
public static int HSLToColor(@NonNull float[] hsl) {
final float h = hsl[0];
final float s = hsl[1];
final float l = hsl[2];
final float c = (1f - Math.abs(2 * l - 1f)) * s;
final float m = l - 0.5f * c;
final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f));
final int hueSegment = (int) h / 60;
int r = 0, g = 0, b = 0;
switch (hueSegment) {
case 0:
r = Math.round(255 * (c + m));
g = Math.round(255 * (x + m));
b = Math.round(255 * m);
break;
case 1:
r = Math.round(255 * (x + m));
g = Math.round(255 * (c + m));
b = Math.round(255 * m);
break;
case 2:
r = Math.round(255 * m);
g = Math.round(255 * (c + m));
b = Math.round(255 * (x + m));
break;
case 3:
r = Math.round(255 * m);
g = Math.round(255 * (x + m));
b = Math.round(255 * (c + m));
break;
case 4:
r = Math.round(255 * (x + m));
g = Math.round(255 * m);
b = Math.round(255 * (c + m));
break;
case 5:
case 6:
r = Math.round(255 * (c + m));
g = Math.round(255 * m);
b = Math.round(255 * (x + m));
break;
}
r = constrain(r, 0, 255);
g = constrain(g, 0, 255);
b = constrain(b, 0, 255);
return Color.rgb(r, g, b);
}
/**
* Set the alpha component of {@code color} to be {@code alpha}.
*/
@ColorInt
public static int setAlphaComponent(@ColorInt int color,
@IntRange(from = 0x0, to = 0xFF) int alpha) {
if (alpha < 0 || alpha > 255) {
throw new IllegalArgumentException("alpha must be between 0 and 255.");
}
return (color & 0x00ffffff) | (alpha << 24);
}
/**
* Convert the ARGB color to its CIE Lab representative components.
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outLab 3-element array which holds the resulting LAB components
*/
public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) {
RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab);
}
/**
* Convert RGB components to its CIE Lab representative components.
*
* <ul>
* <li>outLab[0] is L [0 ...1)</li>
* <li>outLab[1] is a [-128...127)</li>
* <li>outLab[2] is b [-128...127)</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outLab 3-element array which holds the resulting LAB components
*/
public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull double[] outLab) {
// First we convert RGB to XYZ
RGBToXYZ(r, g, b, outLab);
// outLab now contains XYZ
XYZToLAB(outLab[0], outLab[1], outLab[2], outLab);
// outLab now contains LAB representation
}
/**
* Convert the ARGB color to its CIE XYZ representative components.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outXyz 3-element array which holds the resulting LAB components
*/
public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) {
RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz);
}
/**
* Convert RGB components to its CIE XYZ representative components.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outXyz 3-element array which holds the resulting XYZ components
*/
public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull double[] outXyz) {
if (outXyz.length != 3) {
throw new IllegalArgumentException("outXyz must have a length of 3.");
}
double sr = r / 255.0;
sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4);
double sg = g / 255.0;
sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4);
double sb = b / 255.0;
sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4);
outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805);
outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722);
outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505);
}
/**
* Converts a color from CIE XYZ to CIE Lab representation.
*
* <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outLab[0] is L [0 ...1)</li>
* <li>outLab[1] is a [-128...127)</li>
* <li>outLab[2] is b [-128...127)</li>
* </ul>
*
* @param x X component value [0...95.047)
* @param y Y component value [0...100)
* @param z Z component value [0...108.883)
* @param outLab 3-element array which holds the resulting Lab components
*/
public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z,
@NonNull double[] outLab) {
if (outLab.length != 3) {
throw new IllegalArgumentException("outLab must have a length of 3.");
}
x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X);
y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y);
z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z);
outLab[0] = Math.max(0, 116 * y - 16);
outLab[1] = 500 * (x - y);
outLab[2] = 200 * (y - z);
}
/**
* Converts a color from CIE Lab to CIE XYZ representation.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param l L component value [0...100)
* @param a A component value [-128...127)
* @param b B component value [-128...127)
* @param outXyz 3-element array which holds the resulting XYZ components
*/
public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l,
@FloatRange(from = -128, to = 127) final double a,
@FloatRange(from = -128, to = 127) final double b,
@NonNull double[] outXyz) {
final double fy = (l + 16) / 116;
final double fx = a / 500 + fy;
final double fz = fy - b / 200;
double tmp = Math.pow(fx, 3);
final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA;
final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA;
tmp = Math.pow(fz, 3);
final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA;
outXyz[0] = xr * XYZ_WHITE_REFERENCE_X;
outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y;
outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z;
}
/**
* Converts a color from CIE XYZ to its RGB representation.
*
* <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* @param x X component value [0...95.047)
* @param y Y component value [0...100)
* @param z Z component value [0...108.883)
* @return int containing the RGB representation
*/
@ColorInt
public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) {
double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100;
double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100;
double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100;
r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r;
g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g;
b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b;
return Color.rgb(
constrain((int) Math.round(r * 255), 0, 255),
constrain((int) Math.round(g * 255), 0, 255),
constrain((int) Math.round(b * 255), 0, 255));
}
/**
* Converts a color from CIE Lab to its RGB representation.
*
* @param l L component value [0...100]
* @param a A component value [-128...127]
* @param b B component value [-128...127]
* @return int containing the RGB representation
*/
@ColorInt
public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l,
@FloatRange(from = -128, to = 127) final double a,
@FloatRange(from = -128, to = 127) final double b) {
final double[] result = getTempDouble3Array();
LABToXYZ(l, a, b, result);
return XYZToColor(result[0], result[1], result[2]);
}
/**
* Returns the euclidean distance between two LAB colors.
*/
public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) {
return Math.sqrt(Math.pow(labX[0] - labY[0], 2)
+ Math.pow(labX[1] - labY[1], 2)
+ Math.pow(labX[2] - labY[2], 2));
}
private static float constrain(float amount, float low, float high) {
return amount < low ? low : (amount > high ? high : amount);
}
private static int constrain(int amount, int low, int high) {
return amount < low ? low : (amount > high ? high : amount);
}
private static double pivotXyzComponent(double component) {
return component > XYZ_EPSILON
? Math.pow(component, 1 / 3.0)
: (XYZ_KAPPA * component + 16) / 116;
}
/**
* Blend between two ARGB colors using the given ratio.
*
* <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend,
* 1.0 will result in {@code color2}.</p>
*
* @param color1 the first ARGB color
* @param color2 the second ARGB color
* @param ratio the blend ratio of {@code color1} to {@code color2}
*/
@ColorInt
public static int blendARGB(@ColorInt int color1, @ColorInt int color2,
@FloatRange(from = 0.0, to = 1.0) float ratio) {
final float inverseRatio = 1 - ratio;
float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio;
float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio;
float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio;
float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio;
return Color.argb((int) a, (int) r, (int) g, (int) b);
}
/**
* Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate
* the hue using the shortest angle.
*
* <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend,
* 1.0 will result in {@code hsl2}.</p>
*
* @param hsl1 3-element array which holds the first HSL color
* @param hsl2 3-element array which holds the second HSL color
* @param ratio the blend ratio of {@code hsl1} to {@code hsl2}
* @param outResult 3-element array which holds the resulting HSL components
*/
public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2,
@FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) {
if (outResult.length != 3) {
throw new IllegalArgumentException("result must have a length of 3.");
}
final float inverseRatio = 1 - ratio;
// Since hue is circular we will need to interpolate carefully
outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio);
outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio;
outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio;
}
/**
* Blend between two CIE-LAB colors using the given ratio.
*
* <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend,
* 1.0 will result in {@code lab2}.</p>
*
* @param lab1 3-element array which holds the first LAB color
* @param lab2 3-element array which holds the second LAB color
* @param ratio the blend ratio of {@code lab1} to {@code lab2}
* @param outResult 3-element array which holds the resulting LAB components
*/
public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2,
@FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) {
if (outResult.length != 3) {
throw new IllegalArgumentException("outResult must have a length of 3.");
}
final double inverseRatio = 1 - ratio;
outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio;
outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio;
outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio;
}
@VisibleForTesting
static float circularInterpolate(float a, float b, float f) {
if (Math.abs(b - a) > 180) {
if (b > a) {
a += 360;
} else {
b += 360;
}
}
return (a + ((b - a) * f)) % 360;
}
private static double[] getTempDouble3Array() {
double[] result = TEMP_ARRAY.get();
if (result == null) {
result = new double[3];
TEMP_ARRAY.set(result);
}
return result;
}
}