blob: 3b2ab301696ea1fc8d97aedf6d21ee7e6fd337b6 [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.exifinterface.media;
import static androidx.exifinterface.media.ExifInterfaceUtils.byteArrayToHexString;
import static androidx.exifinterface.media.ExifInterfaceUtils.closeFileDescriptor;
import static androidx.exifinterface.media.ExifInterfaceUtils.closeQuietly;
import static androidx.exifinterface.media.ExifInterfaceUtils.convertToLongArray;
import static androidx.exifinterface.media.ExifInterfaceUtils.copy;
import static androidx.exifinterface.media.ExifInterfaceUtils.parseSubSeconds;
import static androidx.exifinterface.media.ExifInterfaceUtils.startsWith;
import android.annotation.SuppressLint;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.location.Location;
import android.media.MediaDataSource;
import android.media.MediaMetadataRetriever;
import android.os.Build;
import android.system.Os;
import android.system.OsConstants;
import android.util.Log;
import android.util.Pair;
import androidx.annotation.IntDef;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.annotation.RestrictTo;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataInput;
import java.io.DataInputStream;
import java.io.EOFException;
import java.io.File;
import java.io.FileDescriptor;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;
import java.text.ParsePosition;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Set;
import java.util.TimeZone;
import java.util.concurrent.TimeUnit;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.zip.CRC32;
/**
* This is a class for reading and writing Exif tags in various image file formats.
* <p>
* Supported for reading: JPEG, PNG, WebP, HEIF, DNG, CR2, NEF, NRW, ARW, RW2, ORF, PEF, SRW, RAF.
* <p>
* Supported for writing: JPEG, PNG, WebP.
*/
public class ExifInterface {
private static final String TAG = "ExifInterface";
private static final boolean DEBUG = Log.isLoggable(TAG, Log.DEBUG);
// The Exif tag names. See JEITA CP-3451C specifications (Exif 2.3) Section 3-8.
// A. Tags related to image data structure
/**
* <p>The number of columns of image data, equal to the number of pixels per row. In JPEG
* compressed data, this tag shall not be used because a JPEG marker is used instead of it.</p>
*
* <ul>
* <li>Tag = 256</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_IMAGE_WIDTH = "ImageWidth";
/**
* <p>The number of rows of image data. In JPEG compressed data, this tag shall not be used
* because a JPEG marker is used instead of it.</p>
*
* <ul>
* <li>Tag = 257</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_IMAGE_LENGTH = "ImageLength";
/**
* <p>The number of bits per image component. In this standard each component of the image is
* 8 bits, so the value for this tag is 8. See also {@link #TAG_SAMPLES_PER_PIXEL}. In JPEG
* compressed data, this tag shall not be used because a JPEG marker is used instead of it.</p>
*
* <ul>
* <li>Tag = 258</li>
* <li>Type = Unsigned short</li>
* <li>Count = 3</li>
* <li>Default = {@link #BITS_PER_SAMPLE_RGB}</li>
* </ul>
*/
public static final String TAG_BITS_PER_SAMPLE = "BitsPerSample";
/**
* <p>The compression scheme used for the image data. When a primary image is JPEG compressed,
* this designation is not necessary. So, this tag shall not be recorded. When thumbnails use
* JPEG compression, this tag value is set to 6.</p>
*
* <ul>
* <li>Tag = 259</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #DATA_UNCOMPRESSED
* @see #DATA_JPEG
*/
public static final String TAG_COMPRESSION = "Compression";
/**
* <p>The pixel composition. In JPEG compressed data, this tag shall not be used because a JPEG
* marker is used instead of it.</p>
*
* <ul>
* <li>Tag = 262</li>
* <li>Type = SHORT</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #PHOTOMETRIC_INTERPRETATION_RGB
* @see #PHOTOMETRIC_INTERPRETATION_YCBCR
*/
public static final String TAG_PHOTOMETRIC_INTERPRETATION = "PhotometricInterpretation";
/**
* <p>The image orientation viewed in terms of rows and columns.</p>
*
* <ul>
* <li>Tag = 274</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #ORIENTATION_NORMAL}</li>
* </ul>
*
* @see #ORIENTATION_UNDEFINED
* @see #ORIENTATION_NORMAL
* @see #ORIENTATION_FLIP_HORIZONTAL
* @see #ORIENTATION_ROTATE_180
* @see #ORIENTATION_FLIP_VERTICAL
* @see #ORIENTATION_TRANSPOSE
* @see #ORIENTATION_ROTATE_90
* @see #ORIENTATION_TRANSVERSE
* @see #ORIENTATION_ROTATE_270
*/
public static final String TAG_ORIENTATION = "Orientation";
/**
* <p>The number of components per pixel. Since this standard applies to RGB and YCbCr images,
* the value set for this tag is 3. In JPEG compressed data, this tag shall not be used because
* a JPEG marker is used instead of it.</p>
*
* <ul>
* <li>Tag = 277</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = 3</li>
* </ul>
*/
public static final String TAG_SAMPLES_PER_PIXEL = "SamplesPerPixel";
/**
* <p>Indicates whether pixel components are recorded in chunky or planar format. In JPEG
* compressed data, this tag shall not be used because a JPEG marker is used instead of it.
* If this field does not exist, the TIFF default, {@link #FORMAT_CHUNKY}, is assumed.</p>
*
* <ul>
* <li>Tag = 284</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* </ul>
*
* @see #FORMAT_CHUNKY
* @see #FORMAT_PLANAR
*/
public static final String TAG_PLANAR_CONFIGURATION = "PlanarConfiguration";
/**
* <p>The sampling ratio of chrominance components in relation to the luminance component.
* In JPEG compressed data a JPEG marker is used instead of this tag. So, this tag shall not
* be recorded.</p>
*
* <ul>
* <li>Tag = 530</li>
* <li>Type = Unsigned short</li>
* <li>Count = 2</li>
* <ul>
* <li>[2, 1] = YCbCr4:2:2</li>
* <li>[2, 2] = YCbCr4:2:0</li>
* <li>Other = reserved</li>
* </ul>
* </ul>
*/
public static final String TAG_Y_CB_CR_SUB_SAMPLING = "YCbCrSubSampling";
/**
* <p>The position of chrominance components in relation to the luminance component. This field
* is designated only for JPEG compressed data or uncompressed YCbCr data. The TIFF default is
* {@link #Y_CB_CR_POSITIONING_CENTERED}; but when Y:Cb:Cr = 4:2:2 it is recommended in this
* standard that {@link #Y_CB_CR_POSITIONING_CO_SITED} be used to record data, in order to
* improve the image quality when viewed on TV systems. When this field does not exist,
* the reader shall assume the TIFF default. In the case of Y:Cb:Cr = 4:2:0, the TIFF default
* ({@link #Y_CB_CR_POSITIONING_CENTERED}) is recommended. If the Exif/DCF reader does not
* have the capability of supporting both kinds of positioning, it shall follow the TIFF
* default regardless of the value in this field. It is preferable that readers can support
* both centered and co-sited positioning.</p>
*
* <ul>
* <li>Tag = 531</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #Y_CB_CR_POSITIONING_CENTERED}</li>
* </ul>
*
* @see #Y_CB_CR_POSITIONING_CENTERED
* @see #Y_CB_CR_POSITIONING_CO_SITED
*/
public static final String TAG_Y_CB_CR_POSITIONING = "YCbCrPositioning";
/**
* <p>The number of pixels per {@link #TAG_RESOLUTION_UNIT} in the {@link #TAG_IMAGE_WIDTH}
* direction. When the image resolution is unknown, 72 [dpi] shall be designated.</p>
*
* <ul>
* <li>Tag = 282</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = 72</li>
* </ul>
*
* @see #TAG_Y_RESOLUTION
* @see #TAG_RESOLUTION_UNIT
*/
public static final String TAG_X_RESOLUTION = "XResolution";
/**
* <p>The number of pixels per {@link #TAG_RESOLUTION_UNIT} in the {@link #TAG_IMAGE_WIDTH}
* direction. The same value as {@link #TAG_X_RESOLUTION} shall be designated.</p>
*
* <ul>
* <li>Tag = 283</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = 72</li>
* </ul>
*
* @see #TAG_X_RESOLUTION
* @see #TAG_RESOLUTION_UNIT
*/
public static final String TAG_Y_RESOLUTION = "YResolution";
/**
* <p>The unit for measuring {@link #TAG_X_RESOLUTION} and {@link #TAG_Y_RESOLUTION}. The same
* unit is used for both {@link #TAG_X_RESOLUTION} and {@link #TAG_Y_RESOLUTION}. If the image
* resolution is unknown, {@link #RESOLUTION_UNIT_INCHES} shall be designated.</p>
*
* <ul>
* <li>Tag = 296</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #RESOLUTION_UNIT_INCHES}</li>
* </ul>
*
* @see #RESOLUTION_UNIT_INCHES
* @see #RESOLUTION_UNIT_CENTIMETERS
* @see #TAG_X_RESOLUTION
* @see #TAG_Y_RESOLUTION
*/
public static final String TAG_RESOLUTION_UNIT = "ResolutionUnit";
// B. Tags related to recording offset
/**
* <p>For each strip, the byte offset of that strip. It is recommended that this be selected
* so the number of strip bytes does not exceed 64 KBytes.In the case of JPEG compressed data,
* this designation is not necessary. So, this tag shall not be recorded.</p>
*
* <ul>
* <li>Tag = 273</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = StripsPerImage (for {@link #FORMAT_CHUNKY})
* or {@link #TAG_SAMPLES_PER_PIXEL} * StripsPerImage
* (for {@link #FORMAT_PLANAR})</li>
* <li>Default = None</li>
* </ul>
*
* <p>StripsPerImage = floor(({@link #TAG_IMAGE_LENGTH} + {@link #TAG_ROWS_PER_STRIP} - 1)
* / {@link #TAG_ROWS_PER_STRIP})</p>
*
* @see #TAG_ROWS_PER_STRIP
* @see #TAG_STRIP_BYTE_COUNTS
*/
public static final String TAG_STRIP_OFFSETS = "StripOffsets";
/**
* <p>The number of rows per strip. This is the number of rows in the image of one strip when
* an image is divided into strips. In the case of JPEG compressed data, this designation is
* not necessary. So, this tag shall not be recorded.</p>
*
* <ul>
* <li>Tag = 278</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #TAG_STRIP_OFFSETS
* @see #TAG_STRIP_BYTE_COUNTS
*/
public static final String TAG_ROWS_PER_STRIP = "RowsPerStrip";
/**
* <p>The total number of bytes in each strip. In the case of JPEG compressed data, this
* designation is not necessary. So, this tag shall not be recorded.</p>
*
* <ul>
* <li>Tag = 279</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = StripsPerImage (when using {@link #FORMAT_CHUNKY})
* or {@link #TAG_SAMPLES_PER_PIXEL} * StripsPerImage
* (when using {@link #FORMAT_PLANAR})</li>
* <li>Default = None</li>
* </ul>
*
* <p>StripsPerImage = floor(({@link #TAG_IMAGE_LENGTH} + {@link #TAG_ROWS_PER_STRIP} - 1)
* / {@link #TAG_ROWS_PER_STRIP})</p>
*/
public static final String TAG_STRIP_BYTE_COUNTS = "StripByteCounts";
/**
* <p>The offset to the start byte (SOI) of JPEG compressed thumbnail data. This shall not be
* used for primary image JPEG data.</p>
*
* <ul>
* <li>Tag = 513</li>
* <li>Type = Unsigned long</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_JPEG_INTERCHANGE_FORMAT = "JPEGInterchangeFormat";
/**
* <p>The number of bytes of JPEG compressed thumbnail data. This is not used for primary image
* JPEG data. JPEG thumbnails are not divided but are recorded as a continuous JPEG bitstream
* from SOI to EOI. APPn and COM markers should not be recorded. Compressed thumbnails shall be
* recorded in no more than 64 KBytes, including all other data to be recorded in APP1.</p>
*
* <ul>
* <li>Tag = 514</li>
* <li>Type = Unsigned long</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_JPEG_INTERCHANGE_FORMAT_LENGTH = "JPEGInterchangeFormatLength";
// C. Tags related to Image Data Characteristics
/**
* <p>A transfer function for the image, described in tabular style. Normally this tag need not
* be used, since color space is specified in {@link #TAG_COLOR_SPACE}.</p>
*
* <ul>
* <li>Tag = 301</li>
* <li>Type = Unsigned short</li>
* <li>Count = 3 * 256</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_TRANSFER_FUNCTION = "TransferFunction";
/**
* <p>The chromaticity of the white point of the image. Normally this tag need not be used,
* since color space is specified in {@link #TAG_COLOR_SPACE}.</p>
*
* <ul>
* <li>Tag = 318</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 2</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_WHITE_POINT = "WhitePoint";
/**
* <p>The chromaticity of the three primary colors of the image. Normally this tag need not
* be used, since color space is specified in {@link #TAG_COLOR_SPACE}.</p>
*
* <ul>
* <li>Tag = 319</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 6</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_PRIMARY_CHROMATICITIES = "PrimaryChromaticities";
/**
* <p>The matrix coefficients for transformation from RGB to YCbCr image data. About
* the default value, please refer to JEITA CP-3451C Spec, Annex D.</p>
*
* <ul>
* <li>Tag = 529</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* </ul>
*/
public static final String TAG_Y_CB_CR_COEFFICIENTS = "YCbCrCoefficients";
/**
* <p>The reference black point value and reference white point value. No defaults are given
* in TIFF, but the values below are given as defaults here. The color space is declared in
* a color space information tag, with the default being the value that gives the optimal image
* characteristics Interoperability these conditions</p>
*
* <ul>
* <li>Tag = 532</li>
* <li>Type = RATIONAL</li>
* <li>Count = 6</li>
* <li>Default = [0, 255, 0, 255, 0, 255] (when {@link #TAG_PHOTOMETRIC_INTERPRETATION}
* is {@link #PHOTOMETRIC_INTERPRETATION_RGB})
* or [0, 255, 0, 128, 0, 128] (when {@link #TAG_PHOTOMETRIC_INTERPRETATION}
* is {@link #PHOTOMETRIC_INTERPRETATION_YCBCR})</li>
* </ul>
*/
public static final String TAG_REFERENCE_BLACK_WHITE = "ReferenceBlackWhite";
// D. Other tags
/**
* <p>The date and time of image creation. In this standard it is the date and time the file
* was changed. The format is "YYYY:MM:DD HH:MM:SS" with time shown in 24-hour format, and
* the date and time separated by one blank character ({@code 0x20}). When the date and time
* are unknown, all the character spaces except colons (":") should be filled with blank
* characters, or else the Interoperability field should be filled with blank characters.
* The character string length is 20 Bytes including NULL for termination. When the field is
* left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 306</li>
* <li>Type = String</li>
* <li>Length = 19</li>
* <li>Default = None</li>
* </ul>
*
* <p>Note: The format "YYYY-MM-DD HH:MM:SS" is also supported for reading. For writing,
* however, calling {@link #setAttribute(String, String)} with the "YYYY-MM-DD HH:MM:SS"
* format will automatically convert it to the primary format, "YYYY:MM:DD HH:MM:SS".
*/
public static final String TAG_DATETIME = "DateTime";
/**
* <p>An ASCII string giving the title of the image. It is possible to be added a comment
* such as "1988 company picnic" or the like. Two-byte character codes cannot be used. When
* a 2-byte code is necessary, {@link #TAG_USER_COMMENT} is to be used.</p>
*
* <ul>
* <li>Tag = 270</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_IMAGE_DESCRIPTION = "ImageDescription";
/**
* <p>The manufacturer of the recording equipment. This is the manufacturer of the DSC,
* scanner, video digitizer or other equipment that generated the image. When the field is left
* blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 271</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_MAKE = "Make";
/**
* <p>The model name or model number of the equipment. This is the model name of number of
* the DSC, scanner, video digitizer or other equipment that generated the image. When
* the field is left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 272</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_MODEL = "Model";
/**
* <p>This tag records the name and version of the software or firmware of the camera or image
* input device used to generate the image. The detailed format is not specified, but it is
* recommended that the example shown below be followed. When the field is left blank, it is
* treated as unknown.</p>
*
* <p>Ex.) "Exif Software Version 1.00a".</p>
*
* <ul>
* <li>Tag = 305</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SOFTWARE = "Software";
/**
* <p>This tag records the name of the camera owner, photographer or image creator.
* The detailed format is not specified, but it is recommended that the information be written
* as in the example below for ease of Interoperability. When the field is left blank, it is
* treated as unknown.</p>
*
* <p>Ex.) "Camera owner, John Smith; Photographer, Michael Brown; Image creator,
* Ken James"</p>
*
* <ul>
* <li>Tag = 315</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_ARTIST = "Artist";
/**
* <p>Copyright information. In this standard the tag is used to indicate both the photographer
* and editor copyrights. It is the copyright notice of the person or organization claiming
* rights to the image. The Interoperability copyright statement including date and rights
* should be written in this field; e.g., "Copyright, John Smith, 19xx. All rights reserved."
* In this standard the field records both the photographer and editor copyrights, with each
* recorded in a separate part of the statement. When there is a clear distinction between
* the photographer and editor copyrights, these are to be written in the order of photographer
* followed by editor copyright, separated by NULL (in this case, since the statement also ends
* with a NULL, there are two NULL codes) (see example 1). When only the photographer copyright
* is given, it is terminated by one NULL code (see example 2). When only the editor copyright
* is given, the photographer copyright part consists of one space followed by a terminating
* NULL code, then the editor copyright is given (see example 3). When the field is left blank,
* it is treated as unknown.</p>
*
* <p>Ex. 1) When both the photographer copyright and editor copyright are given.
* <ul><li>Photographer copyright + NULL + editor copyright + NULL</li></ul></p>
* <p>Ex. 2) When only the photographer copyright is given.
* <ul><li>Photographer copyright + NULL</li></ul></p>
* <p>Ex. 3) When only the editor copyright is given.
* <ul><li>Space ({@code 0x20}) + NULL + editor copyright + NULL</li></ul></p>
*
* <ul>
* <li>Tag = 315</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_COPYRIGHT = "Copyright";
// Exif IFD Attribute Information
// A. Tags related to version
/**
* <p>The version of this standard supported. Nonexistence of this field is taken to mean
* nonconformance to the standard. In according with conformance to this standard, this tag
* shall be recorded like "0230” as 4-byte ASCII.</p>
*
* <ul>
* <li>Tag = 36864</li>
* <li>Type = Undefined</li>
* <li>Length = 4</li>
* <li>Default = "0230"</li>
* </ul>
*/
public static final String TAG_EXIF_VERSION = "ExifVersion";
/**
* <p>The Flashpix format version supported by a FPXR file. If the FPXR function supports
* Flashpix format Ver. 1.0, this is indicated similarly to {@link #TAG_EXIF_VERSION} by
* recording "0100" as 4-byte ASCII.</p>
*
* <ul>
* <li>Tag = 40960</li>
* <li>Type = Undefined</li>
* <li>Length = 4</li>
* <li>Default = "0100"</li>
* </ul>
*/
public static final String TAG_FLASHPIX_VERSION = "FlashpixVersion";
// B. Tags related to image data characteristics
/**
* <p>The color space information tag is always recorded as the color space specifier.
* Normally {@link #COLOR_SPACE_S_RGB} is used to define the color space based on the PC
* monitor conditions and environment. If a color space other than {@link #COLOR_SPACE_S_RGB}
* is used, {@link #COLOR_SPACE_UNCALIBRATED} is set. Image data recorded as
* {@link #COLOR_SPACE_UNCALIBRATED} may be treated as {@link #COLOR_SPACE_S_RGB} when it is
* converted to Flashpix.</p>
*
* <ul>
* <li>Tag = 40961</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* </ul>
*
* @see #COLOR_SPACE_S_RGB
* @see #COLOR_SPACE_UNCALIBRATED
*/
public static final String TAG_COLOR_SPACE = "ColorSpace";
/**
* <p>Indicates the value of coefficient gamma. The formula of transfer function used for image
* reproduction is expressed as follows.</p>
*
* <p>(Reproduced value) = (Input value) ^ gamma</p>
*
* <p>Both reproduced value and input value indicate normalized value, whose minimum value is
* 0 and maximum value is 1.</p>
*
* <ul>
* <li>Tag = 42240</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GAMMA = "Gamma";
// C. Tags related to image configuration
/**
* <p>Information specific to compressed data. When a compressed file is recorded, the valid
* width of the meaningful image shall be recorded in this tag, whether or not there is padding
* data or a restart marker. This tag shall not exist in an uncompressed file.</p>
*
* <ul>
* <li>Tag = 40962</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_PIXEL_X_DIMENSION = "PixelXDimension";
/**
* <p>Information specific to compressed data. When a compressed file is recorded, the valid
* height of the meaningful image shall be recorded in this tag, whether or not there is
* padding data or a restart marker. This tag shall not exist in an uncompressed file.
* Since data padding is unnecessary in the vertical direction, the number of lines recorded
* in this valid image height tag will in fact be the same as that recorded in the SOF.</p>
*
* <ul>
* <li>Tag = 40963</li>
* <li>Type = Unsigned short or Unsigned long</li>
* <li>Count = 1</li>
* </ul>
*/
public static final String TAG_PIXEL_Y_DIMENSION = "PixelYDimension";
/**
* <p>Information specific to compressed data. The channels of each component are arranged
* in order from the 1st component to the 4th. For uncompressed data the data arrangement is
* given in the {@link #TAG_PHOTOMETRIC_INTERPRETATION}. However, since
* {@link #TAG_PHOTOMETRIC_INTERPRETATION} can only express the order of Y, Cb and Cr, this tag
* is provided for cases when compressed data uses components other than Y, Cb, and Cr and to
* enable support of other sequences.</p>
*
* <ul>
* <li>Tag = 37121</li>
* <li>Type = Undefined</li>
* <li>Length = 4</li>
* <li>Default = 4 5 6 0 (if RGB uncompressed) or 1 2 3 0 (other cases)</li>
* <ul>
* <li>0 = does not exist</li>
* <li>1 = Y</li>
* <li>2 = Cb</li>
* <li>3 = Cr</li>
* <li>4 = R</li>
* <li>5 = G</li>
* <li>6 = B</li>
* <li>other = reserved</li>
* </ul>
* </ul>
*/
public static final String TAG_COMPONENTS_CONFIGURATION = "ComponentsConfiguration";
/**
* <p>Information specific to compressed data. The compression mode used for a compressed image
* is indicated in unit bits per pixel.</p>
*
* <ul>
* <li>Tag = 37122</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_COMPRESSED_BITS_PER_PIXEL = "CompressedBitsPerPixel";
// D. Tags related to user information
/**
* <p>A tag for manufacturers of Exif/DCF writers to record any desired information.
* The contents are up to the manufacturer, but this tag shall not be used for any other than
* its intended purpose.</p>
*
* <ul>
* <li>Tag = 37500</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_MAKER_NOTE = "MakerNote";
/**
* <p>A tag for Exif users to write keywords or comments on the image besides those in
* {@link #TAG_IMAGE_DESCRIPTION}, and without the character code limitations of it.</p>
*
* <ul>
* <li>Tag = 37510</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_USER_COMMENT = "UserComment";
// E. Tags related to related file information
/**
* <p>This tag is used to record the name of an audio file related to the image data. The only
* relational information recorded here is the Exif audio file name and extension (an ASCII
* string consisting of 8 characters + '.' + 3 characters). The path is not recorded.</p>
*
* <p>When using this tag, audio files shall be recorded in conformance to the Exif audio
* format. Writers can also store the data such as Audio within APP2 as Flashpix extension
* stream data. Audio files shall be recorded in conformance to the Exif audio format.</p>
*
* <ul>
* <li>Tag = 40964</li>
* <li>Type = String</li>
* <li>Length = 12</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_RELATED_SOUND_FILE = "RelatedSoundFile";
// F. Tags related to date and time
/**
* <p>The date and time when the original image data was generated. For a DSC the date and time
* the picture was taken are recorded. The format is "YYYY:MM:DD HH:MM:SS" with time shown in
* 24-hour format, and the date and time separated by one blank character ({@code 0x20}).
* When the date and time are unknown, all the character spaces except colons (":") should be
* filled with blank characters, or else the Interoperability field should be filled with blank
* characters. When the field is left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 36867</li>
* <li>Type = String</li>
* <li>Length = 19</li>
* <li>Default = None</li>
* </ul>
*
* <p>Note: The format "YYYY-MM-DD HH:MM:SS" is also supported for reading. For writing,
* however, calling {@link #setAttribute(String, String)} with the "YYYY-MM-DD HH:MM:SS"
* format will automatically convert it to the primary format, "YYYY:MM:DD HH:MM:SS".
*/
public static final String TAG_DATETIME_ORIGINAL = "DateTimeOriginal";
/**
* <p>The date and time when the image was stored as digital data. If, for example, an image
* was captured by DSC and at the same time the file was recorded, then
* {@link #TAG_DATETIME_ORIGINAL} and this tag will have the same contents. The format is
* "YYYY:MM:DD HH:MM:SS" with time shown in 24-hour format, and the date and time separated by
* one blank character ({@code 0x20}). When the date and time are unknown, all the character
* spaces except colons (":")should be filled with blank characters, or else
* the Interoperability field should be filled with blank characters. When the field is left
* blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 36868</li>
* <li>Type = String</li>
* <li>Length = 19</li>
* <li>Default = None</li>
* </ul>
*
* <p>Note: The format "YYYY-MM-DD HH:MM:SS" is also supported for reading. For writing,
* however, calling {@link #setAttribute(String, String)} with the "YYYY-MM-DD HH:MM:SS"
* format will automatically convert it to the primary format, "YYYY:MM:DD HH:MM:SS".
*/
public static final String TAG_DATETIME_DIGITIZED = "DateTimeDigitized";
/**
* <p>A tag used to record the offset from UTC (the time difference from Universal Time
* Coordinated including daylight saving time) of the time of DateTime tag. The format when
* recording the offset is "±HH:MM". The part of "±" shall be recorded as "+" or "-". When
* the offsets are unknown, all the character spaces except colons (":") should be filled
* with blank characters, or else the Interoperability field should be filled with blank
* characters. The character string length is 7 Bytes including NULL for termination. When
* the field is left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 36880</li>
* <li>Type = String</li>
* <li>Length = 7</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_OFFSET_TIME = "OffsetTime";
/**
* <p>A tag used to record the offset from UTC (the time difference from Universal Time
* Coordinated including daylight saving time) of the time of DateTimeOriginal tag. The format
* when recording the offset is "±HH:MM". The part of "±" shall be recorded as "+" or "-". When
* the offsets are unknown, all the character spaces except colons (":") should be filled
* with blank characters, or else the Interoperability field should be filled with blank
* characters. The character string length is 7 Bytes including NULL for termination. When
* the field is left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 36881</li>
* <li>Type = String</li>
* <li>Length = 7</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_OFFSET_TIME_ORIGINAL = "OffsetTimeOriginal";
/**
* <p>A tag used to record the offset from UTC (the time difference from Universal Time
* Coordinated including daylight saving time) of the time of DateTimeDigitized tag. The format
* when recording the offset is "±HH:MM". The part of "±" shall be recorded as "+" or "-". When
* the offsets are unknown, all the character spaces except colons (":") should be filled
* with blank characters, or else the Interoperability field should be filled with blank
* characters. The character string length is 7 Bytes including NULL for termination. When
* the field is left blank, it is treated as unknown.</p>
*
* <ul>
* <li>Tag = 36882</li>
* <li>Type = String</li>
* <li>Length = 7</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_OFFSET_TIME_DIGITIZED = "OffsetTimeDigitized";
/**
* <p>A tag used to record fractions of seconds for {@link #TAG_DATETIME}.</p>
*
* <ul>
* <li>Tag = 37520</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SUBSEC_TIME = "SubSecTime";
/**
* <p>A tag used to record fractions of seconds for {@link #TAG_DATETIME_ORIGINAL}.</p>
*
* <ul>
* <li>Tag = 37521</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SUBSEC_TIME_ORIGINAL = "SubSecTimeOriginal";
/**
* <p>A tag used to record fractions of seconds for {@link #TAG_DATETIME_DIGITIZED}.</p>
*
* <ul>
* <li>Tag = 37522</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SUBSEC_TIME_DIGITIZED = "SubSecTimeDigitized";
// G. Tags related to picture-taking condition
/**
* <p>Exposure time, given in seconds.</p>
*
* <ul>
* <li>Tag = 33434</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_EXPOSURE_TIME = "ExposureTime";
/**
* <p>The F number.</p>
*
* <ul>
* <li>Tag = 33437</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_F_NUMBER = "FNumber";
/**
* <p>TThe class of the program used by the camera to set exposure when the picture is taken.
* The tag values are as follows.</p>
*
* <ul>
* <li>Tag = 34850</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #EXPOSURE_PROGRAM_NOT_DEFINED}</li>
* </ul>
*
* @see #EXPOSURE_PROGRAM_NOT_DEFINED
* @see #EXPOSURE_PROGRAM_MANUAL
* @see #EXPOSURE_PROGRAM_NORMAL
* @see #EXPOSURE_PROGRAM_APERTURE_PRIORITY
* @see #EXPOSURE_PROGRAM_SHUTTER_PRIORITY
* @see #EXPOSURE_PROGRAM_CREATIVE
* @see #EXPOSURE_PROGRAM_ACTION
* @see #EXPOSURE_PROGRAM_PORTRAIT_MODE
* @see #EXPOSURE_PROGRAM_LANDSCAPE_MODE
*/
public static final String TAG_EXPOSURE_PROGRAM = "ExposureProgram";
/**
* <p>Indicates the spectral sensitivity of each channel of the camera used. The tag value is
* an ASCII string compatible with the standard developed by the ASTM Technical committee.</p>
*
* <ul>
* <li>Tag = 34852</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SPECTRAL_SENSITIVITY = "SpectralSensitivity";
/**
* @deprecated Use {@link #TAG_PHOTOGRAPHIC_SENSITIVITY} instead.
* @see #TAG_PHOTOGRAPHIC_SENSITIVITY
*/
@Deprecated public static final String TAG_ISO_SPEED_RATINGS = "ISOSpeedRatings";
/**
* <p>This tag indicates the sensitivity of the camera or input device when the image was shot.
* More specifically, it indicates one of the following values that are parameters defined in
* ISO 12232: standard output sensitivity (SOS), recommended exposure index (REI), or ISO
* speed. Accordingly, if a tag corresponding to a parameter that is designated by
* {@link #TAG_SENSITIVITY_TYPE} is recorded, the values of the tag and of this tag are
* the same. However, if the value is 65535 or higher, the value of this tag shall be 65535.
* When recording this tag, {@link #TAG_SENSITIVITY_TYPE} should also be recorded. In addition,
* while “Count = Any”, only 1 count should be used when recording this tag.</p>
*
* <ul>
* <li>Tag = 34855</li>
* <li>Type = Unsigned short</li>
* <li>Count = Any</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_PHOTOGRAPHIC_SENSITIVITY = "PhotographicSensitivity";
/**
* <p>Indicates the Opto-Electric Conversion Function (OECF) specified in ISO 14524. OECF is
* the relationship between the camera optical input and the image values.</p>
*
* <ul>
* <li>Tag = 34856</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_OECF = "OECF";
/**
* <p>This tag indicates which one of the parameters of ISO12232 is
* {@link #TAG_PHOTOGRAPHIC_SENSITIVITY}. Although it is an optional tag, it should be recorded
* when {@link #TAG_PHOTOGRAPHIC_SENSITIVITY} is recorded.</p>
*
* <ul>
* <li>Tag = 34864</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #SENSITIVITY_TYPE_UNKNOWN
* @see #SENSITIVITY_TYPE_SOS
* @see #SENSITIVITY_TYPE_REI
* @see #SENSITIVITY_TYPE_ISO_SPEED
* @see #SENSITIVITY_TYPE_SOS_AND_REI
* @see #SENSITIVITY_TYPE_SOS_AND_ISO
* @see #SENSITIVITY_TYPE_REI_AND_ISO
* @see #SENSITIVITY_TYPE_SOS_AND_REI_AND_ISO
*/
public static final String TAG_SENSITIVITY_TYPE = "SensitivityType";
/**
* <p>This tag indicates the standard output sensitivity value of a camera or input device
* defined in ISO 12232. When recording this tag, {@link #TAG_PHOTOGRAPHIC_SENSITIVITY} and
* {@link #TAG_SENSITIVITY_TYPE} shall also be recorded.</p>
*
* <ul>
* <li>Tag = 34865</li>
* <li>Type = Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_STANDARD_OUTPUT_SENSITIVITY = "StandardOutputSensitivity";
/**
* <p>This tag indicates the recommended exposure index value of a camera or input device
* defined in ISO 12232. When recording this tag, {@link #TAG_PHOTOGRAPHIC_SENSITIVITY} and
* {@link #TAG_SENSITIVITY_TYPE} shall also be recorded.</p>
*
* <ul>
* <li>Tag = 34866</li>
* <li>Type = Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_RECOMMENDED_EXPOSURE_INDEX = "RecommendedExposureIndex";
/**
* <p>This tag indicates the ISO speed value of a camera or input device that is defined in
* ISO 12232. When recording this tag, {@link #TAG_PHOTOGRAPHIC_SENSITIVITY} and
* {@link #TAG_SENSITIVITY_TYPE} shall also be recorded.</p>
*
* <ul>
* <li>Tag = 34867</li>
* <li>Type = Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_ISO_SPEED = "ISOSpeed";
/**
* <p>This tag indicates the ISO speed latitude yyy value of a camera or input device that is
* defined in ISO 12232. However, this tag shall not be recorded without {@link #TAG_ISO_SPEED}
* and {@link #TAG_ISO_SPEED_LATITUDE_ZZZ}.</p>
*
* <ul>
* <li>Tag = 34868</li>
* <li>Type = Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_ISO_SPEED_LATITUDE_YYY = "ISOSpeedLatitudeyyy";
/**
* <p>This tag indicates the ISO speed latitude zzz value of a camera or input device that is
* defined in ISO 12232. However, this tag shall not be recorded without {@link #TAG_ISO_SPEED}
* and {@link #TAG_ISO_SPEED_LATITUDE_YYY}.</p>
*
* <ul>
* <li>Tag = 34869</li>
* <li>Type = Unsigned long</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_ISO_SPEED_LATITUDE_ZZZ = "ISOSpeedLatitudezzz";
/**
* <p>Shutter speed. The unit is the APEX setting.</p>
*
* <ul>
* <li>Tag = 37377</li>
* <li>Type = Signed rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SHUTTER_SPEED_VALUE = "ShutterSpeedValue";
/**
* <p>The lens aperture. The unit is the APEX value.</p>
*
* <ul>
* <li>Tag = 37378</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_APERTURE_VALUE = "ApertureValue";
/**
* <p>The value of brightness. The unit is the APEX value. Ordinarily it is given in the range
* of -99.99 to 99.99. Note that if the numerator of the recorded value is 0xFFFFFFFF,
* Unknown shall be indicated.</p>
*
* <ul>
* <li>Tag = 37379</li>
* <li>Type = Signed rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_BRIGHTNESS_VALUE = "BrightnessValue";
/**
* <p>The exposure bias. The unit is the APEX value. Ordinarily it is given in the range of
* -99.99 to 99.99.</p>
*
* <ul>
* <li>Tag = 37380</li>
* <li>Type = Signed rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_EXPOSURE_BIAS_VALUE = "ExposureBiasValue";
/**
* <p>The smallest F number of the lens. The unit is the APEX value. Ordinarily it is given
* in the range of 00.00 to 99.99, but it is not limited to this range.</p>
*
* <ul>
* <li>Tag = 37381</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_MAX_APERTURE_VALUE = "MaxApertureValue";
/**
* <p>The distance to the subject, given in meters. Note that if the numerator of the recorded
* value is 0xFFFFFFFF, Infinity shall be indicated; and if the numerator is 0, Distance
* unknown shall be indicated.</p>
*
* <ul>
* <li>Tag = 37382</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SUBJECT_DISTANCE = "SubjectDistance";
/**
* <p>The metering mode.</p>
*
* <ul>
* <li>Tag = 37383</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #METERING_MODE_UNKNOWN}</li>
* </ul>
*
* @see #METERING_MODE_UNKNOWN
* @see #METERING_MODE_AVERAGE
* @see #METERING_MODE_CENTER_WEIGHT_AVERAGE
* @see #METERING_MODE_SPOT
* @see #METERING_MODE_MULTI_SPOT
* @see #METERING_MODE_PATTERN
* @see #METERING_MODE_PARTIAL
* @see #METERING_MODE_OTHER
*/
public static final String TAG_METERING_MODE = "MeteringMode";
/**
* <p>The kind of light source.</p>
*
* <ul>
* <li>Tag = 37384</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #LIGHT_SOURCE_UNKNOWN}</li>
* </ul>
*
* @see #LIGHT_SOURCE_UNKNOWN
* @see #LIGHT_SOURCE_DAYLIGHT
* @see #LIGHT_SOURCE_FLUORESCENT
* @see #LIGHT_SOURCE_TUNGSTEN
* @see #LIGHT_SOURCE_FLASH
* @see #LIGHT_SOURCE_FINE_WEATHER
* @see #LIGHT_SOURCE_CLOUDY_WEATHER
* @see #LIGHT_SOURCE_SHADE
* @see #LIGHT_SOURCE_DAYLIGHT_FLUORESCENT
* @see #LIGHT_SOURCE_DAY_WHITE_FLUORESCENT
* @see #LIGHT_SOURCE_COOL_WHITE_FLUORESCENT
* @see #LIGHT_SOURCE_WHITE_FLUORESCENT
* @see #LIGHT_SOURCE_WARM_WHITE_FLUORESCENT
* @see #LIGHT_SOURCE_STANDARD_LIGHT_A
* @see #LIGHT_SOURCE_STANDARD_LIGHT_B
* @see #LIGHT_SOURCE_STANDARD_LIGHT_C
* @see #LIGHT_SOURCE_D55
* @see #LIGHT_SOURCE_D65
* @see #LIGHT_SOURCE_D75
* @see #LIGHT_SOURCE_D50
* @see #LIGHT_SOURCE_ISO_STUDIO_TUNGSTEN
* @see #LIGHT_SOURCE_OTHER
*/
public static final String TAG_LIGHT_SOURCE = "LightSource";
/**
* <p>This tag indicates the status of flash when the image was shot. Bit 0 indicates the flash
* firing status, bits 1 and 2 indicate the flash return status, bits 3 and 4 indicate
* the flash mode, bit 5 indicates whether the flash function is present, and bit 6 indicates
* "red eye" mode.</p>
*
* <ul>
* <li>Tag = 37385</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* </ul>
*
* @see #FLAG_FLASH_FIRED
* @see #FLAG_FLASH_RETURN_LIGHT_NOT_DETECTED
* @see #FLAG_FLASH_RETURN_LIGHT_DETECTED
* @see #FLAG_FLASH_MODE_COMPULSORY_FIRING
* @see #FLAG_FLASH_MODE_COMPULSORY_SUPPRESSION
* @see #FLAG_FLASH_MODE_AUTO
* @see #FLAG_FLASH_NO_FLASH_FUNCTION
* @see #FLAG_FLASH_RED_EYE_SUPPORTED
*/
public static final String TAG_FLASH = "Flash";
/**
* <p>This tag indicates the location and area of the main subject in the overall scene.</p>
*
* <ul>
* <li>Tag = 37396</li>
* <li>Type = Unsigned short</li>
* <li>Count = 2 or 3 or 4</li>
* <li>Default = None</li>
* </ul>
*
* <p>The subject location and area are defined by Count values as follows.</p>
*
* <ul>
* <li>Count = 2 Indicates the location of the main subject as coordinates. The first value
* is the X coordinate and the second is the Y coordinate.</li>
* <li>Count = 3 The area of the main subject is given as a circle. The circular area is
* expressed as center coordinates and diameter. The first value is
* the center X coordinate, the second is the center Y coordinate, and
* the third is the diameter.</li>
* <li>Count = 4 The area of the main subject is given as a rectangle. The rectangular
* area is expressed as center coordinates and area dimensions. The first
* value is the center X coordinate, the second is the center Y coordinate,
* the third is the width of the area, and the fourth is the height of
* the area.</li>
* </ul>
*
* <p>Note that the coordinate values, width, and height are expressed in relation to the upper
* left as origin, prior to rotation processing as per {@link #TAG_ORIENTATION}.</p>
*/
public static final String TAG_SUBJECT_AREA = "SubjectArea";
/**
* <p>The actual focal length of the lens, in mm. Conversion is not made to the focal length
* of a 35mm film camera.</p>
*
* <ul>
* <li>Tag = 37386</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_FOCAL_LENGTH = "FocalLength";
/**
* <p>Indicates the strobe energy at the time the image is captured, as measured in Beam Candle
* Power Seconds (BCPS).</p>
*
* <ul>
* <li>Tag = 41483</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_FLASH_ENERGY = "FlashEnergy";
/**
* <p>This tag records the camera or input device spatial frequency table and SFR values in
* the direction of image width, image height, and diagonal direction, as specified in
* ISO 12233.</p>
*
* <ul>
* <li>Tag = 41484</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SPATIAL_FREQUENCY_RESPONSE = "SpatialFrequencyResponse";
/**
* <p>Indicates the number of pixels in the image width (X) direction per
* {@link #TAG_FOCAL_PLANE_RESOLUTION_UNIT} on the camera focal plane.</p>
*
* <ul>
* <li>Tag = 41486</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_FOCAL_PLANE_X_RESOLUTION = "FocalPlaneXResolution";
/**
* <p>Indicates the number of pixels in the image height (Y) direction per
* {@link #TAG_FOCAL_PLANE_RESOLUTION_UNIT} on the camera focal plane.</p>
*
* <ul>
* <li>Tag = 41487</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_FOCAL_PLANE_Y_RESOLUTION = "FocalPlaneYResolution";
/**
* <p>Indicates the unit for measuring {@link #TAG_FOCAL_PLANE_X_RESOLUTION} and
* {@link #TAG_FOCAL_PLANE_Y_RESOLUTION}. This value is the same as
* {@link #TAG_RESOLUTION_UNIT}.</p>
*
* <ul>
* <li>Tag = 41488</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #RESOLUTION_UNIT_INCHES}</li>
* </ul>
*
* @see #TAG_RESOLUTION_UNIT
* @see #RESOLUTION_UNIT_INCHES
* @see #RESOLUTION_UNIT_CENTIMETERS
*/
public static final String TAG_FOCAL_PLANE_RESOLUTION_UNIT = "FocalPlaneResolutionUnit";
/**
* <p>Indicates the location of the main subject in the scene. The value of this tag represents
* the pixel at the center of the main subject relative to the left edge, prior to rotation
* processing as per {@link #TAG_ORIENTATION}. The first value indicates the X column number
* and second indicates the Y row number. When a camera records the main subject location,
* it is recommended that {@link #TAG_SUBJECT_AREA} be used instead of this tag.</p>
*
* <ul>
* <li>Tag = 41492</li>
* <li>Type = Unsigned short</li>
* <li>Count = 2</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_SUBJECT_LOCATION = "SubjectLocation";
/**
* <p>Indicates the exposure index selected on the camera or input device at the time the image
* is captured.</p>
*
* <ul>
* <li>Tag = 41493</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_EXPOSURE_INDEX = "ExposureIndex";
/**
* <p>Indicates the image sensor type on the camera or input device.</p>
*
* <ul>
* <li>Tag = 41495</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #SENSOR_TYPE_NOT_DEFINED
* @see #SENSOR_TYPE_ONE_CHIP
* @see #SENSOR_TYPE_TWO_CHIP
* @see #SENSOR_TYPE_THREE_CHIP
* @see #SENSOR_TYPE_COLOR_SEQUENTIAL
* @see #SENSOR_TYPE_TRILINEAR
* @see #SENSOR_TYPE_COLOR_SEQUENTIAL_LINEAR
*/
public static final String TAG_SENSING_METHOD = "SensingMethod";
/**
* <p>Indicates the image source. If a DSC recorded the image, this tag value always shall
* be set to {@link #FILE_SOURCE_DSC}.</p>
*
* <ul>
* <li>Tag = 41728</li>
* <li>Type = Undefined</li>
* <li>Length = 1</li>
* <li>Default = {@link #FILE_SOURCE_DSC}</li>
* </ul>
*
* @see #FILE_SOURCE_OTHER
* @see #FILE_SOURCE_TRANSPARENT_SCANNER
* @see #FILE_SOURCE_REFLEX_SCANNER
* @see #FILE_SOURCE_DSC
*/
public static final String TAG_FILE_SOURCE = "FileSource";
/**
* <p>Indicates the type of scene. If a DSC recorded the image, this tag value shall always
* be set to {@link #SCENE_TYPE_DIRECTLY_PHOTOGRAPHED}.</p>
*
* <ul>
* <li>Tag = 41729</li>
* <li>Type = Undefined</li>
* <li>Length = 1</li>
* <li>Default = 1</li>
* </ul>
*
* @see #SCENE_TYPE_DIRECTLY_PHOTOGRAPHED
*/
public static final String TAG_SCENE_TYPE = "SceneType";
/**
* <p>Indicates the color filter array (CFA) geometric pattern of the image sensor when
* a one-chip color area sensor is used. It does not apply to all sensing methods.</p>
*
* <ul>
* <li>Tag = 41730</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*
* @see #TAG_SENSING_METHOD
* @see #SENSOR_TYPE_ONE_CHIP
*/
public static final String TAG_CFA_PATTERN = "CFAPattern";
/**
* <p>This tag indicates the use of special processing on image data, such as rendering geared
* to output. When special processing is performed, the Exif/DCF reader is expected to disable
* or minimize any further processing.</p>
*
* <ul>
* <li>Tag = 41985</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #RENDERED_PROCESS_NORMAL}</li>
* </ul>
*
* @see #RENDERED_PROCESS_NORMAL
* @see #RENDERED_PROCESS_CUSTOM
*/
public static final String TAG_CUSTOM_RENDERED = "CustomRendered";
/**
* <p>This tag indicates the exposure mode set when the image was shot.
* In {@link #EXPOSURE_MODE_AUTO_BRACKET}, the camera shoots a series of frames of the same
* scene at different exposure settings.</p>
*
* <ul>
* <li>Tag = 41986</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #EXPOSURE_MODE_AUTO
* @see #EXPOSURE_MODE_MANUAL
* @see #EXPOSURE_MODE_AUTO_BRACKET
*/
public static final String TAG_EXPOSURE_MODE = "ExposureMode";
/**
* <p>This tag indicates the white balance mode set when the image was shot.</p>
*
* <ul>
* <li>Tag = 41987</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #WHITEBALANCE_AUTO
* @see #WHITEBALANCE_MANUAL
*/
public static final String TAG_WHITE_BALANCE = "WhiteBalance";
/**
* <p>This tag indicates the digital zoom ratio when the image was shot. If the numerator of
* the recorded value is 0, this indicates that digital zoom was not used.</p>
*
* <ul>
* <li>Tag = 41988</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_DIGITAL_ZOOM_RATIO = "DigitalZoomRatio";
/**
* <p>This tag indicates the equivalent focal length assuming a 35mm film camera, in mm.
* A value of 0 means the focal length is unknown. Note that this tag differs from
* {@link #TAG_FOCAL_LENGTH}.</p>
*
* <ul>
* <li>Tag = 41989</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_FOCAL_LENGTH_IN_35MM_FILM = "FocalLengthIn35mmFilm";
/**
* <p>This tag indicates the type of scene that was shot. It may also be used to record
* the mode in which the image was shot. Note that this differs from
* {@link #TAG_SCENE_TYPE}.</p>
*
* <ul>
* <li>Tag = 41990</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = 0</li>
* </ul>
*
* @see #SCENE_CAPTURE_TYPE_STANDARD
* @see #SCENE_CAPTURE_TYPE_LANDSCAPE
* @see #SCENE_CAPTURE_TYPE_PORTRAIT
* @see #SCENE_CAPTURE_TYPE_NIGHT
*/
public static final String TAG_SCENE_CAPTURE_TYPE = "SceneCaptureType";
/**
* <p>This tag indicates the degree of overall image gain adjustment.</p>
*
* <ul>
* <li>Tag = 41991</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #GAIN_CONTROL_NONE
* @see #GAIN_CONTROL_LOW_GAIN_UP
* @see #GAIN_CONTROL_HIGH_GAIN_UP
* @see #GAIN_CONTROL_LOW_GAIN_DOWN
* @see #GAIN_CONTROL_HIGH_GAIN_DOWN
*/
public static final String TAG_GAIN_CONTROL = "GainControl";
/**
* <p>This tag indicates the direction of contrast processing applied by the camera when
* the image was shot.</p>
*
* <ul>
* <li>Tag = 41992</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #CONTRAST_NORMAL}</li>
* </ul>
*
* @see #CONTRAST_NORMAL
* @see #CONTRAST_SOFT
* @see #CONTRAST_HARD
*/
public static final String TAG_CONTRAST = "Contrast";
/**
* <p>This tag indicates the direction of saturation processing applied by the camera when
* the image was shot.</p>
*
* <ul>
* <li>Tag = 41993</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #SATURATION_NORMAL}</li>
* </ul>
*
* @see #SATURATION_NORMAL
* @see #SATURATION_LOW
* @see #SATURATION_HIGH
*/
public static final String TAG_SATURATION = "Saturation";
/**
* <p>This tag indicates the direction of sharpness processing applied by the camera when
* the image was shot.</p>
*
* <ul>
* <li>Tag = 41994</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = {@link #SHARPNESS_NORMAL}</li>
* </ul>
*
* @see #SHARPNESS_NORMAL
* @see #SHARPNESS_SOFT
* @see #SHARPNESS_HARD
*/
public static final String TAG_SHARPNESS = "Sharpness";
/**
* <p>This tag indicates information on the picture-taking conditions of a particular camera
* model. The tag is used only to indicate the picture-taking conditions in the Exif/DCF
* reader.</p>
*
* <ul>
* <li>Tag = 41995</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_DEVICE_SETTING_DESCRIPTION = "DeviceSettingDescription";
/**
* <p>This tag indicates the distance to the subject.</p>
*
* <ul>
* <li>Tag = 41996</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #SUBJECT_DISTANCE_RANGE_UNKNOWN
* @see #SUBJECT_DISTANCE_RANGE_MACRO
* @see #SUBJECT_DISTANCE_RANGE_CLOSE_VIEW
* @see #SUBJECT_DISTANCE_RANGE_DISTANT_VIEW
*/
public static final String TAG_SUBJECT_DISTANCE_RANGE = "SubjectDistanceRange";
// H. Other tags
/**
* <p>This tag indicates an identifier assigned uniquely to each image. It is recorded as
* an ASCII string equivalent to hexadecimal notation and 128-bit fixed length.</p>
*
* <ul>
* <li>Tag = 42016</li>
* <li>Type = String</li>
* <li>Length = 32</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_IMAGE_UNIQUE_ID = "ImageUniqueID";
/**
* <p>This tag records the owner of a camera used in photography as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42032</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*
* @deprecated Use {@link #TAG_CAMERA_OWNER_NAME} instead.
*/
@Deprecated
public static final String TAG_CAMARA_OWNER_NAME = "CameraOwnerName";
/**
* <p>This tag records the owner of a camera used in photography as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42032</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_CAMERA_OWNER_NAME = "CameraOwnerName";
/**
* <p>This tag records the serial number of the body of the camera that was used in photography
* as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42033</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_BODY_SERIAL_NUMBER = "BodySerialNumber";
/**
* <p>This tag notes minimum focal length, maximum focal length, minimum F number in the
* minimum focal length, and minimum F number in the maximum focal length, which are
* specification information for the lens that was used in photography. When the minimum
* F number is unknown, the notation is 0/0.</p>
*
* <ul>
* <li>Tag = 42034</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 4</li>
* <li>Default = None</li>
* <ul>
* <li>Value 1 := Minimum focal length (unit: mm)</li>
* <li>Value 2 : = Maximum focal length (unit: mm)</li>
* <li>Value 3 : = Minimum F number in the minimum focal length</li>
* <li>Value 4 : = Minimum F number in the maximum focal length</li>
* </ul>
* </ul>
*/
public static final String TAG_LENS_SPECIFICATION = "LensSpecification";
/**
* <p>This tag records the lens manufacturer as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42035</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_LENS_MAKE = "LensMake";
/**
* <p>This tag records the lens’s model name and model number as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42036</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_LENS_MODEL = "LensModel";
/**
* <p>This tag records the serial number of the interchangeable lens that was used in
* photography as an ASCII string.</p>
*
* <ul>
* <li>Tag = 42037</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_LENS_SERIAL_NUMBER = "LensSerialNumber";
// GPS Attribute Information
/**
* <p>Indicates the version of GPS Info IFD. The version is given as 2.3.0.0. This tag is
* mandatory when GPS-related tags are present. Note that this tag is written as a different
* byte than {@link #TAG_EXIF_VERSION}.</p>
*
* <ul>
* <li>Tag = 0</li>
* <li>Type = Byte</li>
* <li>Count = 4</li>
* <li>Default = 2.3.0.0</li>
* <ul>
* <li>2300 = Version 2.3</li>
* <li>Other = reserved</li>
* </ul>
* </ul>
*/
public static final String TAG_GPS_VERSION_ID = "GPSVersionID";
/**
* <p>Indicates whether the latitude is north or south latitude.</p>
*
* <ul>
* <li>Tag = 1</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #LATITUDE_NORTH
* @see #LATITUDE_SOUTH
*/
public static final String TAG_GPS_LATITUDE_REF = "GPSLatitudeRef";
/**
* <p>Indicates the latitude. The latitude is expressed as three RATIONAL values giving
* the degrees, minutes, and seconds, respectively. If latitude is expressed as degrees,
* minutes and seconds, a typical format would be dd/1,mm/1,ss/1. When degrees and minutes are
* used and, for example, fractions of minutes are given up to two decimal places, the format
* would be dd/1,mmmm/100,0/1.</p>
*
* <ul>
* <li>Tag = 2</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_LATITUDE = "GPSLatitude";
/**
* <p>Indicates whether the longitude is east or west longitude.</p>
*
* <ul>
* <li>Tag = 3</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #LONGITUDE_EAST
* @see #LONGITUDE_WEST
*/
public static final String TAG_GPS_LONGITUDE_REF = "GPSLongitudeRef";
/**
* <p>Indicates the longitude. The longitude is expressed as three RATIONAL values giving
* the degrees, minutes, and seconds, respectively. If longitude is expressed as degrees,
* minutes and seconds, a typical format would be ddd/1,mm/1,ss/1. When degrees and minutes
* are used and, for example, fractions of minutes are given up to two decimal places,
* the format would be ddd/1,mmmm/100,0/1.</p>
*
* <ul>
* <li>Tag = 4</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_LONGITUDE = "GPSLongitude";
/**
* <p>Indicates the altitude used as the reference altitude. If the reference is sea level
* and the altitude is above sea level, 0 is given. If the altitude is below sea level,
* a value of 1 is given and the altitude is indicated as an absolute value in
* {@link #TAG_GPS_ALTITUDE}.</p>
*
* <ul>
* <li>Tag = 5</li>
* <li>Type = Byte</li>
* <li>Count = 1</li>
* <li>Default = 0</li>
* </ul>
*
* @see #ALTITUDE_ABOVE_SEA_LEVEL
* @see #ALTITUDE_BELOW_SEA_LEVEL
*/
public static final String TAG_GPS_ALTITUDE_REF = "GPSAltitudeRef";
/**
* <p>Indicates the altitude based on the reference in {@link #TAG_GPS_ALTITUDE_REF}.
* The reference unit is meters.</p>
*
* <ul>
* <li>Tag = 6</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_ALTITUDE = "GPSAltitude";
/**
* <p>Indicates the time as UTC (Coordinated Universal Time). TimeStamp is expressed as three
* unsigned rational values giving the hour, minute, and second.</p>
*
* <ul>
* <li>Tag = 7</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_TIMESTAMP = "GPSTimeStamp";
/**
* <p>Indicates the GPS satellites used for measurements. This tag may be used to describe
* the number of satellites, their ID number, angle of elevation, azimuth, SNR and other
* information in ASCII notation. The format is not specified. If the GPS receiver is incapable
* of taking measurements, value of the tag shall be set to {@code null}.</p>
*
* <ul>
* <li>Tag = 8</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_SATELLITES = "GPSSatellites";
/**
* <p>Indicates the status of the GPS receiver when the image is recorded. 'A' means
* measurement is in progress, and 'V' means the measurement is interrupted.</p>
*
* <ul>
* <li>Tag = 9</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #GPS_MEASUREMENT_IN_PROGRESS
* @see #GPS_MEASUREMENT_INTERRUPTED
*/
public static final String TAG_GPS_STATUS = "GPSStatus";
/**
* <p>Indicates the GPS measurement mode. Originally it was defined for GPS, but it may
* be used for recording a measure mode to record the position information provided from
* a mobile base station or wireless LAN as well as GPS.</p>
*
* <ul>
* <li>Tag = 10</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #GPS_MEASUREMENT_2D
* @see #GPS_MEASUREMENT_3D
*/
public static final String TAG_GPS_MEASURE_MODE = "GPSMeasureMode";
/**
* <p>Indicates the GPS DOP (data degree of precision). An HDOP value is written during
* two-dimensional measurement, and PDOP during three-dimensional measurement.</p>
*
* <ul>
* <li>Tag = 11</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DOP = "GPSDOP";
/**
* <p>Indicates the unit used to express the GPS receiver speed of movement.</p>
*
* <ul>
* <li>Tag = 12</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = {@link #GPS_SPEED_KILOMETERS_PER_HOUR}</li>
* </ul>
*
* @see #GPS_SPEED_KILOMETERS_PER_HOUR
* @see #GPS_SPEED_MILES_PER_HOUR
* @see #GPS_SPEED_KNOTS
*/
public static final String TAG_GPS_SPEED_REF = "GPSSpeedRef";
/**
* <p>Indicates the speed of GPS receiver movement.</p>
*
* <ul>
* <li>Tag = 13</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_SPEED = "GPSSpeed";
/**
* <p>Indicates the reference for giving the direction of GPS receiver movement.</p>
*
* <ul>
* <li>Tag = 14</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = {@link #GPS_DIRECTION_TRUE}</li>
* </ul>
*
* @see #GPS_DIRECTION_TRUE
* @see #GPS_DIRECTION_MAGNETIC
*/
public static final String TAG_GPS_TRACK_REF = "GPSTrackRef";
/**
* <p>Indicates the direction of GPS receiver movement.
* The range of values is from 0.00 to 359.99.</p>
*
* <ul>
* <li>Tag = 15</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_TRACK = "GPSTrack";
/**
* <p>Indicates the reference for giving the direction of the image when it is captured.</p>
*
* <ul>
* <li>Tag = 16</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = {@link #GPS_DIRECTION_TRUE}</li>
* </ul>
*
* @see #GPS_DIRECTION_TRUE
* @see #GPS_DIRECTION_MAGNETIC
*/
public static final String TAG_GPS_IMG_DIRECTION_REF = "GPSImgDirectionRef";
/**
* <p>ndicates the direction of the image when it was captured.
* The range of values is from 0.00 to 359.99.</p>
*
* <ul>
* <li>Tag = 17</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_IMG_DIRECTION = "GPSImgDirection";
/**
* <p>Indicates the geodetic survey data used by the GPS receiver. If the survey data is
* restricted to Japan,the value of this tag is 'TOKYO' or 'WGS-84'. If a GPS Info tag is
* recorded, it is strongly recommended that this tag be recorded.</p>
*
* <ul>
* <li>Tag = 18</li>
* <li>Type = String</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_MAP_DATUM = "GPSMapDatum";
/**
* <p>Indicates whether the latitude of the destination point is north or south latitude.</p>
*
* <ul>
* <li>Tag = 19</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #LATITUDE_NORTH
* @see #LATITUDE_SOUTH
*/
public static final String TAG_GPS_DEST_LATITUDE_REF = "GPSDestLatitudeRef";
/**
* <p>Indicates the latitude of the destination point. The latitude is expressed as three
* unsigned rational values giving the degrees, minutes, and seconds, respectively.
* If latitude is expressed as degrees, minutes and seconds, a typical format would be
* dd/1,mm/1,ss/1. When degrees and minutes are used and, for example, fractions of minutes
* are given up to two decimal places, the format would be dd/1, mmmm/100, 0/1.</p>
*
* <ul>
* <li>Tag = 20</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DEST_LATITUDE = "GPSDestLatitude";
/**
* <p>Indicates whether the longitude of the destination point is east or west longitude.</p>
*
* <ul>
* <li>Tag = 21</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #LONGITUDE_EAST
* @see #LONGITUDE_WEST
*/
public static final String TAG_GPS_DEST_LONGITUDE_REF = "GPSDestLongitudeRef";
/**
* <p>Indicates the longitude of the destination point. The longitude is expressed as three
* unsigned rational values giving the degrees, minutes, and seconds, respectively.
* If longitude is expressed as degrees, minutes and seconds, a typical format would be ddd/1,
* mm/1, ss/1. When degrees and minutes are used and, for example, fractions of minutes are
* given up to two decimal places, the format would be ddd/1, mmmm/100, 0/1.</p>
*
* <ul>
* <li>Tag = 22</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 3</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DEST_LONGITUDE = "GPSDestLongitude";
/**
* <p>Indicates the reference used for giving the bearing to the destination point.</p>
*
* <ul>
* <li>Tag = 23</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = {@link #GPS_DIRECTION_TRUE}</li>
* </ul>
*
* @see #GPS_DIRECTION_TRUE
* @see #GPS_DIRECTION_MAGNETIC
*/
public static final String TAG_GPS_DEST_BEARING_REF = "GPSDestBearingRef";
/**
* <p>Indicates the bearing to the destination point.
* The range of values is from 0.00 to 359.99.</p>
*
* <ul>
* <li>Tag = 24</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DEST_BEARING = "GPSDestBearing";
/**
* <p>Indicates the unit used to express the distance to the destination point.</p>
*
* <ul>
* <li>Tag = 25</li>
* <li>Type = String</li>
* <li>Length = 1</li>
* <li>Default = {@link #GPS_DISTANCE_KILOMETERS}</li>
* </ul>
*
* @see #GPS_DISTANCE_KILOMETERS
* @see #GPS_DISTANCE_MILES
* @see #GPS_DISTANCE_NAUTICAL_MILES
*/
public static final String TAG_GPS_DEST_DISTANCE_REF = "GPSDestDistanceRef";
/**
* <p>Indicates the distance to the destination point.</p>
*
* <ul>
* <li>Tag = 26</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DEST_DISTANCE = "GPSDestDistance";
/**
* <p>A character string recording the name of the method used for location finding.
* The first byte indicates the character code used, and this is followed by the name of
* the method.</p>
*
* <ul>
* <li>Tag = 27</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_PROCESSING_METHOD = "GPSProcessingMethod";
/**
* <p>A character string recording the name of the GPS area. The first byte indicates
* the character code used, and this is followed by the name of the GPS area.</p>
*
* <ul>
* <li>Tag = 28</li>
* <li>Type = Undefined</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_AREA_INFORMATION = "GPSAreaInformation";
/**
* <p>A character string recording date and time information relative to UTC (Coordinated
* Universal Time). The format is "YYYY:MM:DD".</p>
*
* <ul>
* <li>Tag = 29</li>
* <li>Type = String</li>
* <li>Length = 10</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_DATESTAMP = "GPSDateStamp";
/**
* <p>Indicates whether differential correction is applied to the GPS receiver.</p>
*
* <ul>
* <li>Tag = 30</li>
* <li>Type = Unsigned short</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*
* @see #GPS_MEASUREMENT_NO_DIFFERENTIAL
* @see #GPS_MEASUREMENT_DIFFERENTIAL_CORRECTED
*/
public static final String TAG_GPS_DIFFERENTIAL = "GPSDifferential";
/**
* <p>This tag indicates horizontal positioning errors in meters.</p>
*
* <ul>
* <li>Tag = 31</li>
* <li>Type = Unsigned rational</li>
* <li>Count = 1</li>
* <li>Default = None</li>
* </ul>
*/
public static final String TAG_GPS_H_POSITIONING_ERROR = "GPSHPositioningError";
// Interoperability IFD Attribute Information
/**
* <p>Indicates the identification of the Interoperability rule.</p>
*
* <ul>
* <li>Tag = 1</li>
* <li>Type = String</li>
* <li>Length = 4</li>
* <li>Default = None</li>
* <ul>
* <li>"R98" = Indicates a file conforming to R98 file specification of Recommended
* Exif Interoperability Rules (Exif R 98) or to DCF basic file stipulated
* by Design Rule for Camera File System.</li>
* <li>"THM" = Indicates a file conforming to DCF thumbnail file stipulated by Design
* rule for Camera File System.</li>
* <li>“R03” = Indicates a file conforming to DCF Option File stipulated by Design rule
* for Camera File System.</li>
* </ul>
* </ul>
*/
public static final String TAG_INTEROPERABILITY_INDEX = "InteroperabilityIndex";
/**
* @see #TAG_IMAGE_LENGTH
*/
public static final String TAG_THUMBNAIL_IMAGE_LENGTH = "ThumbnailImageLength";
/**
* @see #TAG_IMAGE_WIDTH
*/
public static final String TAG_THUMBNAIL_IMAGE_WIDTH = "ThumbnailImageWidth";
// TODO: Unhide this when it can be public.
/**
* @see #TAG_ORIENTATION
* @hide
*/
@RestrictTo(RestrictTo.Scope.LIBRARY)
public static final String TAG_THUMBNAIL_ORIENTATION = "ThumbnailOrientation";
/** Type is int. DNG Specification 1.4.0.0. Section 4 */
public static final String TAG_DNG_VERSION = "DNGVersion";
/** Type is int. DNG Specification 1.4.0.0. Section 4 */
public static final String TAG_DEFAULT_CROP_SIZE = "DefaultCropSize";
/** Type is undefined. See Olympus MakerNote tags in http://www.exiv2.org/tags-olympus.html. */
public static final String TAG_ORF_THUMBNAIL_IMAGE = "ThumbnailImage";
/** Type is int. See Olympus Camera Settings tags in http://www.exiv2.org/tags-olympus.html. */
public static final String TAG_ORF_PREVIEW_IMAGE_START = "PreviewImageStart";
/** Type is int. See Olympus Camera Settings tags in http://www.exiv2.org/tags-olympus.html. */
public static final String TAG_ORF_PREVIEW_IMAGE_LENGTH = "PreviewImageLength";
/** Type is int. See Olympus Image Processing tags in http://www.exiv2.org/tags-olympus.html. */
public static final String TAG_ORF_ASPECT_FRAME = "AspectFrame";
/**
* Type is int. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_SENSOR_BOTTOM_BORDER = "SensorBottomBorder";
/**
* Type is int. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_SENSOR_LEFT_BORDER = "SensorLeftBorder";
/**
* Type is int. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_SENSOR_RIGHT_BORDER = "SensorRightBorder";
/**
* Type is int. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_SENSOR_TOP_BORDER = "SensorTopBorder";
/**
* Type is int. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_ISO = "ISO";
/**
* Type is undefined. See PanasonicRaw tags in
* http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html
*/
public static final String TAG_RW2_JPG_FROM_RAW = "JpgFromRaw";
/**
* Type is byte[]. See <a href=
* "https://en.wikipedia.org/wiki/Extensible_Metadata_Platform">Extensible
* Metadata Platform (XMP)</a> for details on contents.
*/
public static final String TAG_XMP = "Xmp";
/** Type is int. See JEITA CP-3451C Spec Section 3: Bilevel Images. */
public static final String TAG_NEW_SUBFILE_TYPE = "NewSubfileType";
/** Type is int. See JEITA CP-3451C Spec Section 3: Bilevel Images. */
public static final String TAG_SUBFILE_TYPE = "SubfileType";
/**
* Private tags used for pointing the other IFD offsets.
* The types of the following tags are int.
* See JEITA CP-3451C Section 4.6.3: Exif-specific IFD.
* For SubIFD, see Note 1 of Adobe PageMaker® 6.0 TIFF Technical Notes.
*/
private static final String TAG_EXIF_IFD_POINTER = "ExifIFDPointer";
private static final String TAG_GPS_INFO_IFD_POINTER = "GPSInfoIFDPointer";
private static final String TAG_INTEROPERABILITY_IFD_POINTER = "InteroperabilityIFDPointer";
private static final String TAG_SUB_IFD_POINTER = "SubIFDPointer";
// Proprietary pointer tags used for ORF files.
// See http://www.exiv2.org/tags-olympus.html
private static final String TAG_ORF_CAMERA_SETTINGS_IFD_POINTER = "CameraSettingsIFDPointer";
private static final String TAG_ORF_IMAGE_PROCESSING_IFD_POINTER = "ImageProcessingIFDPointer";
private static final int MAX_THUMBNAIL_SIZE = 512;
// Constants used for the Orientation Exif tag.
public static final int ORIENTATION_UNDEFINED = 0;
public static final int ORIENTATION_NORMAL = 1;
/**
* Indicates the image is left right reversed mirror.
*/
public static final int ORIENTATION_FLIP_HORIZONTAL = 2;
/**
* Indicates the image is rotated by 180 degree clockwise.
*/
public static final int ORIENTATION_ROTATE_180 = 3;
/**
* Indicates the image is upside down mirror, it can also be represented by flip
* horizontally firstly and rotate 180 degree clockwise.
*/
public static final int ORIENTATION_FLIP_VERTICAL = 4;
/**
* Indicates the image is flipped about top-left <--> bottom-right axis, it can also be
* represented by flip horizontally firstly and rotate 270 degree clockwise.
*/
public static final int ORIENTATION_TRANSPOSE = 5;
/**
* Indicates the image is rotated by 90 degree clockwise.
*/
public static final int ORIENTATION_ROTATE_90 = 6;
/**
* Indicates the image is flipped about top-right <--> bottom-left axis, it can also be
* represented by flip horizontally firstly and rotate 90 degree clockwise.
*/
public static final int ORIENTATION_TRANSVERSE = 7;
/**
* Indicates the image is rotated by 270 degree clockwise.
*/
public static final int ORIENTATION_ROTATE_270 = 8;
private static final List<Integer> ROTATION_ORDER = Arrays.asList(ORIENTATION_NORMAL,
ORIENTATION_ROTATE_90, ORIENTATION_ROTATE_180, ORIENTATION_ROTATE_270);
private static final List<Integer> FLIPPED_ROTATION_ORDER = Arrays.asList(
ORIENTATION_FLIP_HORIZONTAL, ORIENTATION_TRANSVERSE, ORIENTATION_FLIP_VERTICAL,
ORIENTATION_TRANSPOSE);
/**
* The constant used by {@link #TAG_PLANAR_CONFIGURATION} to denote Chunky format.
*/
public static final short FORMAT_CHUNKY = 1;
/**
* The constant used by {@link #TAG_PLANAR_CONFIGURATION} to denote Planar format.
*/
public static final short FORMAT_PLANAR = 2;
/**
* The constant used by {@link #TAG_Y_CB_CR_POSITIONING} to denote Centered positioning.
*/
public static final short Y_CB_CR_POSITIONING_CENTERED = 1;
/**
* The constant used by {@link #TAG_Y_CB_CR_POSITIONING} to denote Co-sited positioning.
*/
public static final short Y_CB_CR_POSITIONING_CO_SITED = 2;
/**
* The constant used to denote resolution unit as inches.
*/
public static final short RESOLUTION_UNIT_INCHES = 2;
/**
* The constant used to denote resolution unit as centimeters.
*/
public static final short RESOLUTION_UNIT_CENTIMETERS = 3;
/**
* The constant used by {@link #TAG_COLOR_SPACE} to denote sRGB color space.
*/
public static final int COLOR_SPACE_S_RGB = 1;
/**
* The constant used by {@link #TAG_COLOR_SPACE} to denote Uncalibrated.
*/
public static final int COLOR_SPACE_UNCALIBRATED = 65535;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is not defined.
*/
public static final short EXPOSURE_PROGRAM_NOT_DEFINED = 0;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Manual.
*/
public static final short EXPOSURE_PROGRAM_MANUAL = 1;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Normal.
*/
public static final short EXPOSURE_PROGRAM_NORMAL = 2;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is
* Aperture priority.
*/
public static final short EXPOSURE_PROGRAM_APERTURE_PRIORITY = 3;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is
* Shutter priority.
*/
public static final short EXPOSURE_PROGRAM_SHUTTER_PRIORITY = 4;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Creative
* program (biased toward depth of field).
*/
public static final short EXPOSURE_PROGRAM_CREATIVE = 5;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Action
* program (biased toward fast shutter speed).
*/
public static final short EXPOSURE_PROGRAM_ACTION = 6;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Portrait
* mode (for closeup photos with the background out of focus).
*/
public static final short EXPOSURE_PROGRAM_PORTRAIT_MODE = 7;
/**
* The constant used by {@link #TAG_EXPOSURE_PROGRAM} to denote exposure program is Landscape
* mode (for landscape photos with the background in focus).
*/
public static final short EXPOSURE_PROGRAM_LANDSCAPE_MODE = 8;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is unknown.
*/
public static final short SENSITIVITY_TYPE_UNKNOWN = 0;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Standard
* output sensitivity (SOS).
*/
public static final short SENSITIVITY_TYPE_SOS = 1;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Recommended
* exposure index (REI).
*/
public static final short SENSITIVITY_TYPE_REI = 2;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is ISO speed.
*/
public static final short SENSITIVITY_TYPE_ISO_SPEED = 3;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Standard
* output sensitivity (SOS) and recommended exposure index (REI).
*/
public static final short SENSITIVITY_TYPE_SOS_AND_REI = 4;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Standard
* output sensitivity (SOS) and ISO speed.
*/
public static final short SENSITIVITY_TYPE_SOS_AND_ISO = 5;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Recommended
* exposure index (REI) and ISO speed.
*/
public static final short SENSITIVITY_TYPE_REI_AND_ISO = 6;
/**
* The constant used by {@link #TAG_SENSITIVITY_TYPE} to denote sensitivity type is Standard
* output sensitivity (SOS) and recommended exposure index (REI) and ISO speed.
*/
public static final short SENSITIVITY_TYPE_SOS_AND_REI_AND_ISO = 7;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is unknown.
*/
public static final short METERING_MODE_UNKNOWN = 0;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is Average.
*/
public static final short METERING_MODE_AVERAGE = 1;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is
* CenterWeightedAverage.
*/
public static final short METERING_MODE_CENTER_WEIGHT_AVERAGE = 2;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is Spot.
*/
public static final short METERING_MODE_SPOT = 3;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is MultiSpot.
*/
public static final short METERING_MODE_MULTI_SPOT = 4;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is Pattern.
*/
public static final short METERING_MODE_PATTERN = 5;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is Partial.
*/
public static final short METERING_MODE_PARTIAL = 6;
/**
* The constant used by {@link #TAG_METERING_MODE} to denote metering mode is other.
*/
public static final short METERING_MODE_OTHER = 255;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is unknown.
*/
public static final short LIGHT_SOURCE_UNKNOWN = 0;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Daylight.
*/
public static final short LIGHT_SOURCE_DAYLIGHT = 1;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Fluorescent.
*/
public static final short LIGHT_SOURCE_FLUORESCENT = 2;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Tungsten
* (incandescent light).
*/
public static final short LIGHT_SOURCE_TUNGSTEN = 3;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Flash.
*/
public static final short LIGHT_SOURCE_FLASH = 4;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Fine weather.
*/
public static final short LIGHT_SOURCE_FINE_WEATHER = 9;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Cloudy weather.
*/
public static final short LIGHT_SOURCE_CLOUDY_WEATHER = 10;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Shade.
*/
public static final short LIGHT_SOURCE_SHADE = 11;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Daylight fluorescent
* (D 5700 - 7100K).
*/
public static final short LIGHT_SOURCE_DAYLIGHT_FLUORESCENT = 12;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Day white
* fluorescent (N 4600 - 5500K).
*/
public static final short LIGHT_SOURCE_DAY_WHITE_FLUORESCENT = 13;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Cool white
* fluorescent (W 3800 - 4500K).
*/
public static final short LIGHT_SOURCE_COOL_WHITE_FLUORESCENT = 14;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is White fluorescent
* (WW 3250 - 3800K).
*/
public static final short LIGHT_SOURCE_WHITE_FLUORESCENT = 15;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Warm white
* fluorescent (L 2600 - 3250K).
*/
public static final short LIGHT_SOURCE_WARM_WHITE_FLUORESCENT = 16;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Standard light A.
*/
public static final short LIGHT_SOURCE_STANDARD_LIGHT_A = 17;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Standard light B.
*/
public static final short LIGHT_SOURCE_STANDARD_LIGHT_B = 18;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is Standard light C.
*/
public static final short LIGHT_SOURCE_STANDARD_LIGHT_C = 19;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is D55.
*/
public static final short LIGHT_SOURCE_D55 = 20;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is D65.
*/
public static final short LIGHT_SOURCE_D65 = 21;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is D75.
*/
public static final short LIGHT_SOURCE_D75 = 22;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is D50.
*/
public static final short LIGHT_SOURCE_D50 = 23;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is ISO studio tungsten.
*/
public static final short LIGHT_SOURCE_ISO_STUDIO_TUNGSTEN = 24;
/**
* The constant used by {@link #TAG_LIGHT_SOURCE} to denote light source is other.
*/
public static final short LIGHT_SOURCE_OTHER = 255;
/**
* The flag used by {@link #TAG_FLASH} to indicate whether the flash is fired.
*/
public static final short FLAG_FLASH_FIRED = 0b0000_0001;
/**
* The flag used by {@link #TAG_FLASH} to indicate strobe return light is not detected.
*/
public static final short FLAG_FLASH_RETURN_LIGHT_NOT_DETECTED = 0b0000_0100;
/**
* The flag used by {@link #TAG_FLASH} to indicate strobe return light is detected.
*/
public static final short FLAG_FLASH_RETURN_LIGHT_DETECTED = 0b0000_0110;
/**
* The flag used by {@link #TAG_FLASH} to indicate the camera's flash mode is Compulsory flash
* firing.
*
* @see #FLAG_FLASH_MODE_COMPULSORY_SUPPRESSION
* @see #FLAG_FLASH_MODE_AUTO
*/
public static final short FLAG_FLASH_MODE_COMPULSORY_FIRING = 0b0000_1000;
/**
* The flag used by {@link #TAG_FLASH} to indicate the camera's flash mode is Compulsory flash
* suppression.
*
* @see #FLAG_FLASH_MODE_COMPULSORY_FIRING
* @see #FLAG_FLASH_MODE_AUTO
*/
public static final short FLAG_FLASH_MODE_COMPULSORY_SUPPRESSION = 0b0001_0000;
/**
* The flag used by {@link #TAG_FLASH} to indicate the camera's flash mode is Auto.
*
* @see #FLAG_FLASH_MODE_COMPULSORY_FIRING
* @see #FLAG_FLASH_MODE_COMPULSORY_SUPPRESSION
*/
public static final short FLAG_FLASH_MODE_AUTO = 0b0001_1000;
/**
* The flag used by {@link #TAG_FLASH} to indicate no flash function is present.
*/
public static final short FLAG_FLASH_NO_FLASH_FUNCTION = 0b0010_0000;
/**
* The flag used by {@link #TAG_FLASH} to indicate red-eye reduction is supported.
*/
public static final short FLAG_FLASH_RED_EYE_SUPPORTED = 0b0100_0000;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is not
* defined.
*/
public static final short SENSOR_TYPE_NOT_DEFINED = 1;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is One-chip
* color area sensor.
*/
public static final short SENSOR_TYPE_ONE_CHIP = 2;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is Two-chip
* color area sensor.
*/
public static final short SENSOR_TYPE_TWO_CHIP = 3;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is
* Three-chip color area sensor.
*/
public static final short SENSOR_TYPE_THREE_CHIP = 4;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is Color
* sequential area sensor.
*/
public static final short SENSOR_TYPE_COLOR_SEQUENTIAL = 5;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is Trilinear
* sensor.
*/
public static final short SENSOR_TYPE_TRILINEAR = 7;
/**
* The constant used by {@link #TAG_SENSING_METHOD} to denote the image sensor type is Color
* sequential linear sensor.
*/
public static final short SENSOR_TYPE_COLOR_SEQUENTIAL_LINEAR = 8;
/**
* The constant used by {@link #TAG_FILE_SOURCE} to denote the source is other.
*/
public static final short FILE_SOURCE_OTHER = 0;
/**
* The constant used by {@link #TAG_FILE_SOURCE} to denote the source is scanner of transparent
* type.
*/
public static final short FILE_SOURCE_TRANSPARENT_SCANNER = 1;
/**
* The constant used by {@link #TAG_FILE_SOURCE} to denote the source is scanner of reflex type.
*/
public static final short FILE_SOURCE_REFLEX_SCANNER = 2;
/**
* The constant used by {@link #TAG_FILE_SOURCE} to denote the source is DSC.
*/
public static final short FILE_SOURCE_DSC = 3;
/**
* The constant used by {@link #TAG_SCENE_TYPE} to denote the scene is directly photographed.
*/
public static final short SCENE_TYPE_DIRECTLY_PHOTOGRAPHED = 1;
/**
* The constant used by {@link #TAG_CUSTOM_RENDERED} to denote no special processing is used.
*/
public static final short RENDERED_PROCESS_NORMAL = 0;
/**
* The constant used by {@link #TAG_CUSTOM_RENDERED} to denote special processing is used.
*/
public static final short RENDERED_PROCESS_CUSTOM = 1;
/**
* The constant used by {@link #TAG_EXPOSURE_MODE} to denote the exposure mode is Auto.
*/
public static final short EXPOSURE_MODE_AUTO = 0;
/**
* The constant used by {@link #TAG_EXPOSURE_MODE} to denote the exposure mode is Manual.
*/
public static final short EXPOSURE_MODE_MANUAL = 1;
/**
* The constant used by {@link #TAG_EXPOSURE_MODE} to denote the exposure mode is Auto bracket.
*/
public static final short EXPOSURE_MODE_AUTO_BRACKET = 2;
/**
* The constant used by {@link #TAG_WHITE_BALANCE} to denote the white balance is Auto.
*
* @deprecated Use {@link #WHITE_BALANCE_AUTO} instead.
*/
@Deprecated public static final int WHITEBALANCE_AUTO = 0;
/**
* The constant used by {@link #TAG_WHITE_BALANCE} to denote the white balance is Manual.
*
* @deprecated Use {@link #WHITE_BALANCE_MANUAL} instead.
*/
@Deprecated public static final int WHITEBALANCE_MANUAL = 1;
/**
* The constant used by {@link #TAG_WHITE_BALANCE} to denote the white balance is Auto.
*/
public static final short WHITE_BALANCE_AUTO = 0;
/**
* The constant used by {@link #TAG_WHITE_BALANCE} to denote the white balance is Manual.
*/
public static final short WHITE_BALANCE_MANUAL = 1;
/**
* The constant used by {@link #TAG_SCENE_CAPTURE_TYPE} to denote the scene capture type is
* Standard.
*/
public static final short SCENE_CAPTURE_TYPE_STANDARD = 0;
/**
* The constant used by {@link #TAG_SCENE_CAPTURE_TYPE} to denote the scene capture type is
* Landscape.
*/
public static final short SCENE_CAPTURE_TYPE_LANDSCAPE = 1;
/**
* The constant used by {@link #TAG_SCENE_CAPTURE_TYPE} to denote the scene capture type is
* Portrait.
*/
public static final short SCENE_CAPTURE_TYPE_PORTRAIT = 2;
/**
* The constant used by {@link #TAG_SCENE_CAPTURE_TYPE} to denote the scene capture type is
* Night scene.
*/
public static final short SCENE_CAPTURE_TYPE_NIGHT = 3;
/**
* The constant used by {@link #TAG_GAIN_CONTROL} to denote none gain adjustment.
*/
public static final short GAIN_CONTROL_NONE = 0;
/**
* The constant used by {@link #TAG_GAIN_CONTROL} to denote low gain up.
*/
public static final short GAIN_CONTROL_LOW_GAIN_UP = 1;
/**
* The constant used by {@link #TAG_GAIN_CONTROL} to denote high gain up.
*/
public static final short GAIN_CONTROL_HIGH_GAIN_UP = 2;
/**
* The constant used by {@link #TAG_GAIN_CONTROL} to denote low gain down.
*/
public static final short GAIN_CONTROL_LOW_GAIN_DOWN = 3;
/**
* The constant used by {@link #TAG_GAIN_CONTROL} to denote high gain down.
*/
public static final short GAIN_CONTROL_HIGH_GAIN_DOWN = 4;
/**
* The constant used by {@link #TAG_CONTRAST} to denote normal contrast.
*/
public static final short CONTRAST_NORMAL = 0;
/**
* The constant used by {@link #TAG_CONTRAST} to denote soft contrast.
*/
public static final short CONTRAST_SOFT = 1;
/**
* The constant used by {@link #TAG_CONTRAST} to denote hard contrast.
*/
public static final short CONTRAST_HARD = 2;
/**
* The constant used by {@link #TAG_SATURATION} to denote normal saturation.
*/
public static final short SATURATION_NORMAL = 0;
/**
* The constant used by {@link #TAG_SATURATION} to denote low saturation.
*/
public static final short SATURATION_LOW = 0;
/**
* The constant used by {@link #TAG_SHARPNESS} to denote high saturation.
*/
public static final short SATURATION_HIGH = 0;
/**
* The constant used by {@link #TAG_SHARPNESS} to denote normal sharpness.
*/
public static final short SHARPNESS_NORMAL = 0;
/**
* The constant used by {@link #TAG_SHARPNESS} to denote soft sharpness.
*/
public static final short SHARPNESS_SOFT = 1;
/**
* The constant used by {@link #TAG_SHARPNESS} to denote hard sharpness.
*/
public static final short SHARPNESS_HARD = 2;
/**
* The constant used by {@link #TAG_SUBJECT_DISTANCE_RANGE} to denote the subject distance range
* is unknown.
*/
public static final short SUBJECT_DISTANCE_RANGE_UNKNOWN = 0;
/**
* The constant used by {@link #TAG_SUBJECT_DISTANCE_RANGE} to denote the subject distance range
* is Macro.
*/
public static final short SUBJECT_DISTANCE_RANGE_MACRO = 1;
/**
* The constant used by {@link #TAG_SUBJECT_DISTANCE_RANGE} to denote the subject distance range
* is Close view.
*/
public static final short SUBJECT_DISTANCE_RANGE_CLOSE_VIEW = 2;
/**
* The constant used by {@link #TAG_SUBJECT_DISTANCE_RANGE} to denote the subject distance range
* is Distant view.
*/
public static final short SUBJECT_DISTANCE_RANGE_DISTANT_VIEW = 3;
/**
* The constant used by GPS latitude-related tags to denote the latitude is North latitude.
*
* @see #TAG_GPS_LATITUDE_REF
* @see #TAG_GPS_DEST_LATITUDE_REF
*/
public static final String LATITUDE_NORTH = "N";
/**
* The constant used by GPS latitude-related tags to denote the latitude is South latitude.
*
* @see #TAG_GPS_LATITUDE_REF
* @see #TAG_GPS_DEST_LATITUDE_REF
*/
public static final String LATITUDE_SOUTH = "S";
/**
* The constant used by GPS longitude-related tags to denote the longitude is East longitude.
*
* @see #TAG_GPS_LONGITUDE_REF
* @see #TAG_GPS_DEST_LONGITUDE_REF
*/
public static final String LONGITUDE_EAST = "E";
/**
* The constant used by GPS longitude-related tags to denote the longitude is West longitude.
*
* @see #TAG_GPS_LONGITUDE_REF
* @see #TAG_GPS_DEST_LONGITUDE_REF
*/
public static final String LONGITUDE_WEST = "W";
/**
* The constant used by {@link #TAG_GPS_ALTITUDE_REF} to denote the altitude is above sea level.
*/
public static final short ALTITUDE_ABOVE_SEA_LEVEL = 0;
/**
* The constant used by {@link #TAG_GPS_ALTITUDE_REF} to denote the altitude is below sea level.
*/
public static final short ALTITUDE_BELOW_SEA_LEVEL = 1;
/**
* The constant used by {@link #TAG_GPS_STATUS} to denote GPS measurement is in progress.
*/
public static final String GPS_MEASUREMENT_IN_PROGRESS = "A";
/**
* The constant used by {@link #TAG_GPS_STATUS} to denote GPS measurement is interrupted.
*/
public static final String GPS_MEASUREMENT_INTERRUPTED = "V";
/**
* The constant used by {@link #TAG_GPS_MEASURE_MODE} to denote GPS measurement is
* 2-dimensional.
*/
public static final String GPS_MEASUREMENT_2D = "2";
/**
* The constant used by {@link #TAG_GPS_MEASURE_MODE} to denote GPS measurement is
* 3-dimensional.
*/
public static final String GPS_MEASUREMENT_3D = "3";
/**
* The constant used by {@link #TAG_GPS_SPEED_REF} to denote the speed unit is kilometers per
* hour.
*/
public static final String GPS_SPEED_KILOMETERS_PER_HOUR = "K";
/**
* The constant used by {@link #TAG_GPS_SPEED_REF} to denote the speed unit is miles per hour.
*/
public static final String GPS_SPEED_MILES_PER_HOUR = "M";
/**
* The constant used by {@link #TAG_GPS_SPEED_REF} to denote the speed unit is knots.
*/
public static final String GPS_SPEED_KNOTS = "N";
/**
* The constant used by GPS attributes to denote the direction is true direction.
*/
public static final String GPS_DIRECTION_TRUE = "T";
/**
* The constant used by GPS attributes to denote the direction is magnetic direction.
*/
public static final String GPS_DIRECTION_MAGNETIC = "M";
/**
* The constant used by {@link #TAG_GPS_DEST_DISTANCE_REF} to denote the distance unit is
* kilometers.
*/
public static final String GPS_DISTANCE_KILOMETERS = "K";
/**
* The constant used by {@link #TAG_GPS_DEST_DISTANCE_REF} to denote the distance unit is miles.
*/
public static final String GPS_DISTANCE_MILES = "M";
/**
* The constant used by {@link #TAG_GPS_DEST_DISTANCE_REF} to denote the distance unit is
* nautical miles.
*/
public static final String GPS_DISTANCE_NAUTICAL_MILES = "N";
/**
* The constant used by {@link #TAG_GPS_DIFFERENTIAL} to denote no differential correction is
* applied.
*/
public static final short GPS_MEASUREMENT_NO_DIFFERENTIAL = 0;
/**
* The constant used by {@link #TAG_GPS_DIFFERENTIAL} to denote differential correction is
* applied.
*/
public static final short GPS_MEASUREMENT_DIFFERENTIAL_CORRECTED = 1;
/**
* The constant used by {@link #TAG_COMPRESSION} to denote the image is not compressed.
*/
public static final int DATA_UNCOMPRESSED = 1;
/**
* The constant used by {@link #TAG_COMPRESSION} to denote the image is huffman compressed.
*/
public static final int DATA_HUFFMAN_COMPRESSED = 2;
/**
* The constant used by {@link #TAG_COMPRESSION} to denote the image is JPEG.
*/
public static final int DATA_JPEG = 6;
/**
* The constant used by {@link #TAG_COMPRESSION}, see DNG Specification 1.4.0.0.
* Section 3, Compression
*/
public static final int DATA_JPEG_COMPRESSED = 7;
/**
* The constant used by {@link #TAG_COMPRESSION}, see DNG Specification 1.4.0.0.
* Section 3, Compression
*/
public static final int DATA_DEFLATE_ZIP = 8;
/**
* The constant used by {@link #TAG_COMPRESSION} to denote the image is pack-bits compressed.
*/
public static final int DATA_PACK_BITS_COMPRESSED = 32773;
/**
* The constant used by {@link #TAG_COMPRESSION}, see DNG Specification 1.4.0.0.
* Section 3, Compression
*/
public static final int DATA_LOSSY_JPEG = 34892;
/**
* The constant used by {@link #TAG_BITS_PER_SAMPLE}.
* See JEITA CP-3451C Spec Section 6, Differences from Palette Color Images
*/
public static final int[] BITS_PER_SAMPLE_RGB = new int[] { 8, 8, 8 };
/**
* The constant used by {@link #TAG_BITS_PER_SAMPLE}.
* See JEITA CP-3451C Spec Section 4, Differences from Bilevel Images
*/
public static final int[] BITS_PER_SAMPLE_GREYSCALE_1 = new int[] { 4 };
/**
* The constant used by {@link #TAG_BITS_PER_SAMPLE}.
* See JEITA CP-3451C Spec Section 4, Differences from Bilevel Images
*/
public static final int[] BITS_PER_SAMPLE_GREYSCALE_2 = new int[] { 8 };
/**
* The constant used by {@link #TAG_PHOTOMETRIC_INTERPRETATION}.
*/
public static final int PHOTOMETRIC_INTERPRETATION_WHITE_IS_ZERO = 0;
/**
* The constant used by {@link #TAG_PHOTOMETRIC_INTERPRETATION}.
*/
public static final int PHOTOMETRIC_INTERPRETATION_BLACK_IS_ZERO = 1;
/**
* The constant used by {@link #TAG_PHOTOMETRIC_INTERPRETATION}.
*/
public static final int PHOTOMETRIC_INTERPRETATION_RGB = 2;
/**
* The constant used by {@link #TAG_PHOTOMETRIC_INTERPRETATION}.
*/
public static final int PHOTOMETRIC_INTERPRETATION_YCBCR = 6;
/**
* The constant used by {@link #TAG_NEW_SUBFILE_TYPE}. See JEITA CP-3451C Spec Section 8.
*/
public static final int ORIGINAL_RESOLUTION_IMAGE = 0;
/**
* The constant used by {@link #TAG_NEW_SUBFILE_TYPE}. See JEITA CP-3451C Spec Section 8.
*/
public static final int REDUCED_RESOLUTION_IMAGE = 1;
/**
* Constant used to indicate that the input stream contains the full image data.
* <p>
* The format of the image data should follow one of the image formats supported by this class.
*/
public static final int STREAM_TYPE_FULL_IMAGE_DATA = 0;
/**
* Constant used to indicate that the input stream contains only Exif data.
* <p>
* The format of the Exif-only data must follow the below structure:
* Exif Identifier Code ("Exif\0\0") + TIFF header + IFD data
* See JEITA CP-3451C Section 4.5.2 and 4.5.4 specifications for more details.
*/
public static final int STREAM_TYPE_EXIF_DATA_ONLY = 1;
/** @hide */
@RestrictTo(RestrictTo.Scope.LIBRARY)
@Retention(RetentionPolicy.SOURCE)
@IntDef({STREAM_TYPE_FULL_IMAGE_DATA, STREAM_TYPE_EXIF_DATA_ONLY})
public @interface ExifStreamType {}
// Maximum size for checking file type signature (see image_type_recognition_lite.cc)
private static final int SIGNATURE_CHECK_SIZE = 5000;
static final byte[] JPEG_SIGNATURE = new byte[] {(byte) 0xff, (byte) 0xd8, (byte) 0xff};
private static final String RAF_SIGNATURE = "FUJIFILMCCD-RAW";
private static final int RAF_OFFSET_TO_JPEG_IMAGE_OFFSET = 84;
private static final byte[] HEIF_TYPE_FTYP = new byte[] {'f', 't', 'y', 'p'};
private static final byte[] HEIF_BRAND_MIF1 = new byte[] {'m', 'i', 'f', '1'};
private static final byte[] HEIF_BRAND_HEIC = new byte[] {'h', 'e', 'i', 'c'};
// See http://fileformats.archiveteam.org/wiki/Olympus_ORF
private static final short ORF_SIGNATURE_1 = 0x4f52;
private static final short ORF_SIGNATURE_2 = 0x5352;
// There are two formats for Olympus Makernote Headers. Each has different identifiers and
// offsets to the actual data.
// See http://www.exiv2.org/makernote.html#R1
private static final byte[] ORF_MAKER_NOTE_HEADER_1 = new byte[] {(byte) 0x4f, (byte) 0x4c,
(byte) 0x59, (byte) 0x4d, (byte) 0x50, (byte) 0x00}; // "OLYMP\0"
private static final byte[] ORF_MAKER_NOTE_HEADER_2 = new byte[] {(byte) 0x4f, (byte) 0x4c,
(byte) 0x59, (byte) 0x4d, (byte) 0x50, (byte) 0x55, (byte) 0x53, (byte) 0x00,
(byte) 0x49, (byte) 0x49}; // "OLYMPUS\0II"
private static final int ORF_MAKER_NOTE_HEADER_1_SIZE = 8;
private static final int ORF_MAKER_NOTE_HEADER_2_SIZE = 12;
// See http://fileformats.archiveteam.org/wiki/RW2
private static final short RW2_SIGNATURE = 0x0055;
// See http://fileformats.archiveteam.org/wiki/Pentax_PEF
private static final String PEF_SIGNATURE = "PENTAX";
// See http://www.exiv2.org/makernote.html#R11
private static final int PEF_MAKER_NOTE_SKIP_SIZE = 6;
// See PNG (Portable Network Graphics) Specification, Version 1.2,
// 3.1. PNG file signature
private static final byte[] PNG_SIGNATURE = new byte[] {(byte) 0x89, (byte) 0x50, (byte) 0x4e,
(byte) 0x47, (byte) 0x0d, (byte) 0x0a, (byte) 0x1a, (byte) 0x0a};
// See PNG (Portable Network Graphics) Specification, Version 1.2,
// 3.7. eXIf Exchangeable Image File (Exif) Profile
private static final byte[] PNG_CHUNK_TYPE_EXIF = new byte[]{(byte) 0x65, (byte) 0x58,
(byte) 0x49, (byte) 0x66};
private static final byte[] PNG_CHUNK_TYPE_IHDR = new byte[]{(byte) 0x49, (byte) 0x48,
(byte) 0x44, (byte) 0x52};
private static final byte[] PNG_CHUNK_TYPE_IEND = new byte[]{(byte) 0x49, (byte) 0x45,
(byte) 0x4e, (byte) 0x44};
private static final int PNG_CHUNK_TYPE_BYTE_LENGTH = 4;
private static final int PNG_CHUNK_CRC_BYTE_LENGTH = 4;
// See https://developers.google.com/speed/webp/docs/riff_container, Section "WebP File Header"
private static final byte[] WEBP_SIGNATURE_1 = new byte[] {'R', 'I', 'F', 'F'};
private static final byte[] WEBP_SIGNATURE_2 = new byte[] {'W', 'E', 'B', 'P'};
private static final int WEBP_FILE_SIZE_BYTE_LENGTH = 4;
private static final byte[] WEBP_CHUNK_TYPE_EXIF = new byte[]{(byte) 0x45, (byte) 0x58,
(byte) 0x49, (byte) 0x46};
private static final byte[] WEBP_VP8_SIGNATURE = new byte[]{(byte) 0x9d, (byte) 0x01,
(byte) 0x2a};
private static final byte WEBP_VP8L_SIGNATURE = (byte) 0x2f;
private static final byte[] WEBP_CHUNK_TYPE_VP8X = "VP8X".getBytes(Charset.defaultCharset());
private static final byte[] WEBP_CHUNK_TYPE_VP8L = "VP8L".getBytes(Charset.defaultCharset());
private static final byte[] WEBP_CHUNK_TYPE_VP8 = "VP8 ".getBytes(Charset.defaultCharset());
private static final byte[] WEBP_CHUNK_TYPE_ANIM = "ANIM".getBytes(Charset.defaultCharset());
private static final byte[] WEBP_CHUNK_TYPE_ANMF = "ANMF".getBytes(Charset.defaultCharset());
private static final int WEBP_CHUNK_TYPE_VP8X_DEFAULT_LENGTH = 10;
private static final int WEBP_CHUNK_TYPE_BYTE_LENGTH = 4;
private static final int WEBP_CHUNK_SIZE_BYTE_LENGTH = 4;
private static SimpleDateFormat sFormatterPrimary;
private static SimpleDateFormat sFormatterSecondary;
// See Exchangeable image file format for digital still cameras: Exif version 2.2.
// The following values are for parsing EXIF data area. There are tag groups in EXIF data area.
// They are called "Image File Directory". They have multiple data formats to cover various
// image metadata from GPS longitude to camera model name.
// Types of Exif byte alignments (see JEITA CP-3451C Section 4.5.2)
static final short BYTE_ALIGN_II = 0x4949; // II: Intel order
static final short BYTE_ALIGN_MM = 0x4d4d; // MM: Motorola order
// TIFF Header Fixed Constant (see JEITA CP-3451C Section 4.5.2)
static final byte START_CODE = 0x2a; // 42
private static final int IFD_OFFSET = 8;
// Formats for the value in IFD entry (See TIFF 6.0 Section 2, "Image File Directory".)
private static final int IFD_FORMAT_BYTE = 1;
private static final int IFD_FORMAT_STRING = 2;
private static final int IFD_FORMAT_USHORT = 3;
private static final int IFD_FORMAT_ULONG = 4;
private static final int IFD_FORMAT_URATIONAL = 5;
private static final int IFD_FORMAT_SBYTE = 6;
private static final int IFD_FORMAT_UNDEFINED = 7;
private static final int IFD_FORMAT_SSHORT = 8;
private static final int IFD_FORMAT_SLONG = 9;
private static final int IFD_FORMAT_SRATIONAL = 10;
private static final int IFD_FORMAT_SINGLE = 11;
private static final int IFD_FORMAT_DOUBLE = 12;
// Format indicating a new IFD entry (See Adobe PageMaker® 6.0 TIFF Technical Notes, "New Tag")
private static final int IFD_FORMAT_IFD = 13;
private static final int SKIP_BUFFER_SIZE = 8192;
// Names for the data formats for debugging purpose.
static final String[] IFD_FORMAT_NAMES = new String[] {
"", "BYTE", "STRING", "USHORT", "ULONG", "URATIONAL", "SBYTE", "UNDEFINED", "SSHORT",
"SLONG", "SRATIONAL", "SINGLE", "DOUBLE", "IFD"
};
// Sizes of the components of each IFD value format
static final int[] IFD_FORMAT_BYTES_PER_FORMAT = new int[] {
0, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 4, 8, 1
};
@SuppressWarnings("WeakerAccess") /* synthetic access */
static final byte[] EXIF_ASCII_PREFIX = new byte[] {
0x41, 0x53, 0x43, 0x49, 0x49, 0x0, 0x0, 0x0
};
// A class for indicating EXIF rational type.
private static class Rational {
public final long numerator;
public final long denominator;
@SuppressWarnings("WeakerAccess") /* synthetic access */
Rational(double value) {
this((long) (value * 10000), 10000);
}
@SuppressWarnings("WeakerAccess") /* synthetic access */
Rational(long numerator, long denominator) {
// Handle erroneous case
if (denominator == 0) {
this.numerator = 0;
this.denominator = 1;
return;
}
this.numerator = numerator;
this.denominator = denominator;
}
@Override
public String toString() {
return numerator + "/" + denominator;
}
public double calculate() {
return (double) numerator / denominator;
}
}
// A class for indicating EXIF attribute.
private static class ExifAttribute {
public static final long BYTES_OFFSET_UNKNOWN = -1;
public final int format;
public final int numberOfComponents;
public final long bytesOffset;
public final byte[] bytes;
@SuppressWarnings("WeakerAccess") /* synthetic access */
ExifAttribute(int format, int numberOfComponents, byte[] bytes) {
this(format, numberOfComponents, BYTES_OFFSET_UNKNOWN, bytes);
}
@SuppressWarnings("WeakerAccess") /* synthetic access */
ExifAttribute(int format, int numberOfComponents, long bytesOffset, byte[] bytes) {
this.format = format;
this.numberOfComponents = numberOfComponents;
this.bytesOffset = bytesOffset;
this.bytes = bytes;
}
public static ExifAttribute createUShort(int[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_USHORT] * values.length]);
buffer.order(byteOrder);
for (int value : values) {
buffer.putShort((short) value);
}
return new ExifAttribute(IFD_FORMAT_USHORT, values.length, buffer.array());
}
public static ExifAttribute createUShort(int value, ByteOrder byteOrder) {
return createUShort(new int[] {value}, byteOrder);
}
public static ExifAttribute createULong(long[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_ULONG] * values.length]);
buffer.order(byteOrder);
for (long value : values) {
buffer.putInt((int) value);
}
return new ExifAttribute(IFD_FORMAT_ULONG, values.length, buffer.array());
}
public static ExifAttribute createULong(long value, ByteOrder byteOrder) {
return createULong(new long[] {value}, byteOrder);
}
public static ExifAttribute createSLong(int[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_SLONG] * values.length]);
buffer.order(byteOrder);
for (int value : values) {
buffer.putInt(value);
}
return new ExifAttribute(IFD_FORMAT_SLONG, values.length, buffer.array());
}
public static ExifAttribute createSLong(int value, ByteOrder byteOrder) {
return createSLong(new int[] {value}, byteOrder);
}
public static ExifAttribute createByte(String value) {
// Exception for GPSAltitudeRef tag
if (value.length() == 1 && value.charAt(0) >= '0' && value.charAt(0) <= '1') {
final byte[] bytes = new byte[] { (byte) (value.charAt(0) - '0') };
return new ExifAttribute(IFD_FORMAT_BYTE, bytes.length, bytes);
}
final byte[] ascii = value.getBytes(ASCII);
return new ExifAttribute(IFD_FORMAT_BYTE, ascii.length, ascii);
}
public static ExifAttribute createString(String value) {
final byte[] ascii = (value + '\0').getBytes(ASCII);
return new ExifAttribute(IFD_FORMAT_STRING, ascii.length, ascii);
}
public static ExifAttribute createURational(Rational[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_URATIONAL] * values.length]);
buffer.order(byteOrder);
for (Rational value : values) {
buffer.putInt((int) value.numerator);
buffer.putInt((int) value.denominator);
}
return new ExifAttribute(IFD_FORMAT_URATIONAL, values.length, buffer.array());
}
public static ExifAttribute createURational(Rational value, ByteOrder byteOrder) {
return createURational(new Rational[] {value}, byteOrder);
}
public static ExifAttribute createSRational(Rational[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_SRATIONAL] * values.length]);
buffer.order(byteOrder);
for (Rational value : values) {
buffer.putInt((int) value.numerator);
buffer.putInt((int) value.denominator);
}
return new ExifAttribute(IFD_FORMAT_SRATIONAL, values.length, buffer.array());
}
public static ExifAttribute createSRational(Rational value, ByteOrder byteOrder) {
return createSRational(new Rational[] {value}, byteOrder);
}
public static ExifAttribute createDouble(double[] values, ByteOrder byteOrder) {
final ByteBuffer buffer = ByteBuffer.wrap(
new byte[IFD_FORMAT_BYTES_PER_FORMAT[IFD_FORMAT_DOUBLE] * values.length]);
buffer.order(byteOrder);
for (double value : values) {
buffer.putDouble(value);
}
return new ExifAttribute(IFD_FORMAT_DOUBLE, values.length, buffer.array());
}
public static ExifAttribute createDouble(double value, ByteOrder byteOrder) {
return createDouble(new double[] {value}, byteOrder);
}
@Override
public String toString() {
return "(" + IFD_FORMAT_NAMES[format] + ", data length:" + bytes.length + ")";
}
@SuppressWarnings("WeakerAccess") /* synthetic access */
Object getValue(ByteOrder byteOrder) {
ByteOrderedDataInputStream inputStream = null;
try {
inputStream = new ByteOrderedDataInputStream(bytes);
inputStream.setByteOrder(byteOrder);
switch (format) {
case IFD_FORMAT_BYTE:
case IFD_FORMAT_SBYTE: {
// Exception for GPSAltitudeRef tag
if (bytes.length == 1 && bytes[0] >= 0 && bytes[0] <= 1) {
return new String(new char[] { (char) (bytes[0] + '0') });
}
return new String(bytes, ASCII);
}
case IFD_FORMAT_UNDEFINED:
case IFD_FORMAT_STRING: {
int index = 0;
if (numberOfComponents >= EXIF_ASCII_PREFIX.length) {
boolean same = true;
for (int i = 0; i < EXIF_ASCII_PREFIX.length; ++i) {
if (bytes[i] != EXIF_ASCII_PREFIX[i]) {
same = false;
break;
}
}
if (same) {
index = EXIF_ASCII_PREFIX.length;
}
}
StringBuilder stringBuilder = new StringBuilder();
while (index < numberOfComponents) {
int ch = bytes[index];
if (ch == 0) {
break;
}
if (ch >= 32) {
stringBuilder.append((char) ch);
} else {
stringBuilder.append('?');
}
++index;
}
return stringBuilder.toString();
}
case IFD_FORMAT_USHORT: {
final int[] values = new int[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readUnsignedShort();
}
return values;
}
case IFD_FORMAT_ULONG: {
final long[] values = new long[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readUnsignedInt();
}
return values;
}
case IFD_FORMAT_URATIONAL: {
final Rational[] values = new Rational[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
final long numerator = inputStream.readUnsignedInt();
final long denominator = inputStream.readUnsignedInt();
values[i] = new Rational(numerator, denominator);
}
return values;
}
case IFD_FORMAT_SSHORT: {
final int[] values = new int[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readShort();
}
return values;
}
case IFD_FORMAT_SLONG: {
final int[] values = new int[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readInt();
}
return values;
}
case IFD_FORMAT_SRATIONAL: {
final Rational[] values = new Rational[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
final long numerator = inputStream.readInt();
final long denominator = inputStream.readInt();
values[i] = new Rational(numerator, denominator);
}
return values;
}
case IFD_FORMAT_SINGLE: {
final double[] values = new double[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readFloat();
}
return values;
}
case IFD_FORMAT_DOUBLE: {
final double[] values = new double[numberOfComponents];
for (int i = 0; i < numberOfComponents; ++i) {
values[i] = inputStream.readDouble();
}
return values;
}
default:
return null;
}
} catch (IOException e) {
Log.w(TAG, "IOException occurred during reading a value", e);
return null;
} finally {
if (inputStream != null) {
try {
inputStream.close();
} catch (IOException e) {
Log.e(TAG, "IOException occurred while closing InputStream", e);
}
}
}
}
public double getDoubleValue(ByteOrder byteOrder) {
Object value = getValue(byteOrder);
if (value == null) {
throw new NumberFormatException("NULL can't be converted to a double value");
}
if (value instanceof String) {
return Double.parseDouble((String) value);
}
if (value instanceof long[]) {
long[] array = (long[]) value;
if (array.length == 1) {
return array[0];
}
throw new NumberFormatException("There are more than one component");
}
if (value instanceof int[]) {
int[] array = (int[]) value;
if (array.length == 1) {
return array[0];
}
throw new NumberFormatException("There are more than one component");
}
if (value instanceof double[]) {
double[] array = (double[]) value;
if (array.length == 1) {
return array[0];
}
throw new NumberFormatException("There are more than one component");
}
if (value instanceof Rational[]) {
Rational[] array = (Rational[]) value;
if (array.length == 1) {
return array[0].calculate();
}
throw new NumberFormatException("There are more than one component");
}
throw new NumberFormatException("Couldn't find a double value");
}
public int getIntValue(ByteOrder byteOrder) {
Object value = getValue(byteOrder);
if (value == null) {
throw new NumberFormatException("NULL can't be converted to a integer value");
}
if (value instanceof String) {
return Integer.parseInt((String) value);
}
if (value instanceof long[]) {
long[] array = (long[]) value;
if (array.length == 1) {
return (int) array[0];
}
throw new NumberFormatException("There are more than one component");
}
if (value instanceof int[]) {
int[] array = (int[]) value;
if (array.length == 1) {
return array[0];
}
throw new NumberFormatException("There are more than one component");
}
throw new NumberFormatException("Couldn't find a integer value");
}
public String getStringValue(ByteOrder byteOrder) {
Object value = getValue(byteOrder);
if (value == null) {
return null;
}
if (value instanceof String) {
return (String) value;
}
final StringBuilder stringBuilder = new StringBuilder();
if (value instanceof long[]) {
long[] array = (long[]) value;
for (int i = 0; i < array.length; ++i) {
stringBuilder.append(array[i]);
if (i + 1 != array.length) {
stringBuilder.append(",");
}
}
return stringBuilder.toString();
}
if (value instanceof int[]) {
int[] array = (int[]) value;
for (int i = 0; i < array.length; ++i) {
stringBuilder.append(array[i]);
if (i + 1 != array.length) {
stringBuilder.append(",");
}
}
return stringBuilder.toString();
}
if (value instanceof double[]) {
double[] array = (double[]) value;
for (int i = 0; i < array.length; ++i) {
stringBuilder.append(array[i]);
if (i + 1 != array.length) {
stringBuilder.append(",");
}
}
return stringBuilder.toString();
}
if (value instanceof Rational[]) {
Rational[] array = (Rational[]) value;
for (int i = 0; i < array.length; ++i) {
stringBuilder.append(array[i].numerator);
stringBuilder.append('/');
stringBuilder.append(array[i].denominator);
if (i + 1 != array.length) {
stringBuilder.append(",");
}
}
return stringBuilder.toString();
}
return null;
}
public int size() {
return IFD_FORMAT_BYTES_PER_FORMAT[format] * numberOfComponents;
}
}
// A class for indicating EXIF tag.
static class ExifTag {
public final int number;
public final String name;
public final int primaryFormat;
public final int secondaryFormat;
@SuppressWarnings("WeakerAccess") /* synthetic access */
ExifTag(String name, int number, int format) {
this.name = name;
this.number = number;
this.primaryFormat = format;
this.secondaryFormat = -1;
}
@SuppressWarnings("WeakerAccess") /* synthetic access */
ExifTag(String name, int number, int primaryFormat, int secondaryFormat) {
this.name = name;
this.number = number;
this.primaryFormat = primaryFormat;
this.secondaryFormat = secondaryFormat;
}
@SuppressWarnings("WeakerAccess") /* synthetic access */
boolean isFormatCompatible(int format) {
if (primaryFormat == IFD_FORMAT_UNDEFINED || format == IFD_FORMAT_UNDEFINED) {
return true;
} else if (primaryFormat == format || secondaryFormat == format) {
return true;
} else if ((primaryFormat == IFD_FORMAT_ULONG || secondaryFormat == IFD_FORMAT_ULONG)
&& format == IFD_FORMAT_USHORT) {
return true;
} else if ((primaryFormat == IFD_FORMAT_SLONG || secondaryFormat == IFD_FORMAT_SLONG)
&& format == IFD_FORMAT_SSHORT) {
return true;
} else if ((primaryFormat == IFD_FORMAT_DOUBLE || secondaryFormat == IFD_FORMAT_DOUBLE)
&& format == IFD_FORMAT_SINGLE) {
return true;
}
return false;
}
}
// Primary image IFD TIFF tags (See JEITA CP-3451C Section 4.6.8 Tag Support Levels)
private static final ExifTag[] IFD_TIFF_TAGS = new ExifTag[] {
// For below two, see TIFF 6.0 Spec Section 3: Bilevel Images.
new ExifTag(TAG_NEW_SUBFILE_TYPE, 254, IFD_FORMAT_ULONG),
new ExifTag(TAG_SUBFILE_TYPE, 255, IFD_FORMAT_ULONG),
new ExifTag(TAG_IMAGE_WIDTH, 256, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_IMAGE_LENGTH, 257, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_BITS_PER_SAMPLE, 258, IFD_FORMAT_USHORT),
new ExifTag(TAG_COMPRESSION, 259, IFD_FORMAT_USHORT),
new ExifTag(TAG_PHOTOMETRIC_INTERPRETATION, 262, IFD_FORMAT_USHORT),
new ExifTag(TAG_IMAGE_DESCRIPTION, 270, IFD_FORMAT_STRING),
new ExifTag(TAG_MAKE, 271, IFD_FORMAT_STRING),
new ExifTag(TAG_MODEL, 272, IFD_FORMAT_STRING),
new ExifTag(TAG_STRIP_OFFSETS, 273, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_ORIENTATION, 274, IFD_FORMAT_USHORT),
new ExifTag(TAG_SAMPLES_PER_PIXEL, 277, IFD_FORMAT_USHORT),
new ExifTag(TAG_ROWS_PER_STRIP, 278, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_STRIP_BYTE_COUNTS, 279, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_X_RESOLUTION, 282, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_Y_RESOLUTION, 283, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_PLANAR_CONFIGURATION, 284, IFD_FORMAT_USHORT),
new ExifTag(TAG_RESOLUTION_UNIT, 296, IFD_FORMAT_USHORT),
new ExifTag(TAG_TRANSFER_FUNCTION, 301, IFD_FORMAT_USHORT),
new ExifTag(TAG_SOFTWARE, 305, IFD_FORMAT_STRING),
new ExifTag(TAG_DATETIME, 306, IFD_FORMAT_STRING),
new ExifTag(TAG_ARTIST, 315, IFD_FORMAT_STRING),
new ExifTag(TAG_WHITE_POINT, 318, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_PRIMARY_CHROMATICITIES, 319, IFD_FORMAT_URATIONAL),
// See Adobe PageMaker® 6.0 TIFF Technical Notes, Note 1.
new ExifTag(TAG_SUB_IFD_POINTER, 330, IFD_FORMAT_ULONG),
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT, 513, IFD_FORMAT_ULONG),
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH, 514, IFD_FORMAT_ULONG),
new ExifTag(TAG_Y_CB_CR_COEFFICIENTS, 529, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_Y_CB_CR_SUB_SAMPLING, 530, IFD_FORMAT_USHORT),
new ExifTag(TAG_Y_CB_CR_POSITIONING, 531, IFD_FORMAT_USHORT),
new ExifTag(TAG_REFERENCE_BLACK_WHITE, 532, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_COPYRIGHT, 33432, IFD_FORMAT_STRING),
new ExifTag(TAG_EXIF_IFD_POINTER, 34665, IFD_FORMAT_ULONG),
new ExifTag(TAG_GPS_INFO_IFD_POINTER, 34853, IFD_FORMAT_ULONG),
// RW2 file tags
// See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/PanasonicRaw.html)
new ExifTag(TAG_RW2_SENSOR_TOP_BORDER, 4, IFD_FORMAT_ULONG),
new ExifTag(TAG_RW2_SENSOR_LEFT_BORDER, 5, IFD_FORMAT_ULONG),
new ExifTag(TAG_RW2_SENSOR_BOTTOM_BORDER, 6, IFD_FORMAT_ULONG),
new ExifTag(TAG_RW2_SENSOR_RIGHT_BORDER, 7, IFD_FORMAT_ULONG),
new ExifTag(TAG_RW2_ISO, 23, IFD_FORMAT_USHORT),
new ExifTag(TAG_RW2_JPG_FROM_RAW, 46, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_XMP, 700, IFD_FORMAT_BYTE),
};
// Primary image IFD Exif Private tags (See JEITA CP-3451C Section 4.6.8 Tag Support Levels)
private static final ExifTag[] IFD_EXIF_TAGS = new ExifTag[] {
new ExifTag(TAG_EXPOSURE_TIME, 33434, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_F_NUMBER, 33437, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_EXPOSURE_PROGRAM, 34850, IFD_FORMAT_USHORT),
new ExifTag(TAG_SPECTRAL_SENSITIVITY, 34852, IFD_FORMAT_STRING),
new ExifTag(TAG_PHOTOGRAPHIC_SENSITIVITY, 34855, IFD_FORMAT_USHORT),
new ExifTag(TAG_OECF, 34856, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_SENSITIVITY_TYPE, 34864, IFD_FORMAT_USHORT),
new ExifTag(TAG_STANDARD_OUTPUT_SENSITIVITY, 34865, IFD_FORMAT_ULONG),
new ExifTag(TAG_RECOMMENDED_EXPOSURE_INDEX, 34866, IFD_FORMAT_ULONG),
new ExifTag(TAG_ISO_SPEED, 34867, IFD_FORMAT_ULONG),
new ExifTag(TAG_ISO_SPEED_LATITUDE_YYY, 34868, IFD_FORMAT_ULONG),
new ExifTag(TAG_ISO_SPEED_LATITUDE_ZZZ, 34869, IFD_FORMAT_ULONG),
new ExifTag(TAG_EXIF_VERSION, 36864, IFD_FORMAT_STRING),
new ExifTag(TAG_DATETIME_ORIGINAL, 36867, IFD_FORMAT_STRING),
new ExifTag(TAG_DATETIME_DIGITIZED, 36868, IFD_FORMAT_STRING),
new ExifTag(TAG_OFFSET_TIME, 36880, IFD_FORMAT_STRING),
new ExifTag(TAG_OFFSET_TIME_ORIGINAL, 36881, IFD_FORMAT_STRING),
new ExifTag(TAG_OFFSET_TIME_DIGITIZED, 36882, IFD_FORMAT_STRING),
new ExifTag(TAG_COMPONENTS_CONFIGURATION, 37121, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_COMPRESSED_BITS_PER_PIXEL, 37122, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_SHUTTER_SPEED_VALUE, 37377, IFD_FORMAT_SRATIONAL),
new ExifTag(TAG_APERTURE_VALUE, 37378, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_BRIGHTNESS_VALUE, 37379, IFD_FORMAT_SRATIONAL),
new ExifTag(TAG_EXPOSURE_BIAS_VALUE, 37380, IFD_FORMAT_SRATIONAL),
new ExifTag(TAG_MAX_APERTURE_VALUE, 37381, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_SUBJECT_DISTANCE, 37382, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_METERING_MODE, 37383, IFD_FORMAT_USHORT),
new ExifTag(TAG_LIGHT_SOURCE, 37384, IFD_FORMAT_USHORT),
new ExifTag(TAG_FLASH, 37385, IFD_FORMAT_USHORT),
new ExifTag(TAG_FOCAL_LENGTH, 37386, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_SUBJECT_AREA, 37396, IFD_FORMAT_USHORT),
new ExifTag(TAG_MAKER_NOTE, 37500, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_USER_COMMENT, 37510, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_SUBSEC_TIME, 37520, IFD_FORMAT_STRING),
new ExifTag(TAG_SUBSEC_TIME_ORIGINAL, 37521, IFD_FORMAT_STRING),
new ExifTag(TAG_SUBSEC_TIME_DIGITIZED, 37522, IFD_FORMAT_STRING),
new ExifTag(TAG_FLASHPIX_VERSION, 40960, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_COLOR_SPACE, 40961, IFD_FORMAT_USHORT),
new ExifTag(TAG_PIXEL_X_DIMENSION, 40962, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_PIXEL_Y_DIMENSION, 40963, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_RELATED_SOUND_FILE, 40964, IFD_FORMAT_STRING),
new ExifTag(TAG_INTEROPERABILITY_IFD_POINTER, 40965, IFD_FORMAT_ULONG),
new ExifTag(TAG_FLASH_ENERGY, 41483, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_SPATIAL_FREQUENCY_RESPONSE, 41484, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_FOCAL_PLANE_X_RESOLUTION, 41486, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_FOCAL_PLANE_Y_RESOLUTION, 41487, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_FOCAL_PLANE_RESOLUTION_UNIT, 41488, IFD_FORMAT_USHORT),
new ExifTag(TAG_SUBJECT_LOCATION, 41492, IFD_FORMAT_USHORT),
new ExifTag(TAG_EXPOSURE_INDEX, 41493, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_SENSING_METHOD, 41495, IFD_FORMAT_USHORT),
new ExifTag(TAG_FILE_SOURCE, 41728, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_SCENE_TYPE, 41729, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_CFA_PATTERN, 41730, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_CUSTOM_RENDERED, 41985, IFD_FORMAT_USHORT),
new ExifTag(TAG_EXPOSURE_MODE, 41986, IFD_FORMAT_USHORT),
new ExifTag(TAG_WHITE_BALANCE, 41987, IFD_FORMAT_USHORT),
new ExifTag(TAG_DIGITAL_ZOOM_RATIO, 41988, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_FOCAL_LENGTH_IN_35MM_FILM, 41989, IFD_FORMAT_USHORT),
new ExifTag(TAG_SCENE_CAPTURE_TYPE, 41990, IFD_FORMAT_USHORT),
new ExifTag(TAG_GAIN_CONTROL, 41991, IFD_FORMAT_USHORT),
new ExifTag(TAG_CONTRAST, 41992, IFD_FORMAT_USHORT),
new ExifTag(TAG_SATURATION, 41993, IFD_FORMAT_USHORT),
new ExifTag(TAG_SHARPNESS, 41994, IFD_FORMAT_USHORT),
new ExifTag(TAG_DEVICE_SETTING_DESCRIPTION, 41995, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_SUBJECT_DISTANCE_RANGE, 41996, IFD_FORMAT_USHORT),
new ExifTag(TAG_IMAGE_UNIQUE_ID, 42016, IFD_FORMAT_STRING),
new ExifTag(TAG_CAMERA_OWNER_NAME, 42032, IFD_FORMAT_STRING),
new ExifTag(TAG_BODY_SERIAL_NUMBER, 42033, IFD_FORMAT_STRING),
new ExifTag(TAG_LENS_SPECIFICATION, 42034, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_LENS_MAKE, 42035, IFD_FORMAT_STRING),
new ExifTag(TAG_LENS_MODEL, 42036, IFD_FORMAT_STRING),
new ExifTag(TAG_GAMMA, 42240, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_DNG_VERSION, 50706, IFD_FORMAT_BYTE),
new ExifTag(TAG_DEFAULT_CROP_SIZE, 50720, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG)
};
// Primary image IFD GPS Info tags (See JEITA CP-3451C Section 4.6.6 Tag Support Levels)
private static final ExifTag[] IFD_GPS_TAGS = new ExifTag[] {
new ExifTag(TAG_GPS_VERSION_ID, 0, IFD_FORMAT_BYTE),
new ExifTag(TAG_GPS_LATITUDE_REF, 1, IFD_FORMAT_STRING),
// Allow SRATIONAL to be compatible with apps using wrong format and
// even if it is negative, it may be valid latitude / longitude.
new ExifTag(TAG_GPS_LATITUDE, 2, IFD_FORMAT_URATIONAL, IFD_FORMAT_SRATIONAL),
new ExifTag(TAG_GPS_LONGITUDE_REF, 3, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_LONGITUDE, 4, IFD_FORMAT_URATIONAL, IFD_FORMAT_SRATIONAL),
new ExifTag(TAG_GPS_ALTITUDE_REF, 5, IFD_FORMAT_BYTE),
new ExifTag(TAG_GPS_ALTITUDE, 6, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_TIMESTAMP, 7, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_SATELLITES, 8, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_STATUS, 9, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_MEASURE_MODE, 10, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DOP, 11, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_SPEED_REF, 12, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_SPEED, 13, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_TRACK_REF, 14, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_TRACK, 15, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_IMG_DIRECTION_REF, 16, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_IMG_DIRECTION, 17, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_MAP_DATUM, 18, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DEST_LATITUDE_REF, 19, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DEST_LATITUDE, 20, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_DEST_LONGITUDE_REF, 21, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DEST_LONGITUDE, 22, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_DEST_BEARING_REF, 23, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DEST_BEARING, 24, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_DEST_DISTANCE_REF, 25, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DEST_DISTANCE, 26, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_GPS_PROCESSING_METHOD, 27, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_GPS_AREA_INFORMATION, 28, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_GPS_DATESTAMP, 29, IFD_FORMAT_STRING),
new ExifTag(TAG_GPS_DIFFERENTIAL, 30, IFD_FORMAT_USHORT),
new ExifTag(TAG_GPS_H_POSITIONING_ERROR, 31, IFD_FORMAT_URATIONAL)
};
// Primary image IFD Interoperability tag (See JEITA CP-3451C Section 4.6.8 Tag Support Levels)
private static final ExifTag[] IFD_INTEROPERABILITY_TAGS = new ExifTag[] {
new ExifTag(TAG_INTEROPERABILITY_INDEX, 1, IFD_FORMAT_STRING)
};
// IFD Thumbnail tags (See JEITA CP-3451C Section 4.6.8 Tag Support Levels)
private static final ExifTag[] IFD_THUMBNAIL_TAGS = new ExifTag[] {
// For below two, see TIFF 6.0 Spec Section 3: Bilevel Images.
new ExifTag(TAG_NEW_SUBFILE_TYPE, 254, IFD_FORMAT_ULONG),
new ExifTag(TAG_SUBFILE_TYPE, 255, IFD_FORMAT_ULONG),
new ExifTag(TAG_THUMBNAIL_IMAGE_WIDTH, 256, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_THUMBNAIL_IMAGE_LENGTH, 257, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_BITS_PER_SAMPLE, 258, IFD_FORMAT_USHORT),
new ExifTag(TAG_COMPRESSION, 259, IFD_FORMAT_USHORT),
new ExifTag(TAG_PHOTOMETRIC_INTERPRETATION, 262, IFD_FORMAT_USHORT),
new ExifTag(TAG_IMAGE_DESCRIPTION, 270, IFD_FORMAT_STRING),
new ExifTag(TAG_MAKE, 271, IFD_FORMAT_STRING),
new ExifTag(TAG_MODEL, 272, IFD_FORMAT_STRING),
new ExifTag(TAG_STRIP_OFFSETS, 273, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_THUMBNAIL_ORIENTATION, 274, IFD_FORMAT_USHORT),
new ExifTag(TAG_SAMPLES_PER_PIXEL, 277, IFD_FORMAT_USHORT),
new ExifTag(TAG_ROWS_PER_STRIP, 278, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_STRIP_BYTE_COUNTS, 279, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG),
new ExifTag(TAG_X_RESOLUTION, 282, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_Y_RESOLUTION, 283, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_PLANAR_CONFIGURATION, 284, IFD_FORMAT_USHORT),
new ExifTag(TAG_RESOLUTION_UNIT, 296, IFD_FORMAT_USHORT),
new ExifTag(TAG_TRANSFER_FUNCTION, 301, IFD_FORMAT_USHORT),
new ExifTag(TAG_SOFTWARE, 305, IFD_FORMAT_STRING),
new ExifTag(TAG_DATETIME, 306, IFD_FORMAT_STRING),
new ExifTag(TAG_ARTIST, 315, IFD_FORMAT_STRING),
new ExifTag(TAG_WHITE_POINT, 318, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_PRIMARY_CHROMATICITIES, 319, IFD_FORMAT_URATIONAL),
// See Adobe PageMaker® 6.0 TIFF Technical Notes, Note 1.
new ExifTag(TAG_SUB_IFD_POINTER, 330, IFD_FORMAT_ULONG),
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT, 513, IFD_FORMAT_ULONG),
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH, 514, IFD_FORMAT_ULONG),
new ExifTag(TAG_Y_CB_CR_COEFFICIENTS, 529, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_Y_CB_CR_SUB_SAMPLING, 530, IFD_FORMAT_USHORT),
new ExifTag(TAG_Y_CB_CR_POSITIONING, 531, IFD_FORMAT_USHORT),
new ExifTag(TAG_REFERENCE_BLACK_WHITE, 532, IFD_FORMAT_URATIONAL),
new ExifTag(TAG_COPYRIGHT, 33432, IFD_FORMAT_STRING),
new ExifTag(TAG_EXIF_IFD_POINTER, 34665, IFD_FORMAT_ULONG),
new ExifTag(TAG_GPS_INFO_IFD_POINTER, 34853, IFD_FORMAT_ULONG),
new ExifTag(TAG_DNG_VERSION, 50706, IFD_FORMAT_BYTE),
new ExifTag(TAG_DEFAULT_CROP_SIZE, 50720, IFD_FORMAT_USHORT, IFD_FORMAT_ULONG)
};
// RAF file tag (See piex.cc line 372)
private static final ExifTag TAG_RAF_IMAGE_SIZE =
new ExifTag(TAG_STRIP_OFFSETS, 273, IFD_FORMAT_USHORT);
// ORF file tags (See http://www.exiv2.org/tags-olympus.html)
private static final ExifTag[] ORF_MAKER_NOTE_TAGS = new ExifTag[] {
new ExifTag(TAG_ORF_THUMBNAIL_IMAGE, 256, IFD_FORMAT_UNDEFINED),
new ExifTag(TAG_ORF_CAMERA_SETTINGS_IFD_POINTER, 8224, IFD_FORMAT_ULONG),
new ExifTag(TAG_ORF_IMAGE_PROCESSING_IFD_POINTER, 8256, IFD_FORMAT_ULONG)
};
private static final ExifTag[] ORF_CAMERA_SETTINGS_TAGS = new ExifTag[] {
new ExifTag(TAG_ORF_PREVIEW_IMAGE_START, 257, IFD_FORMAT_ULONG),
new ExifTag(TAG_ORF_PREVIEW_IMAGE_LENGTH, 258, IFD_FORMAT_ULONG)
};
private static final ExifTag[] ORF_IMAGE_PROCESSING_TAGS = new ExifTag[] {
new ExifTag(TAG_ORF_ASPECT_FRAME, 4371, IFD_FORMAT_USHORT)
};
// PEF file tag (See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/Pentax.html)
private static final ExifTag[] PEF_TAGS = new ExifTag[] {
new ExifTag(TAG_COLOR_SPACE, 55, IFD_FORMAT_USHORT)
};
// See JEITA CP-3451C Section 4.6.3: Exif-specific IFD.
// The following values are used for indicating pointers to the other Image File Directories.
// Indices of Exif Ifd tag groups
/** @hide */
@RestrictTo(RestrictTo.Scope.LIBRARY)
@Retention(RetentionPolicy.SOURCE)
@IntDef({IFD_TYPE_PRIMARY, IFD_TYPE_EXIF, IFD_TYPE_GPS, IFD_TYPE_INTEROPERABILITY,
IFD_TYPE_THUMBNAIL, IFD_TYPE_PREVIEW, IFD_TYPE_ORF_MAKER_NOTE,
IFD_TYPE_ORF_CAMERA_SETTINGS, IFD_TYPE_ORF_IMAGE_PROCESSING, IFD_TYPE_PEF})
public @interface IfdType {}
static final int IFD_TYPE_PRIMARY = 0;
private static final int IFD_TYPE_EXIF = 1;
private static final int IFD_TYPE_GPS = 2;
private static final int IFD_TYPE_INTEROPERABILITY = 3;
static final int IFD_TYPE_THUMBNAIL = 4;
static final int IFD_TYPE_PREVIEW = 5;
private static final int IFD_TYPE_ORF_MAKER_NOTE = 6;
private static final int IFD_TYPE_ORF_CAMERA_SETTINGS = 7;
private static final int IFD_TYPE_ORF_IMAGE_PROCESSING = 8;
private static final int IFD_TYPE_PEF = 9;
// List of Exif tag groups
static final ExifTag[][] EXIF_TAGS = new ExifTag[][] {
IFD_TIFF_TAGS, IFD_EXIF_TAGS, IFD_GPS_TAGS, IFD_INTEROPERABILITY_TAGS,
IFD_THUMBNAIL_TAGS, IFD_TIFF_TAGS, ORF_MAKER_NOTE_TAGS, ORF_CAMERA_SETTINGS_TAGS,
ORF_IMAGE_PROCESSING_TAGS, PEF_TAGS
};
// List of tags for pointing to the other image file directory offset.
private static final ExifTag[] EXIF_POINTER_TAGS = new ExifTag[] {
new ExifTag(TAG_SUB_IFD_POINTER, 330, IFD_FORMAT_ULONG),
new ExifTag(TAG_EXIF_IFD_POINTER, 34665, IFD_FORMAT_ULONG),
new ExifTag(TAG_GPS_INFO_IFD_POINTER, 34853, IFD_FORMAT_ULONG),
new ExifTag(TAG_INTEROPERABILITY_IFD_POINTER, 40965, IFD_FORMAT_ULONG),
new ExifTag(TAG_ORF_CAMERA_SETTINGS_IFD_POINTER, 8224, IFD_FORMAT_BYTE),
new ExifTag(TAG_ORF_IMAGE_PROCESSING_IFD_POINTER, 8256, IFD_FORMAT_BYTE)
};
// Tags for indicating the thumbnail offset and length
private static final ExifTag JPEG_INTERCHANGE_FORMAT_TAG =
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT, 513, IFD_FORMAT_ULONG);
private static final ExifTag JPEG_INTERCHANGE_FORMAT_LENGTH_TAG =
new ExifTag(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH, 514, IFD_FORMAT_ULONG);
// Mappings from tag number to tag name and each item represents one IFD tag group.
@SuppressWarnings("unchecked")
private static final HashMap<Integer, ExifTag>[] sExifTagMapsForReading =
new HashMap[EXIF_TAGS.length];
// Mappings from tag name to tag number and each item represents one IFD tag group.
@SuppressWarnings("unchecked")
private static final HashMap<String, ExifTag>[] sExifTagMapsForWriting =
new HashMap[EXIF_TAGS.length];
private static final HashSet<String> sTagSetForCompatibility = new HashSet<>(Arrays.asList(
TAG_F_NUMBER, TAG_DIGITAL_ZOOM_RATIO, TAG_EXPOSURE_TIME, TAG_SUBJECT_DISTANCE,
TAG_GPS_TIMESTAMP));
// Mappings from tag number to IFD type for pointer tags.
@SuppressWarnings("unchecked")
private static final HashMap<Integer, Integer> sExifPointerTagMap = new HashMap();
// See JPEG File Interchange Format Version 1.02.
// The following values are defined for handling JPEG streams. In this implementation, we are
// not only getting information from EXIF but also from some JPEG special segments such as
// MARKER_COM for user comment and MARKER_SOFx for image width and height.
@SuppressWarnings("WeakerAccess") /* synthetic access */
static final Charset ASCII = Charset.forName("US-ASCII");
// Identifier for EXIF APP1 segment in JPEG
static final byte[] IDENTIFIER_EXIF_APP1 = "Exif\0\0".getBytes(ASCII);
// Identifier for XMP APP1 segment in JPEG
private static final byte[] IDENTIFIER_XMP_APP1 =
"http://ns.adobe.com/xap/1.0/\0".getBytes(ASCII);
// JPEG segment markers, that each marker consumes two bytes beginning with 0xff and ending with
// the indicator. There is no SOF4, SOF8, SOF16 markers in JPEG and SOFx markers indicates start
// of frame(baseline DCT) and the image size info exists in its beginning part.
static final byte MARKER = (byte) 0xff;
private static final byte MARKER_SOI = (byte) 0xd8;
private static final byte MARKER_SOF0 = (byte) 0xc0;
private static final byte MARKER_SOF1 = (byte) 0xc1;
private static final byte MARKER_SOF2 = (byte) 0xc2;
private static final byte MARKER_SOF3 = (byte) 0xc3;
private static final byte MARKER_SOF5 = (byte) 0xc5;
private static final byte MARKER_SOF6 = (byte) 0xc6;
private static final byte MARKER_SOF7 = (byte) 0xc7;
private static final byte MARKER_SOF9 = (byte) 0xc9;
private static final byte MARKER_SOF10 = (byte) 0xca;
private static final byte MARKER_SOF11 = (byte) 0xcb;
private static final byte MARKER_SOF13 = (byte) 0xcd;
private static final byte MARKER_SOF14 = (byte) 0xce;
private static final byte MARKER_SOF15 = (byte) 0xcf;
private static final byte MARKER_SOS = (byte) 0xda;
static final byte MARKER_APP1 = (byte) 0xe1;
private static final byte MARKER_COM = (byte) 0xfe;
static final byte MARKER_EOI = (byte) 0xd9;
// Supported Image File Types
static final int IMAGE_TYPE_UNKNOWN = 0;
static final int IMAGE_TYPE_ARW = 1;
static final int IMAGE_TYPE_CR2 = 2;
static final int IMAGE_TYPE_DNG = 3;
static final int IMAGE_TYPE_JPEG = 4;
static final int IMAGE_TYPE_NEF = 5;
static final int IMAGE_TYPE_NRW = 6;
static final int IMAGE_TYPE_ORF = 7;
static final int IMAGE_TYPE_PEF = 8;
static final int IMAGE_TYPE_RAF = 9;
static final int IMAGE_TYPE_RW2 = 10;
static final int IMAGE_TYPE_SRW = 11;
static final int IMAGE_TYPE_HEIF = 12;
static final int IMAGE_TYPE_PNG = 13;
static final int IMAGE_TYPE_WEBP = 14;
static {
sFormatterPrimary = new SimpleDateFormat("yyyy:MM:dd HH:mm:ss", Locale.US);
sFormatterPrimary.setTimeZone(TimeZone.getTimeZone("UTC"));
sFormatterSecondary = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);
sFormatterSecondary.setTimeZone(TimeZone.getTimeZone("UTC"));
// Build up the hash tables to look up Exif tags for reading Exif tags.
for (int ifdType = 0; ifdType < EXIF_TAGS.length; ++ifdType) {
sExifTagMapsForReading[ifdType] = new HashMap<>();
sExifTagMapsForWriting[ifdType] = new HashMap<>();
for (ExifTag tag : EXIF_TAGS[ifdType]) {
sExifTagMapsForReading[ifdType].put(tag.number, tag);
sExifTagMapsForWriting[ifdType].put(tag.name, tag);
}
}
// Build up the hash table to look up Exif pointer tags.
sExifPointerTagMap.put(EXIF_POINTER_TAGS[0].number, IFD_TYPE_PREVIEW); // 330
sExifPointerTagMap.put(EXIF_POINTER_TAGS[1].number, IFD_TYPE_EXIF); // 34665
sExifPointerTagMap.put(EXIF_POINTER_TAGS[2].number, IFD_TYPE_GPS); // 34853
sExifPointerTagMap.put(EXIF_POINTER_TAGS[3].number, IFD_TYPE_INTEROPERABILITY); // 40965
sExifPointerTagMap.put(EXIF_POINTER_TAGS[4].number, IFD_TYPE_ORF_CAMERA_SETTINGS); // 8224
sExifPointerTagMap.put(EXIF_POINTER_TAGS[5].number, IFD_TYPE_ORF_IMAGE_PROCESSING); // 8256
}
private String mFilename;
private FileDescriptor mSeekableFileDescriptor;
private AssetManager.AssetInputStream mAssetInputStream;
private int mMimeType;
private boolean mIsExifDataOnly;
@SuppressWarnings("unchecked")
private final HashMap<String, ExifAttribute>[] mAttributes = new HashMap[EXIF_TAGS.length];
private Set<Integer> mAttributesOffsets = new HashSet<>(EXIF_TAGS.length);
private ByteOrder mExifByteOrder = ByteOrder.BIG_ENDIAN;
private boolean mHasThumbnail;
private boolean mHasThumbnailStrips;
private boolean mAreThumbnailStripsConsecutive;
// Used to indicate the position of the thumbnail (doesn't include offset to EXIF data segment).
private int mThumbnailOffset;
private int mThumbnailLength;
private byte[] mThumbnailBytes;
private int mThumbnailCompression;
// Used to indicate offset from the start of the original input stream to EXIF data
private int mOffsetToExifData;
private int mOrfMakerNoteOffset;
private int mOrfThumbnailOffset;
private int mOrfThumbnailLength;
private boolean mModified;
// XMP data can be contained as either part of the EXIF data (tag number 700), or as a
// separate data marker (a separate MARKER_APP1).
private boolean mXmpIsFromSeparateMarker;
// Pattern to check non zero timestamp
private static final Pattern NON_ZERO_TIME_PATTERN = Pattern.compile(".*[1-9].*");
// Pattern to check gps timestamp
private static final Pattern GPS_TIMESTAMP_PATTERN =
Pattern.compile("^(\\d{2}):(\\d{2}):(\\d{2})$");
// Pattern to check date time primary format (e.g. 2020:01:01 00:00:00)
private static final Pattern DATETIME_PRIMARY_FORMAT_PATTERN =
Pattern.compile("^(\\d{4}):(\\d{2}):(\\d{2})\\s(\\d{2}):(\\d{2}):(\\d{2})$");
// Pattern to check date time secondary format (e.g. 2020-01-01 00:00:00)
private static final Pattern DATETIME_SECONDARY_FORMAT_PATTERN =
Pattern.compile("^(\\d{4})-(\\d{2})-(\\d{2})\\s(\\d{2}):(\\d{2}):(\\d{2})$");
private static final int DATETIME_VALUE_STRING_LENGTH = 19;
/**
* Reads Exif tags from the specified image file.
*
* @param file the file of the image data
* @throws NullPointerException if file is null
* @throws IOException if an I/O error occurs while retrieving file descriptor via
* {@link FileInputStream#getFD()}.
*/
public ExifInterface(@NonNull File file) throws IOException {
if (file == null) {
throw new NullPointerException("file cannot be null");
}
initForFilename(file.getAbsolutePath());
}
/**
* Reads Exif tags from the specified image file.
*
* @param filename the name of the file of the image data
* @throws NullPointerException if file name is null
* @throws IOException if an I/O error occurs while retrieving file descriptor via
* {@link FileInputStream#getFD()}.
*/
public ExifInterface(@NonNull String filename) throws IOException {
if (filename == null) {
throw new NullPointerException("filename cannot be null");
}
initForFilename(filename);
}
/**
* Reads Exif tags from the specified image file descriptor. Attribute mutation is supported
* for writable and seekable file descriptors only. This constructor will not rewind the offset
* of the given file descriptor. Developers should close the file descriptor after use.
*
* @param fileDescriptor the file descriptor of the image data
* @throws NullPointerException if file descriptor is null
* @throws IOException if an error occurs while duplicating the file descriptor via
* {@link Os#dup(FileDescriptor)}.
*/
public ExifInterface(@NonNull FileDescriptor fileDescriptor) throws IOException {
if (fileDescriptor == null) {
throw new NullPointerException("fileDescriptor cannot be null");
}
mAssetInputStream = null;
mFilename = null;
boolean isFdDuped = false;
if (Build.VERSION.SDK_INT >= 21 && isSeekableFD(fileDescriptor)) {
mSeekableFileDescriptor = fileDescriptor;
// Keep the original file descriptor in order to save attributes when it's seekable.
// Otherwise, just close the given file descriptor after reading it because the save
// feature won't be working.
try {
fileDescriptor = Os.dup(fileDescriptor);
isFdDuped = true;
} catch (Exception e) {
throw new IOException("Failed to duplicate file descriptor", e);
}
} else {
mSeekableFileDescriptor = null;
}
FileInputStream in = null;
try {
in = new FileInputStream(fileDescriptor);
loadAttributes(in);
} finally {
closeQuietly(in);
if (isFdDuped) {
closeFileDescriptor(fileDescriptor);
}
}
}
/**
* Reads Exif tags from the specified image input stream. Attribute mutation is not supported
* for input streams. The given input stream will proceed from its current position. Developers
* should close the input stream after use. This constructor is not intended to be used with
* an input stream that performs any networking operations.
*
* @param inputStream the input stream that contains the image data
* @throws NullPointerException if the input stream is null
*/
public ExifInterface(@NonNull InputStream inputStream) throws IOException {
this(inputStream, STREAM_TYPE_FULL_IMAGE_DATA);
}
/**
* Reads Exif tags from the specified image input stream based on the stream type. Attribute
* mutation is not supported for input streams. The given input stream will proceed from its
* current position. Developers should close the input stream after use. This constructor is not
* intended to be used with an input stream that performs any networking operations.
*
* @param inputStream the input stream that contains the image data
* @param streamType the type of input stream
* @throws NullPointerException if the input stream is null
* @throws IOException if an I/O error occurs while retrieving file descriptor via
* {@link FileInputStream#getFD()}.
*/
public ExifInterface(@NonNull InputStream inputStream, @ExifStreamType int streamType)
throws IOException {
if (inputStream == null) {
throw new NullPointerException("inputStream cannot be null");
}
mFilename = null;
boolean shouldBeExifDataOnly = (streamType == STREAM_TYPE_EXIF_DATA_ONLY);
if (shouldBeExifDataOnly) {
inputStream = new BufferedInputStream(inputStream, IDENTIFIER_EXIF_APP1.length);
if (!isExifDataOnly((BufferedInputStream) inputStream)) {
Log.w(TAG, "Given data does not follow the structure of an Exif-only data.");
return;
}
mIsExifDataOnly = true;
mAssetInputStream = null;
mSeekableFileDescriptor = null;
} else {
if (inputStream instanceof AssetManager.AssetInputStream) {
mAssetInputStream = (AssetManager.AssetInputStream) inputStream;
mSeekableFileDescriptor = null;
} else if (inputStream instanceof FileInputStream
&& isSeekableFD(((FileInputStream) inputStream).getFD())) {
mAssetInputStream = null;
mSeekableFileDescriptor = ((FileInputStream) inputStream).getFD();
} else {
mAssetInputStream = null;
mSeekableFileDescriptor = null;
}
}
loadAttributes(inputStream);
}
/**
* Returns whether ExifInterface currently supports reading data from the specified mime type
* or not.
*
* @param mimeType the string value of mime type
*/
public static boolean isSupportedMimeType(@NonNull String mimeType) {
if (mimeType == null) {
throw new NullPointerException("mimeType shouldn't be null");
}
switch (mimeType.toLowerCase(Locale.ROOT)) {
case "image/jpeg":
case "image/x-adobe-dng":
case "image/x-canon-cr2":
case "image/x-nikon-nef":
case "image/x-nikon-nrw":
case "image/x-sony-arw":
case "image/x-panasonic-rw2":
case "image/x-olympus-orf":
case "image/x-pentax-pef":
case "image/x-samsung-srw":
case "image/x-fuji-raf":
case "image/heic":
case "image/heif":
case "image/png":
case "image/webp":
return true;
default:
return false;
}
}
/**
* Returns the EXIF attribute of the specified tag or {@code null} if there is no such tag in
* the image file.
*
* @param tag the name of the tag.
*/
@SuppressWarnings("deprecation")
@Nullable
private ExifAttribute getExifAttribute(@NonNull String tag) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
// Maintain compatibility.
if (TAG_ISO_SPEED_RATINGS.equals(tag)) {
if (DEBUG) {
Log.d(TAG, "getExifAttribute: Replacing TAG_ISO_SPEED_RATINGS with "
+ "TAG_PHOTOGRAPHIC_SENSITIVITY.");
}
tag = TAG_PHOTOGRAPHIC_SENSITIVITY;
}
// Retrieves all tag groups. The value from primary image tag group has a higher priority
// than the value from the thumbnail tag group if there are more than one candidates.
for (int i = 0; i < EXIF_TAGS.length; ++i) {
ExifAttribute value = mAttributes[i].get(tag);
if (value != null) {
return value;
}
}
return null;
}
/**
* Returns the value of the specified tag or {@code null} if there
* is no such tag in the image file.
*
* @param tag the name of the tag.
*/
@Nullable
public String getAttribute(@NonNull String tag) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
ExifAttribute attribute = getExifAttribute(tag);
if (attribute != null) {
if (!sTagSetForCompatibility.contains(tag)) {
return attribute.getStringValue(mExifByteOrder);
}
if (tag.equals(TAG_GPS_TIMESTAMP)) {
// Convert the rational values to the custom formats for backwards compatibility.
if (attribute.format != IFD_FORMAT_URATIONAL
&& attribute.format != IFD_FORMAT_SRATIONAL) {
Log.w(TAG, "GPS Timestamp format is not rational. format=" + attribute.format);
return null;
}
Rational[] array = (Rational[]) attribute.getValue(mExifByteOrder);
if (array == null || array.length != 3) {
Log.w(TAG, "Invalid GPS Timestamp array. array=" + Arrays.toString(array));
return null;
}
return String.format("%02d:%02d:%02d",
(int) ((float) array[0].numerator / array[0].denominator),
(int) ((float) array[1].numerator / array[1].denominator),
(int) ((float) array[2].numerator / array[2].denominator));
}
try {
return Double.toString(attribute.getDoubleValue(mExifByteOrder));
} catch (NumberFormatException e) {
return null;
}
}
return null;
}
/**
* Returns the integer value of the specified tag. If there is no such tag
* in the image file or the value cannot be parsed as integer, return
* <var>defaultValue</var>.
*
* @param tag the name of the tag.
* @param defaultValue the value to return if the tag is not available.
*/
public int getAttributeInt(@NonNull String tag, int defaultValue) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
ExifAttribute exifAttribute = getExifAttribute(tag);
if (exifAttribute == null) {
return defaultValue;
}
try {
return exifAttribute.getIntValue(mExifByteOrder);
} catch (NumberFormatException e) {
return defaultValue;
}
}
/**
* Returns the double value of the tag that is specified as rational or contains a
* double-formatted value. If there is no such tag in the image file or the value cannot be
* parsed as double, return <var>defaultValue</var>.
*
* @param tag the name of the tag.
* @param defaultValue the value to return if the tag is not available.
*/
public double getAttributeDouble(@NonNull String tag, double defaultValue) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
ExifAttribute exifAttribute = getExifAttribute(tag);
if (exifAttribute == null) {
return defaultValue;
}
try {
return exifAttribute.getDoubleValue(mExifByteOrder);
} catch (NumberFormatException e) {
return defaultValue;
}
}
/**
* Sets the value of the specified tag.
*
* @param tag the name of the tag.
* @param value the value of the tag.
*/
@SuppressWarnings("deprecation")
public void setAttribute(@NonNull String tag, @Nullable String value) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
// Validate and convert if necessary.
if (TAG_DATETIME.equals(tag) || TAG_DATETIME_ORIGINAL.equals(tag)
|| TAG_DATETIME_DIGITIZED.equals(tag)) {
if (value != null) {
boolean isPrimaryFormat = DATETIME_PRIMARY_FORMAT_PATTERN.matcher(value).find();
boolean isSecondaryFormat = DATETIME_SECONDARY_FORMAT_PATTERN.matcher(value).find();
// Validate
if (value.length() != DATETIME_VALUE_STRING_LENGTH
|| (!isPrimaryFormat && !isSecondaryFormat)) {
Log.w(TAG, "Invalid value for " + tag + " : " + value);
return;
}
// If datetime value has secondary format (e.g. 2020-01-01 00:00:00), convert it to
// primary format (e.g. 2020:01:01 00:00:00) since it is the format in the
// official documentation.
// See JEITA CP-3451C Section 4.6.4. D. Other Tags, DateTime
if (isSecondaryFormat) {
// Replace "-" with ":" to match the primary format.
value = value.replaceAll("-", ":");
}
}
}
// Maintain compatibility.
if (TAG_ISO_SPEED_RATINGS.equals(tag)) {
if (DEBUG) {
Log.d(TAG, "setAttribute: Replacing TAG_ISO_SPEED_RATINGS with "
+ "TAG_PHOTOGRAPHIC_SENSITIVITY.");
}
tag = TAG_PHOTOGRAPHIC_SENSITIVITY;
}
// Convert the given value to rational values for backwards compatibility.
if (value != null && sTagSetForCompatibility.contains(tag)) {
if (tag.equals(TAG_GPS_TIMESTAMP)) {
Matcher m = GPS_TIMESTAMP_PATTERN.matcher(value);
if (!m.find()) {
Log.w(TAG, "Invalid value for " + tag + " : " + value);
return;
}
value = Integer.parseInt(m.group(1)) + "/1," + Integer.parseInt(m.group(2)) + "/1,"
+ Integer.parseInt(m.group(3)) + "/1";
} else {
try {
double doubleValue = Double.parseDouble(value);
value = new Rational(doubleValue).toString();
} catch (NumberFormatException e) {
Log.w(TAG, "Invalid value for " + tag + " : " + value);
return;
}
}
}
for (int i = 0 ; i < EXIF_TAGS.length; ++i) {
if (i == IFD_TYPE_THUMBNAIL && !mHasThumbnail) {
continue;
}
final ExifTag exifTag = sExifTagMapsForWriting[i].get(tag);
if (exifTag != null) {
if (value == null) {
mAttributes[i].remove(tag);
continue;
}
Pair<Integer, Integer> guess = guessDataFormat(value);
int dataFormat;
if (exifTag.primaryFormat == guess.first || exifTag.primaryFormat == guess.second) {
dataFormat = exifTag.primaryFormat;
} else if (exifTag.secondaryFormat != -1 && (exifTag.secondaryFormat == guess.first
|| exifTag.secondaryFormat == guess.second)) {
dataFormat = exifTag.secondaryFormat;
} else if (exifTag.primaryFormat == IFD_FORMAT_BYTE
|| exifTag.primaryFormat == IFD_FORMAT_UNDEFINED
|| exifTag.primaryFormat == IFD_FORMAT_STRING) {
dataFormat = exifTag.primaryFormat;
} else {
if (DEBUG) {
Log.d(TAG, "Given tag (" + tag
+ ") value didn't match with one of expected "
+ "formats: " + IFD_FORMAT_NAMES[exifTag.primaryFormat]
+ (exifTag.secondaryFormat == -1 ? "" : ", "
+ IFD_FORMAT_NAMES[exifTag.secondaryFormat]) + " (guess: "
+ IFD_FORMAT_NAMES[guess.first] + (guess.second == -1 ? "" : ", "
+ IFD_FORMAT_NAMES[guess.second]) + ")");
}
continue;
}
switch (dataFormat) {
case IFD_FORMAT_BYTE: {
mAttributes[i].put(tag, ExifAttribute.createByte(value));
break;
}
case IFD_FORMAT_UNDEFINED:
case IFD_FORMAT_STRING: {
mAttributes[i].put(tag, ExifAttribute.createString(value));
break;
}
case IFD_FORMAT_USHORT: {
final String[] values = value.split(",", -1);
final int[] intArray = new int[values.length];
for (int j = 0; j < values.length; ++j) {
intArray[j] = Integer.parseInt(values[j]);
}
mAttributes[i].put(tag,
ExifAttribute.createUShort(intArray, mExifByteOrder));
break;
}
case IFD_FORMAT_SLONG: {
final String[] values = value.split(",", -1);
final int[] intArray = new int[values.length];
for (int j = 0; j < values.length; ++j) {
intArray[j] = Integer.parseInt(values[j]);
}
mAttributes[i].put(tag,
ExifAttribute.createSLong(intArray, mExifByteOrder));
break;
}
case IFD_FORMAT_ULONG: {
final String[] values = value.split(",", -1);
final long[] longArray = new long[values.length];
for (int j = 0; j < values.length; ++j) {
longArray[j] = Long.parseLong(values[j]);
}
mAttributes[i].put(tag,
ExifAttribute.createULong(longArray, mExifByteOrder));
break;
}
case IFD_FORMAT_URATIONAL: {
final String[] values = value.split(",", -1);
final Rational[] rationalArray = new Rational[values.length];
for (int j = 0; j < values.length; ++j) {
final String[] numbers = values[j].split("/", -1);
rationalArray[j] = new Rational((long) Double.parseDouble(numbers[0]),
(long) Double.parseDouble(numbers[1]));
}
mAttributes[i].put(tag,
ExifAttribute.createURational(rationalArray, mExifByteOrder));
break;
}
case IFD_FORMAT_SRATIONAL: {
final String[] values = value.split(",", -1);
final Rational[] rationalArray = new Rational[values.length];
for (int j = 0; j < values.length; ++j) {
final String[] numbers = values[j].split("/", -1);
rationalArray[j] = new Rational((long) Double.parseDouble(numbers[0]),
(long) Double.parseDouble(numbers[1]));
}
mAttributes[i].put(tag,
ExifAttribute.createSRational(rationalArray, mExifByteOrder));
break;
}
case IFD_FORMAT_DOUBLE: {
final String[] values = value.split(",", -1);
final double[] doubleArray = new double[values.length];
for (int j = 0; j < values.length; ++j) {
doubleArray[j] = Double.parseDouble(values[j]);
}
mAttributes[i].put(tag,
ExifAttribute.createDouble(doubleArray, mExifByteOrder));
break;
}
default:
if (DEBUG) {
Log.d(TAG, "Data format isn't one of expected formats: " + dataFormat);
}
continue;
}
}
}
}
/**
* Resets the {@link #TAG_ORIENTATION} of the image to be {@link #ORIENTATION_NORMAL}.
*/
public void resetOrientation() {
setAttribute(TAG_ORIENTATION, Integer.toString(ORIENTATION_NORMAL));
}
/**
* Rotates the image by the given degree clockwise. The degree should be a multiple of
* 90 (e.g, 90, 180, -90, etc.).
*
* @param degree The degree of rotation.
*/
public void rotate(int degree) {
if (degree % 90 !=0) {
throw new IllegalArgumentException("degree should be a multiple of 90");
}
int currentOrientation = getAttributeInt(TAG_ORIENTATION, ORIENTATION_NORMAL);
int currentIndex, newIndex;
int resultOrientation;
if (ROTATION_ORDER.contains(currentOrientation)) {
currentIndex = ROTATION_ORDER.indexOf(currentOrientation);
newIndex = (currentIndex + degree / 90) % 4;
newIndex += newIndex < 0 ? 4 : 0;
resultOrientation = ROTATION_ORDER.get(newIndex);
} else if (FLIPPED_ROTATION_ORDER.contains(currentOrientation)) {
currentIndex = FLIPPED_ROTATION_ORDER.indexOf(currentOrientation);
newIndex = (currentIndex + degree / 90) % 4;
newIndex += newIndex < 0 ? 4 : 0;
resultOrientation = FLIPPED_ROTATION_ORDER.get(newIndex);
} else {
resultOrientation = ORIENTATION_UNDEFINED;
}
setAttribute(TAG_ORIENTATION, Integer.toString(resultOrientation));
}
/**
* Flips the image vertically.
*/
public void flipVertically() {
int currentOrientation = getAttributeInt(TAG_ORIENTATION, ORIENTATION_NORMAL);
int resultOrientation;
switch (currentOrientation) {
case ORIENTATION_FLIP_HORIZONTAL:
resultOrientation = ORIENTATION_ROTATE_180;
break;
case ORIENTATION_ROTATE_180:
resultOrientation = ORIENTATION_FLIP_HORIZONTAL;
break;
case ORIENTATION_FLIP_VERTICAL:
resultOrientation = ORIENTATION_NORMAL;
break;
case ORIENTATION_TRANSPOSE:
resultOrientation = ORIENTATION_ROTATE_270;
break;
case ORIENTATION_ROTATE_90:
resultOrientation = ORIENTATION_TRANSVERSE;
break;
case ORIENTATION_TRANSVERSE:
resultOrientation = ORIENTATION_ROTATE_90;
break;
case ORIENTATION_ROTATE_270:
resultOrientation = ORIENTATION_TRANSPOSE;
break;
case ORIENTATION_NORMAL:
resultOrientation = ORIENTATION_FLIP_VERTICAL;
break;
case ORIENTATION_UNDEFINED:
default:
resultOrientation = ORIENTATION_UNDEFINED;
break;
}
setAttribute(TAG_ORIENTATION, Integer.toString(resultOrientation));
}
/**
* Flips the image horizontally.
*/
public void flipHorizontally() {
int currentOrientation = getAttributeInt(TAG_ORIENTATION, ORIENTATION_NORMAL);
int resultOrientation;
switch (currentOrientation) {
case ORIENTATION_FLIP_HORIZONTAL:
resultOrientation = ORIENTATION_NORMAL;
break;
case ORIENTATION_ROTATE_180:
resultOrientation = ORIENTATION_FLIP_VERTICAL;
break;
case ORIENTATION_FLIP_VERTICAL:
resultOrientation = ORIENTATION_ROTATE_180;
break;
case ORIENTATION_TRANSPOSE:
resultOrientation = ORIENTATION_ROTATE_90;
break;
case ORIENTATION_ROTATE_90:
resultOrientation = ORIENTATION_TRANSPOSE;
break;
case ORIENTATION_TRANSVERSE:
resultOrientation = ORIENTATION_ROTATE_270;
break;
case ORIENTATION_ROTATE_270:
resultOrientation = ORIENTATION_TRANSVERSE;
break;
case ORIENTATION_NORMAL:
resultOrientation = ORIENTATION_FLIP_HORIZONTAL;
break;
case ORIENTATION_UNDEFINED:
default:
resultOrientation = ORIENTATION_UNDEFINED;
break;
}
setAttribute(TAG_ORIENTATION, Integer.toString(resultOrientation));
}
/**
* Returns if the current image orientation is flipped.
*
* @see #getRotationDegrees()
*/
public boolean isFlipped() {
int orientation = getAttributeInt(TAG_ORIENTATION, ORIENTATION_NORMAL);
switch (orientation) {
case ORIENTATION_FLIP_HORIZONTAL:
case ORIENTATION_TRANSVERSE:
case ORIENTATION_FLIP_VERTICAL:
case ORIENTATION_TRANSPOSE:
return true;
default:
return false;
}
}
/**
* Returns the rotation degrees for the current image orientation. If the image is flipped,
* i.e., {@link #isFlipped()} returns {@code true}, the rotation degrees will be base on
* the assumption that the image is first flipped horizontally (along Y-axis), and then do
* the rotation. For example, {@link #ORIENTATION_TRANSPOSE} will be interpreted as flipped
* horizontally first, and then rotate 270 degrees clockwise.
*
* @return The rotation degrees of the image after the horizontal flipping is applied, if any.
*
* @see #isFlipped()
*/
public int getRotationDegrees() {
int orientation = getAttributeInt(TAG_ORIENTATION, ORIENTATION_NORMAL);
switch (orientation) {
case ORIENTATION_ROTATE_90:
case ORIENTATION_TRANSVERSE:
return 90;
case ORIENTATION_ROTATE_180:
case ORIENTATION_FLIP_VERTICAL:
return 180;
case ORIENTATION_ROTATE_270:
case ORIENTATION_TRANSPOSE:
return 270;
case ORIENTATION_UNDEFINED:
case ORIENTATION_NORMAL:
case ORIENTATION_FLIP_HORIZONTAL:
default:
return 0;
}
}
/**
* Remove any values of the specified tag.
*
* @param tag the name of the tag.
*/
private void removeAttribute(String tag) {
for (int i = 0 ; i < EXIF_TAGS.length; ++i) {
mAttributes[i].remove(tag);
}
}
/**
* This function decides which parser to read the image data according to the given input stream
* type and the content of the input stream.
*/
private void loadAttributes(@NonNull InputStream in) {
if (in == null) {
throw new NullPointerException("inputstream shouldn't be null");
}
try {
// Initialize mAttributes.
for (int i = 0; i < EXIF_TAGS.length; ++i) {
mAttributes[i] = new HashMap<>();
}
// Check file type
if (!mIsExifDataOnly) {
in = new BufferedInputStream(in, SIGNATURE_CHECK_SIZE);
mMimeType = getMimeType((BufferedInputStream) in);
}
if (shouldSupportSeek(mMimeType)) {
SeekableByteOrderedDataInputStream inputStream =
new SeekableByteOrderedDataInputStream(in);
if (mIsExifDataOnly) {
getStandaloneAttributes(inputStream);
} else {
if (mMimeType == IMAGE_TYPE_HEIF) {
getHeifAttributes(inputStream);
} else if (mMimeType == IMAGE_TYPE_ORF) {
getOrfAttributes(inputStream);
} else if (mMimeType == IMAGE_TYPE_RW2) {
getRw2Attributes(inputStream);
} else {
getRawAttributes(inputStream);
}
}
// Set thumbnail image offset and length
inputStream.seek(mOffsetToExifData);
setThumbnailData(inputStream);
} else {
ByteOrderedDataInputStream inputStream = new ByteOrderedDataInputStream(in);
if (mMimeType == IMAGE_TYPE_JPEG) {
getJpegAttributes(inputStream, /* offsetToJpeg= */ 0,
IFD_TYPE_PRIMARY);
} else if (mMimeType == IMAGE_TYPE_PNG) {
getPngAttributes(inputStream);
} else if (mMimeType == IMAGE_TYPE_RAF) {
getRafAttributes(inputStream);
} else if (mMimeType == IMAGE_TYPE_WEBP) {
getWebpAttributes(inputStream);
}
}
} catch (IOException | UnsupportedOperationException e) {
// Ignore exceptions in order to keep the compatibility with the old versions of
// ExifInterface.
if (DEBUG) {
Log.w(TAG, "Invalid image: ExifInterface got an unsupported image format file"
+ "(ExifInterface supports JPEG and some RAW image formats only) "
+ "or a corrupted JPEG file to ExifInterface.", e);
}
} finally {
addDefaultValuesForCompatibility();
if (DEBUG) {
printAttributes();
}
}
}
private static boolean isSeekableFD(FileDescriptor fd) {
if (Build.VERSION.SDK_INT >= 21) {
try {
Os.lseek(fd, 0, OsConstants.SEEK_CUR);
return true;
} catch (Exception e) {
if (DEBUG) {
Log.d(TAG, "The file descriptor for the given input is not seekable");
}
return false;
}
}
return false;
}
// Prints out attributes for debugging.
private void printAttributes() {
for (int i = 0; i < mAttributes.length; ++i) {
Log.d(TAG, "The size of tag group[" + i + "]: " + mAttributes[i].size());
for (Map.Entry<String, ExifAttribute> entry : mAttributes[i].entrySet()) {
final ExifAttribute tagValue = entry.getValue();
Log.d(TAG, "tagName: " + entry.getKey() + ", tagType: " + tagValue.toString()
+ ", tagValue: '" + tagValue.getStringValue(mExifByteOrder) + "'");
}
}
}
/**
* Save the tag data into the original image file. This is expensive because it involves
* copying all the data from one file to another and deleting the old file and renaming the
* other. It's best to use {@link #setAttribute(String,String)} to set all attributes to write
* and make a single call rather than multiple calls for each attribute.
* <p>
* This method is supported for JPEG, PNG and WebP files.
* <p class="note">
* Note: after calling this method, any attempts to obtain range information
* from {@link #getAttributeRange(String)} or {@link #getThumbnailRange()}
* will throw {@link IllegalStateException}, since the offsets may have
* changed in the newly written file.
* <p>
* For WebP format, the Exif data will be stored as an Extended File Format, and it may not be
* supported for older readers.
* </p>
*/
public void saveAttributes() throws IOException {
if (!isSupportedFormatForSavingAttributes(mMimeType)) {
throw new IOException("ExifInterface only supports saving attributes on JPEG, PNG, "
+ "or WebP formats.");
}
if (mSeekableFileDescriptor == null && mFilename == null) {
throw new IOException(
"ExifInterface does not support saving attributes for the current input.");
}
// Remember the fact that we've changed the file on disk from what was
// originally parsed, meaning we can't answer range questions
mModified = true;
// Keep the thumbnail in memory
mThumbnailBytes = getThumbnail();
FileInputStream in = null;
FileOutputStream out = null;
File tempFile = null;
try {
// Copy the original file to temporary file.
tempFile = File.createTempFile("temp", "tmp");
if (mFilename != null) {
in = new FileInputStream(mFilename);
} else {
// mSeekableFileDescriptor will be non-null only for SDK_INT >= 21, but this check
// is needed to prevent calling Os.lseek at runtime for SDK < 21.
if (Build.VERSION.SDK_INT >= 21) {
Os.lseek(mSeekableFileDescriptor, 0, OsConstants.SEEK_SET);
in = new FileInputStream(mSeekableFileDescriptor);
}
}
out = new FileOutputStream(tempFile);
copy(in, out);
} catch (Exception e) {
throw new IOException("Failed to copy original file to temp file", e);
} finally {
closeQuietly(in);
closeQuietly(out);
}
in = null;
out = null;
BufferedInputStream bufferedIn = null;
BufferedOutputStream bufferedOut = null;
boolean shouldKeepTempFile = false;
try {
// Save the new file.
in = new FileInputStream(tempFile);
if (mFilename != null) {
out = new FileOutputStream(mFilename);
} else {
// mSeekableFileDescriptor will be non-null only for SDK_INT >= 21, but this check
// is needed to prevent calling Os.lseek at runtime for SDK < 21.
if (Build.VERSION.SDK_INT >= 21) {
Os.lseek(mSeekableFileDescriptor, 0, OsConstants.SEEK_SET);
out = new FileOutputStream(mSeekableFileDescriptor);
}
}
bufferedIn = new BufferedInputStream(in);
bufferedOut = new BufferedOutputStream(out);
if (mMimeType == IMAGE_TYPE_JPEG) {
saveJpegAttributes(bufferedIn, bufferedOut);
} else if (mMimeType == IMAGE_TYPE_PNG) {
savePngAttributes(bufferedIn, bufferedOut);
} else if (mMimeType == IMAGE_TYPE_WEBP) {
saveWebpAttributes(bufferedIn, bufferedOut);
}
} catch (Exception e) {
try {
// Restore original file
in = new FileInputStream(tempFile);
if (mFilename != null) {
out = new FileOutputStream(mFilename);
} else {
// mSeekableFileDescriptor will be non-null only for SDK_INT >= 21, but this
// check is needed to prevent calling Os.lseek at runtime for SDK < 21.
if (Build.VERSION.SDK_INT >= 21) {
Os.lseek(mSeekableFileDescriptor, 0, OsConstants.SEEK_SET);
out = new FileOutputStream(mSeekableFileDescriptor);
}
}
copy(in, out);
} catch (Exception exception) {
shouldKeepTempFile = true;
throw new IOException("Failed to save new file. Original file is stored in "
+ tempFile.getAbsolutePath(), exception);
} finally {
closeQuietly(in);
closeQuietly(out);
}
throw new IOException("Failed to save new file", e);
} finally {
closeQuietly(bufferedIn);
closeQuietly(bufferedOut);
if (!shouldKeepTempFile) {
tempFile.delete();
}
}
// Discard the thumbnail in memory
mThumbnailBytes = null;
}
/**
* Returns true if the image file has a thumbnail.
*/
public boolean hasThumbnail() {
return mHasThumbnail;
}
/**
* Returns true if the image file has the given attribute defined.
*
* @param tag the name of the tag.
*/
public boolean hasAttribute(@NonNull String tag) {
return getExifAttribute(tag) != null;
}
/**
* Returns the JPEG compressed thumbnail inside the image file, or {@code null} if there is no
* JPEG compressed thumbnail.
* The returned data can be decoded using
* {@link BitmapFactory#decodeByteArray(byte[],int,int)}
*/
@Nullable
public byte[] getThumbnail() {
if (mThumbnailCompression == DATA_JPEG || mThumbnailCompression == DATA_JPEG_COMPRESSED) {
return getThumbnailBytes();
}
return null;
}
/**
* Returns the thumbnail bytes inside the image file, regardless of the compression type of the
* thumbnail image.
*/
@Nullable
public byte[] getThumbnailBytes() {
if (!mHasThumbnail) {
return null;
}
if (mThumbnailBytes != null) {
return mThumbnailBytes;
}
// Read the thumbnail.
InputStream in = null;
FileDescriptor newFileDescriptor = null;
try {
if (mAssetInputStream != null) {
in = mAssetInputStream;
if (in.markSupported()) {
in.reset();
} else {
Log.d(TAG, "Cannot read thumbnail from inputstream without mark/reset support");
return null;
}
} else if (mFilename != null) {
in = new FileInputStream(mFilename);
} else {
// mSeekableFileDescriptor will be non-null only for SDK_INT >= 21, but this check
// is needed to prevent calling Os.lseek and Os.dup at runtime for SDK < 21.
if (Build.VERSION.SDK_INT >= 21) {
newFileDescriptor = Os.dup(mSeekableFileDescriptor);
Os.lseek(newFileDescriptor, 0, OsConstants.SEEK_SET);
in = new FileInputStream(newFileDescriptor);
}
}
if (in == null) {
// Should not be reached this.
throw new FileNotFoundException();
}
if (in.skip(mThumbnailOffset + mOffsetToExifData)
!= mThumbnailOffset + mOffsetToExifData) {
throw new IOException("Corrupted image");
}
// TODO: Need to handle potential OutOfMemoryError
byte[] buffer = new byte[mThumbnailLength];
if (in.read(buffer) != mThumbnailLength) {
throw new IOException("Corrupted image");
}
mThumbnailBytes = buffer;
return buffer;
} catch (Exception e) {
// Couldn't get a thumbnail image.
Log.d(TAG, "Encountered exception while getting thumbnail", e);
} finally {
closeQuietly(in);
if (newFileDescriptor != null) {
closeFileDescriptor(newFileDescriptor);
}
}
return null;
}
/**
* Creates and returns a Bitmap object of the thumbnail image based on the byte array and the
* thumbnail compression value, or {@code null} if the compression type is unsupported.
*/
@Nullable
public Bitmap getThumbnailBitmap() {
if (!mHasThumbnail) {
return null;
} else if (mThumbnailBytes == null) {
mThumbnailBytes = getThumbnailBytes();
}
if (mThumbnailCompression == DATA_JPEG || mThumbnailCompression == DATA_JPEG_COMPRESSED) {
return BitmapFactory.decodeByteArray(mThumbnailBytes, 0, mThumbnailLength);
} else if (mThumbnailCompression == DATA_UNCOMPRESSED) {
int[] rgbValues = new int[mThumbnailBytes.length / 3];
byte alpha = (byte) 0xff000000;
for (int i = 0; i < rgbValues.length; i++) {
rgbValues[i] = alpha + (mThumbnailBytes[3 * i] << 16)
+ (mThumbnailBytes[3 * i + 1] << 8) + mThumbnailBytes[3 * i + 2];
}
ExifAttribute imageLengthAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_THUMBNAIL].get(TAG_IMAGE_LENGTH);
ExifAttribute imageWidthAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_THUMBNAIL].get(TAG_IMAGE_WIDTH);
if (imageLengthAttribute != null && imageWidthAttribute != null) {
int imageLength = imageLengthAttribute.getIntValue(mExifByteOrder);
int imageWidth = imageWidthAttribute.getIntValue(mExifByteOrder);
return Bitmap.createBitmap(
rgbValues, imageWidth, imageLength, Bitmap.Config.ARGB_8888);
}
}
return null;
}
/**
* Returns true if thumbnail image is JPEG Compressed, or false if either thumbnail image does
* not exist or thumbnail image is uncompressed.
*/
public boolean isThumbnailCompressed() {
if (!mHasThumbnail) {
return false;
}
if (mThumbnailCompression == DATA_JPEG || mThumbnailCompression == DATA_JPEG_COMPRESSED) {
return true;
}
return false;
}
/**
* Returns the offset and length of thumbnail inside the image file, or
* {@code null} if either there is no thumbnail or the thumbnail bytes are stored
* non-consecutively.
*
* @return two-element array, the offset in the first value, and length in
* the second, or {@code null} if no thumbnail was found or the thumbnail strips are
* not placed consecutively.
* @throws IllegalStateException if {@link #saveAttributes()} has been
* called since the underlying file was initially parsed, since
* that means offsets may have changed.
*/
@Nullable
public long[] getThumbnailRange() {
if (mModified) {
throw new IllegalStateException(
"The underlying file has been modified since being parsed");
}
if (mHasThumbnail) {
if (mHasThumbnailStrips && !mAreThumbnailStripsConsecutive) {
return null;
}
return new long[] { mThumbnailOffset + mOffsetToExifData, mThumbnailLength };
}
return null;
}
/**
* Returns the offset and length of the requested tag inside the image file,
* or {@code null} if the tag is not contained.
*
* @return two-element array, the offset in the first value, and length in
* the second, or {@code null} if no tag was found.
* @throws IllegalStateException if {@link #saveAttributes()} has been
* called since the underlying file was initially parsed, since
* that means offsets may have changed.
*/
@Nullable
public long[] getAttributeRange(@NonNull String tag) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
if (mModified) {
throw new IllegalStateException(
"The underlying file has been modified since being parsed");
}
final ExifAttribute attribute = getExifAttribute(tag);
if (attribute != null) {
return new long[] { attribute.bytesOffset, attribute.bytes.length };
} else {
return null;
}
}
/**
* Returns the raw bytes for the value of the requested tag inside the image
* file, or {@code null} if the tag is not contained.
*
* @return raw bytes for the value of the requested tag, or {@code null} if
* no tag was found.
*/
@Nullable
public byte[] getAttributeBytes(@NonNull String tag) {
if (tag == null) {
throw new NullPointerException("tag shouldn't be null");
}
final ExifAttribute attribute = getExifAttribute(tag);
if (attribute != null) {
return attribute.bytes;
} else {
return null;
}
}
/**
* Stores the latitude and longitude value in a float array. The first element is the latitude,
* and the second element is the longitude. Returns false if the Exif tags are not available.
*
* @deprecated Use {@link #getLatLong()} instead.
*/
@Deprecated
public boolean getLatLong(float output[]) {
double[] latLong = getLatLong();
if (latLong == null) {
return false;
}
output[0] = (float) latLong[0];
output[1] = (float) latLong[1];
return true;
}
/**
* Gets the latitude and longitude values.
* <p>
* If there are valid latitude and longitude values in the image, this method returns a double
* array where the first element is the latitude and the second element is the longitude.
* Otherwise, it returns null.
*/
@Nullable
public double[] getLatLong() {
String latValue = getAttribute(TAG_GPS_LATITUDE);
String latRef = getAttribute(TAG_GPS_LATITUDE_REF);
String lngValue = getAttribute(TAG_GPS_LONGITUDE);
String lngRef = getAttribute(TAG_GPS_LONGITUDE_REF);
if (latValue != null && latRef != null && lngValue != null && lngRef != null) {
try {
double latitude = convertRationalLatLonToDouble(latValue, latRef);
double longitude = convertRationalLatLonToDouble(lngValue, lngRef);
return new double[] {latitude, longitude};
} catch (IllegalArgumentException e) {
Log.w(TAG, "Latitude/longitude values are not parsable. "
+ String.format("latValue=%s, latRef=%s, lngValue=%s, lngRef=%s",
latValue, latRef, lngValue, lngRef));
}
}
return null;
}
/**
* Sets the GPS-related information. It will set GPS processing method, latitude and longitude
* values, GPS timestamp, and speed information at the same time.
*
* @param location the {@link Location} object returned by GPS service.
*/
public void setGpsInfo(Location location) {
if (location == null) {
return;
}
setAttribute(ExifInterface.TAG_GPS_PROCESSING_METHOD, location.getProvider());
setLatLong(location.getLatitude(), location.getLongitude());
setAltitude(location.getAltitude());
// Location objects store speeds in m/sec. Translates it to km/hr here.
setAttribute(TAG_GPS_SPEED_REF, "K");
setAttribute(TAG_GPS_SPEED, new Rational(location.getSpeed()
* TimeUnit.HOURS.toSeconds(1) / 1000).toString());
String[] dateTime = sFormatterPrimary.format(
new Date(location.getTime())).split("\\s+", -1);
setAttribute(ExifInterface.TAG_GPS_DATESTAMP, dateTime[0]);
setAttribute(ExifInterface.TAG_GPS_TIMESTAMP, dateTime[1]);
}
/**
* Sets the latitude and longitude values.
*
* @param latitude the decimal value of latitude. Must be a valid double value between -90.0 and
* 90.0.
* @param longitude the decimal value of longitude. Must be a valid double value between -180.0
* and 180.0.
* @throws IllegalArgumentException If {@code latitude} or {@code longitude} is outside the
* specified range.
*/
public void setLatLong(double latitude, double longitude) {
if (latitude < -90.0 || latitude > 90.0 || Double.isNaN(latitude)) {
throw new IllegalArgumentException("Latitude value " + latitude + " is not valid.");
}
if (longitude < -180.0 || longitude > 180.0 || Double.isNaN(longitude)) {
throw new IllegalArgumentException("Longitude value " + longitude + " is not valid.");
}
setAttribute(TAG_GPS_LATITUDE_REF, latitude >= 0 ? "N" : "S");
setAttribute(TAG_GPS_LATITUDE, convertDecimalDegree(Math.abs(latitude)));
setAttribute(TAG_GPS_LONGITUDE_REF, longitude >= 0 ? "E" : "W");
setAttribute(TAG_GPS_LONGITUDE, convertDecimalDegree(Math.abs(longitude)));
}
/**
* Return the altitude in meters. If the exif tag does not exist, return
* <var>defaultValue</var>.
*
* @param defaultValue the value to return if the tag is not available.
*/
public double getAltitude(double defaultValue) {
double altitude = getAttributeDouble(TAG_GPS_ALTITUDE, -1);
int ref = getAttributeInt(TAG_GPS_ALTITUDE_REF, -1);
if (altitude >= 0 && ref >= 0) {
return (altitude * ((ref == 1) ? -1 : 1));
} else {
return defaultValue;
}
}
/**
* Sets the altitude in meters.
*/
public void setAltitude(double altitude) {
String ref = altitude >= 0 ? "0" : "1";
setAttribute(TAG_GPS_ALTITUDE, new Rational(Math.abs(altitude)).toString());
setAttribute(TAG_GPS_ALTITUDE_REF, ref);
}
/**
* Set the date time value.
*
* @param timeStamp number of milliseconds since Jan. 1, 1970, midnight local time.
* @hide
*/
@RestrictTo(RestrictTo.Scope.LIBRARY)
public void setDateTime(@NonNull Long timeStamp) {
if (timeStamp == null) {
throw new NullPointerException("Timestamp should not be null.");
}
if (timeStamp < 0) {
throw new IllegalArgumentException("Timestamp should a positive value.");
}
long subsec = timeStamp % 1000;
String subsecString = Long.toString(subsec);
for (int i = subsecString.length(); i < 3; i++) {
subsecString = "0" + subsecString;
}
setAttribute(TAG_DATETIME, sFormatterPrimary.format(new Date(timeStamp)));
setAttribute(TAG_SUBSEC_TIME, subsecString);
}
/**
* Returns parsed {@link ExifInterface#TAG_DATETIME} value as number of milliseconds since
* Jan. 1, 1970, midnight local time.
*
* <p>Note: The return value includes the first three digits (or less depending on the length
* of the string) of {@link ExifInterface#TAG_SUBSEC_TIME}.
*
* @return null if date time information is unavailable or invalid.
*
* @hide
*/
@RestrictTo(RestrictTo.Scope.LIBRARY)
@Nullable
public Long getDateTime() {
return parseDateTime(getAttribute(TAG_DATETIME),
getAttribute(TAG_SUBSEC_TIME),
getAttribute(TAG_OFFSET_TIME));
}
/**
* Returns parsed {@link ExifInterface#TAG_DATETIME_DIGITIZED} value as number of
* milliseconds since Jan. 1, 1970, midnight local time.
*
* <p>Note: The return value includes the first three digits (or less depending on the length
* of the string) of {@link ExifInterface#TAG_SUBSEC_TIME_DIGITIZED}.
*
* @return null if digitized date time information is unavailable or invalid.
*
* @hide
*/
@RestrictTo(RestrictTo.Scope.LIBRARY)
@Nullable
public Long getDateTimeDigitized() {
return parseDateTime(getAttribute(TAG_DATETIME_DIGITIZED),
getAttribute(TAG_SUBSEC_TIME_DIGITIZED),
getAttribute(TAG_OFFSET_TIME_DIGITIZED));
}
/**
* Returns parsed {@link ExifInterface#TAG_DATETIME_ORIGINAL} value as number of
* milliseconds since Jan. 1, 1970, midnight local time.
*
* <p>Note: The return value includes the first three digits (or less depending on the length
* of the string) of {@link ExifInterface#TAG_SUBSEC_TIME_ORIGINAL}.
*
* @return null if original date time information is unavailable or invalid.
*
* @hide
*/
@RestrictTo(RestrictTo.Scope.LIBRARY)
@Nullable
public Long getDateTimeOriginal() {
return parseDateTime(getAttribute(TAG_DATETIME_ORIGINAL),
getAttribute(TAG_SUBSEC_TIME_ORIGINAL),
getAttribute(TAG_OFFSET_TIME_ORIGINAL));
}
private static Long parseDateTime(@Nullable String dateTimeString, @Nullable String subSecs,
@Nullable String offsetString) {
if (dateTimeString == null || !NON_ZERO_TIME_PATTERN.matcher(dateTimeString).matches()) {
return null;
}
ParsePosition pos = new ParsePosition(0);
try {
// The exif field is in local time. Parsing it as if it is UTC will yield time
// since 1/1/1970 local time
Date dateTime = sFormatterPrimary.parse(dateTimeString, pos);
if (dateTime == null) {
dateTime = sFormatterSecondary.parse(dateTimeString, pos);
if (dateTime == null) {
return null;
}
}
long msecs = dateTime.getTime();
if (offsetString != null) {
String sign = offsetString.substring(0, 1);
int hour = Integer.parseInt(offsetString.substring(1, 3));
int min = Integer.parseInt(offsetString.substring(4, 6));
if (("+".equals(sign) || "-".equals(sign))
&& ":".equals(offsetString.substring(3, 4))
&& hour <= 14 /* max UTC hour value */) {
msecs += (hour * 60 + min) * 60 * 1000 * ("-".equals(sign) ? 1 : -1);
}
}
if (subSecs != null) {
msecs += parseSubSeconds(subSecs);
}
return msecs;
} catch (IllegalArgumentException e) {
return null;
}
}
/**
* Returns number of milliseconds since Jan. 1, 1970, midnight UTC.
* @return null if the date time information is not available.
*/
@SuppressLint("AutoBoxing") /* Not a performance-critical call, thus not a big concern. */
@Nullable
public Long getGpsDateTime() {
String date = getAttribute(TAG_GPS_DATESTAMP);
String time = getAttribute(TAG_GPS_TIMESTAMP);
if (date == null || time == null
|| (!NON_ZERO_TIME_PATTERN.matcher(date).matches()
&& !NON_ZERO_TIME_PATTERN.matcher(time).matches())) {
return null;
}
String dateTimeString = date + ' ' + time;
ParsePosition pos = new ParsePosition(0);
try {
Date dateTime = sFormatterPrimary.parse(dateTimeString, pos);
if (dateTime == null) {
dateTime = sFormatterSecondary.parse(dateTimeString, pos);
if (dateTime == null) {
return null;
}
}
return dateTime.getTime();
} catch (IllegalArgumentException e) {
return null;
}
}
private void initForFilename(String filename) throws IOException {
if (filename == null) {
throw new NullPointerException("filename cannot be null");
}
FileInputStream in = null;
mAssetInputStream = null;
mFilename = filename;
try {
in = new FileInputStream(filename);
if (isSeekableFD(in.getFD())) {
mSeekableFileDescriptor = in.getFD();
} else {
mSeekableFileDescriptor = null;
}
loadAttributes(in);
} finally {
closeQuietly(in);
}
}
private static double convertRationalLatLonToDouble(String rationalString, String ref) {
try {
String [] parts = rationalString.split(",", -1);
String [] pair;
pair = parts[0].split("/", -1);
double degrees = Double.parseDouble(pair[0].trim())
/ Double.parseDouble(pair[1].trim());
pair = parts[1].split("/", -1);
double minutes = Double.parseDouble(pair[0].trim())
/ Double.parseDouble(pair[1].trim());
pair = parts[2].split("/", -1);
double seconds = Double.parseDouble(pair[0].trim())
/ Double.parseDouble(pair[1].trim());
double result = degrees + (minutes / 60.0) + (seconds / 3600.0);
if ((ref.equals("S") || ref.equals("W"))) {
return -result;
} else if (ref.equals("N") || ref.equals("E")) {
return result;
} else {
// Not valid
throw new IllegalArgumentException();
}
} catch (NumberFormatException | ArrayIndexOutOfBoundsException e) {
// Not valid
throw new IllegalArgumentException();
}
}
private String convertDecimalDegree(double decimalDegree) {
long degrees = (long) decimalDegree;
long minutes = (long) ((decimalDegree - degrees) * 60.0);
long seconds = Math.round((decimalDegree - degrees - minutes / 60.0) * 3600.0 * 1e7);
return degrees + "/1," + minutes + "/1," + seconds + "/10000000";
}
// Checks the type of image file
private int getMimeType(BufferedInputStream in) throws IOException {
in.mark(SIGNATURE_CHECK_SIZE);
byte[] signatureCheckBytes = new byte[SIGNATURE_CHECK_SIZE];
in.read(signatureCheckBytes);
in.reset();
if (isJpegFormat(signatureCheckBytes)) {
return IMAGE_TYPE_JPEG;
} else if (isRafFormat(signatureCheckBytes)) {
return IMAGE_TYPE_RAF;
} else if (isHeifFormat(signatureCheckBytes)) {
return IMAGE_TYPE_HEIF;
} else if (isOrfFormat(signatureCheckBytes)) {
return IMAGE_TYPE_ORF;
} else if (isRw2Format(signatureCheckBytes)) {
return IMAGE_TYPE_RW2;
} else if (isPngFormat(signatureCheckBytes)) {
return IMAGE_TYPE_PNG;
} else if (isWebpFormat(signatureCheckBytes)) {
return IMAGE_TYPE_WEBP;
}
// Certain file formats (PEF) are identified in readImageFileDirectory()
return IMAGE_TYPE_UNKNOWN;
}
/**
* This method looks at the first 3 bytes to determine if this file is a JPEG file.
* See http://www.media.mit.edu/pia/Research/deepview/exif.html, "JPEG format and Marker"
*/
private static boolean isJpegFormat(byte[] signatureCheckBytes) throws IOException {
for (int i = 0; i < JPEG_SIGNATURE.length; i++) {
if (signatureCheckBytes[i] != JPEG_SIGNATURE[i]) {
return false;
}
}
return true;
}
/**
* This method looks at the first 15 bytes to determine if this file is a RAF file.
* There is no official specification for RAF files from Fuji, but there is an online archive of
* image file specifications:
* http://fileformats.archiveteam.org/wiki/Fujifilm_RAF
*/
private boolean isRafFormat(byte[] signatureCheckBytes) throws IOException {
byte[] rafSignatureBytes = RAF_SIGNATURE.getBytes(Charset.defaultCharset());
for (int i = 0; i < rafSignatureBytes.length; i++) {
if (signatureCheckBytes[i] != rafSignatureBytes[i]) {
return false;
}
}
return true;
}
private boolean isHeifFormat(byte[] signatureCheckBytes) throws IOException {
ByteOrderedDataInputStream signatureInputStream = null;
try {
signatureInputStream = new ByteOrderedDataInputStream(signatureCheckBytes);
long chunkSize = signatureInputStream.readInt();
byte[] chunkType = new byte[4];
signatureInputStream.read(chunkType);
if (!Arrays.equals(chunkType, HEIF_TYPE_FTYP)) {
return false;
}
long chunkDataOffset = 8;
if (chunkSize == 1) {
// This indicates that the next 8 bytes represent the chunk size,
// and chunk data comes after that.
chunkSize = signatureInputStream.readLong();
if (chunkSize < 16) {
// The smallest valid chunk is 16 bytes long in this case.
return false;
}
chunkDataOffset += 8;
}
// only sniff up to signatureCheckBytes.length
if (chunkSize > signatureCheckBytes.length) {
chunkSize = signatureCheckBytes.length;
}
long chunkDataSize = chunkSize - chunkDataOffset;
// It should at least have major brand (4-byte) and minor version (4-byte).
// The rest of the chunk (if any) is a list of (4-byte) compatible brands.
if (chunkDataSize < 8) {
return false;
}
byte[] brand = new byte[4];
boolean isMif1 = false;
boolean isHeic = false;
for (long i = 0; i < chunkDataSize / 4; ++i) {
if (signatureInputStream.read(brand) != brand.length) {
return false;
}
if (i == 1) {
// Skip this index, it refers to the minorVersion, not a brand.
continue;
}
if (Arrays.equals(brand, HEIF_BRAND_MIF1)) {
isMif1 = true;
} else if (Arrays.equals(brand, HEIF_BRAND_HEIC)) {
isHeic = true;
}
if (isMif1 && isHeic) {
return true;
}
}
} catch (Exception e) {
if (DEBUG) {
Log.d(TAG, "Exception parsing HEIF file type box.", e);
}
} finally {
if (signatureInputStream != null) {
signatureInputStream.close();
signatureInputStream = null;
}
}
return false;
}
/**
* ORF has a similar structure to TIFF but it contains a different signature at the TIFF Header.
* This method looks at the 2 bytes following the Byte Order bytes to determine if this file is
* an ORF file.
* There is no official specification for ORF files from Olympus, but there is an online archive
* of image file specifications:
* http://fileformats.archiveteam.org/wiki/Olympus_ORF
*/
private boolean isOrfFormat(byte[] signatureCheckBytes) throws IOException {
ByteOrderedDataInputStream signatureInputStream = null;
try {
signatureInputStream = new ByteOrderedDataInputStream(signatureCheckBytes);
// Read byte order
mExifByteOrder = readByteOrder(signatureInputStream);
// Set byte order
signatureInputStream.setByteOrder(mExifByteOrder);
short orfSignature = signatureInputStream.readShort();
return orfSignature == ORF_SIGNATURE_1 || orfSignature == ORF_SIGNATURE_2;
} catch (Exception e) {
// Do nothing
} finally {
if (signatureInputStream != null) {
signatureInputStream.close();
}
}
return false;
}
/**
* RW2 is TIFF-based, but stores 0x55 signature byte instead of 0x42 at the header
* See http://lclevy.free.fr/raw/
*/
private boolean isRw2Format(byte[] signatureCheckBytes) throws IOException {
ByteOrderedDataInputStream signatureInputStream = null;
try {
signatureInputStream = new ByteOrderedDataInputStream(signatureCheckBytes);
// Read byte order
mExifByteOrder = readByteOrder(signatureInputStream);
// Set byte order
signatureInputStream.setByteOrder(mExifByteOrder);
short signatureByte = signatureInputStream.readShort();
return signatureByte == RW2_SIGNATURE;
} catch (Exception e) {
// Do nothing
} finally {
if (signatureInputStream != null) {
signatureInputStream.close();
}
}
return false;
}
/**
* PNG's file signature is first 8 bytes.
* See PNG (Portable Network Graphics) Specification, Version 1.2, 3.1. PNG file signature
*/
private boolean isPngFormat(byte[] signatureCheckBytes) throws IOException {
for (int i = 0; i < PNG_SIGNATURE.length; i++) {
if (signatureCheckBytes[i] != PNG_SIGNATURE[i]) {
return false;
}
}
return true;
}
/**
* WebP's file signature is composed of 12 bytes:
* 'RIFF' (4 bytes) + file length value (4 bytes) + 'WEBP' (4 bytes)
* See https://developers.google.com/speed/webp/docs/riff_container, Section "WebP File Header"
*/
private boolean isWebpFormat(byte[] signatureCheckBytes) throws IOException {
for (int i = 0; i < WEBP_SIGNATURE_1.length; i++) {
if (signatureCheckBytes[i] != WEBP_SIGNATURE_1[i]) {
return false;
}
}
for (int i = 0; i < WEBP_SIGNATURE_2.length; i++) {
if (signatureCheckBytes[i + WEBP_SIGNATURE_1.length + WEBP_FILE_SIZE_BYTE_LENGTH]
!= WEBP_SIGNATURE_2[i]) {
return false;
}
}
return true;
}
private static boolean isExifDataOnly(BufferedInputStream in) throws IOException {
in.mark(IDENTIFIER_EXIF_APP1.length);
byte[] signatureCheckBytes = new byte[IDENTIFIER_EXIF_APP1.length];
in.read(signatureCheckBytes);
in.reset();
for (int i = 0; i < IDENTIFIER_EXIF_APP1.length; i++) {
if (signatureCheckBytes[i] != IDENTIFIER_EXIF_APP1[i]) {
return false;
}
}
return true;
}
/**
* Loads EXIF attributes from a JPEG input stream.
*
* @param in The input stream that starts with the JPEG data.
* @param offsetToJpeg The offset to JPEG data for the original input stream.
* @param imageType The image type from which to retrieve metadata. Use IFD_TYPE_PRIMARY for
* primary image, IFD_TYPE_PREVIEW for preview image, and
* IFD_TYPE_THUMBNAIL for thumbnail image.
* @throws IOException If the data contains invalid JPEG markers, offsets, or length values.
*/
private void getJpegAttributes(ByteOrderedDataInputStream in, int offsetToJpeg, int imageType)
throws IOException {
// See JPEG File Interchange Format Specification, "JFIF Specification"
if (DEBUG) {
Log.d(TAG, "getJpegAttributes starting with: " + in);
}
// JPEG uses Big Endian by default. See https://people.cs.umass.edu/~verts/cs32/endian.html
in.setByteOrder(ByteOrder.BIG_ENDIAN);
int bytesRead = 0;
byte marker;
if ((marker = in.readByte()) != MARKER) {
throw new IOException("Invalid marker: " + Integer.toHexString(marker & 0xff));
}
++bytesRead;
if (in.readByte() != MARKER_SOI) {
throw new IOException("Invalid marker: " + Integer.toHexString(marker & 0xff));
}
++bytesRead;
while (true) {
marker = in.readByte();
if (marker != MARKER) {
throw new IOException("Invalid marker:" + Integer.toHexString(marker & 0xff));
}
++bytesRead;
marker = in.readByte();
if (DEBUG) {
Log.d(TAG, "Found JPEG segment indicator: " + Integer.toHexString(marker & 0xff));
}
++bytesRead;
// EOI indicates the end of an image and in case of SOS, JPEG image stream starts and
// the image data will terminate right after.
if (marker == MARKER_EOI || marker == MARKER_SOS) {
break;
}
int length = in.readUnsignedShort() - 2;
bytesRead += 2;
if (DEBUG) {
Log.d(TAG, "JPEG segment: " + Integer.toHexString(marker & 0xff) + " (length: "
+ (length + 2) + ")");
}
if (length < 0) {
throw new IOException("Invalid length");
}
switch (marker) {
case MARKER_APP1: {
final int start = bytesRead;
final byte[] bytes = new byte[length];
in.readFully(bytes);
bytesRead += length;
length = 0;
if (startsWith(bytes, IDENTIFIER_EXIF_APP1)) {
final byte[] value = Arrays.copyOfRange(bytes, IDENTIFIER_EXIF_APP1.length,
bytes.length);
// Save offset to EXIF data for handling thumbnail and attribute offsets.
mOffsetToExifData = offsetToJpeg
+ /* offset to EXIF from JPEG start */ start
+ IDENTIFIER_EXIF_APP1.length;
readExifSegment(value, imageType);
setThumbnailData(new ByteOrderedDataInputStream(value));
} else if (startsWith(bytes, IDENTIFIER_XMP_APP1)) {
// See XMP Specification Part 3: Storage in Files, 1.1.3 JPEG, Table 6
final int offset = start + IDENTIFIER_XMP_APP1.length;
final byte[] value = Arrays.copyOfRange(bytes,
IDENTIFIER_XMP_APP1.length, bytes.length);
// TODO: check if ignoring separate XMP data when tag 700 already exists is
// valid.
if (getAttribute(TAG_XMP) == null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_XMP, new ExifAttribute(
IFD_FORMAT_BYTE, value.length, offset, value));
mXmpIsFromSeparateMarker = true;
}
}
break;
}
case MARKER_COM: {
byte[] bytes = new byte[length];
if (in.read(bytes) != length) {
throw new IOException("Invalid exif");
}
length = 0;
if (getAttribute(TAG_USER_COMMENT) == null) {
mAttributes[IFD_TYPE_EXIF].put(TAG_USER_COMMENT, ExifAttribute.createString(
new String(bytes, ASCII)));
}
break;
}
case MARKER_SOF0:
case MARKER_SOF1:
case MARKER_SOF2:
case MARKER_SOF3:
case MARKER_SOF5:
case MARKER_SOF6:
case MARKER_SOF7:
case MARKER_SOF9:
case MARKER_SOF10:
case MARKER_SOF11:
case MARKER_SOF13:
case MARKER_SOF14:
case MARKER_SOF15: {
in.skipFully(1);
mAttributes[imageType].put(TAG_IMAGE_LENGTH, ExifAttribute.createULong(
in.readUnsignedShort(), mExifByteOrder));
mAttributes[imageType].put(TAG_IMAGE_WIDTH, ExifAttribute.createULong(
in.readUnsignedShort(), mExifByteOrder));
length -= 5;
break;
}
default: {
break;
}
}
if (length < 0) {
throw new IOException("Invalid length");
}
in.skipFully(length);
bytesRead += length;
}
// Restore original byte order
in.setByteOrder(mExifByteOrder);
}
private void getRawAttributes(SeekableByteOrderedDataInputStream in) throws IOException {
// Parse TIFF Headers. See JEITA CP-3451C Section 4.5.2. Table 1.
parseTiffHeaders(in);
// Read TIFF image file directories. See JEITA CP-3451C Section 4.5.2. Figure 6.
readImageFileDirectory(in, IFD_TYPE_PRIMARY);
// Update ImageLength/Width tags for all image data.
updateImageSizeValues(in, IFD_TYPE_PRIMARY);
updateImageSizeValues(in, IFD_TYPE_PREVIEW);
updateImageSizeValues(in, IFD_TYPE_THUMBNAIL);
// Check if each image data is in valid position.
validateImages();
if (mMimeType == IMAGE_TYPE_PEF) {
// PEF files contain a MakerNote data, which contains the data for ColorSpace tag.
// See http://lclevy.free.fr/raw/ and piex.cc PefGetPreviewData()
ExifAttribute makerNoteAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_EXIF].get(TAG_MAKER_NOTE);
if (makerNoteAttribute != null) {
// Create an ordered DataInputStream for MakerNote
SeekableByteOrderedDataInputStream makerNoteDataInputStream =
new SeekableByteOrderedDataInputStream(makerNoteAttribute.bytes);
makerNoteDataInputStream.setByteOrder(mExifByteOrder);
// Skip to MakerNote data
makerNoteDataInputStream.skipFully(PEF_MAKER_NOTE_SKIP_SIZE);
// Read IFD data from MakerNote
readImageFileDirectory(makerNoteDataInputStream, IFD_TYPE_PEF);
// Update ColorSpace tag
ExifAttribute colorSpaceAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_PEF].get(TAG_COLOR_SPACE);
if (colorSpaceAttribute != null) {
mAttributes[IFD_TYPE_EXIF].put(TAG_COLOR_SPACE, colorSpaceAttribute);
}
}
}
}
/**
* RAF files contains a JPEG and a CFA data.
* The JPEG contains two images, a preview and a thumbnail, while the CFA contains a RAW image.
* This method looks at the first 160 bytes of a RAF file to retrieve the offset and length
* values for the JPEG and CFA data.
* Using that data, it parses the JPEG data to retrieve the preview and thumbnail image data,
* then parses the CFA metadata to retrieve the primary image length/width values.
* For data format details, see http://fileformats.archiveteam.org/wiki/Fujifilm_RAF
*/
private void getRafAttributes(ByteOrderedDataInputStream in) throws IOException {
if (DEBUG) {
Log.d(TAG, "getRafAttributes starting with: " + in);
}
// Retrieve offset & length values
in.skipFully(RAF_OFFSET_TO_JPEG_IMAGE_OFFSET);
byte[] offsetToJpegBytes = new byte[4];
byte[] jpegLengthBytes = new byte[4];
byte[] cfaHeaderOffsetBytes = new byte[4];
in.read(offsetToJpegBytes);
in.read(jpegLengthBytes);
in.read(cfaHeaderOffsetBytes);
int offsetToJpeg = ByteBuffer.wrap(offsetToJpegBytes).getInt();
int jpegLength = ByteBuffer.wrap(jpegLengthBytes).getInt();
int cfaHeaderOffset = ByteBuffer.wrap(cfaHeaderOffsetBytes).getInt();
byte[] jpegBytes = new byte[jpegLength];
in.skipFully(offsetToJpeg - in.position());
in.read(jpegBytes);
// Retrieve JPEG image metadata
ByteOrderedDataInputStream jpegInputStream = new ByteOrderedDataInputStream(jpegBytes);
getJpegAttributes(jpegInputStream, offsetToJpeg, IFD_TYPE_PREVIEW);
// Skip to CFA header offset.
in.skipFully(cfaHeaderOffset - in.position());
// Retrieve primary image length/width values, if TAG_RAF_IMAGE_SIZE exists
in.setByteOrder(ByteOrder.BIG_ENDIAN);
int numberOfDirectoryEntry = in.readInt();
if (DEBUG) {
Log.d(TAG, "numberOfDirectoryEntry: " + numberOfDirectoryEntry);
}
// CFA stores some metadata about the RAW image. Since CFA uses proprietary tags, can only
// find and retrieve image size information tags, while skipping others.
// See piex.cc RafGetDimension()
for (int i = 0; i < numberOfDirectoryEntry; ++i) {
int tagNumber = in.readUnsignedShort();
int numberOfBytes = in.readUnsignedShort();
if (tagNumber == TAG_RAF_IMAGE_SIZE.number) {
int imageLength = in.readShort();
int imageWidth = in.readShort();
ExifAttribute imageLengthAttribute =
ExifAttribute.createUShort(imageLength, mExifByteOrder);
ExifAttribute imageWidthAttribute =
ExifAttribute.createUShort(imageWidth, mExifByteOrder);
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_LENGTH, imageLengthAttribute);
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_WIDTH, imageWidthAttribute);
if (DEBUG) {
Log.d(TAG, "Updated to length: " + imageLength + ", width: " + imageWidth);
}
return;
}
in.skipFully(numberOfBytes);
}
}
// Support for getting MediaMetadataRetriever.METADATA_KEY_EXIF_OFFSET and
// MediaMetadataRetriever.METADATA_KEY_EXIF_LENGTH was added SDK 28.
private void getHeifAttributes(final SeekableByteOrderedDataInputStream in) throws IOException {
if (Build.VERSION.SDK_INT >= 28) {
MediaMetadataRetriever retriever = new MediaMetadataRetriever();
try {
retriever.setDataSource(new MediaDataSource() {
long mPosition;
@Override
public void close() throws IOException {}
@Override
public int readAt(long position, byte[] buffer, int offset, int size)
throws IOException {
if (size == 0) {
return 0;
}
if (position < 0) {
return -1;
}
try {
if (mPosition != position) {
// We don't allow seek to positions after the available bytes,
// the input stream won't be able to seek back then.
// However, if we hit an exception before (mPosition set to -1),
// let it try the seek in hope it might recover.
if (mPosition >= 0 && position >= mPosition + in.available()) {
return -1;
}
in.seek(position);
mPosition = position;
}
// If the read will cause us to go over the available bytes,
// reduce the size so that we stay in the available range.
// Otherwise the input stream may not be able to seek back.
if (size > in.available()) {
size = in.available();
}
int bytesRead = in.read(buffer, offset, size);
if (bytesRead >= 0) {
mPosition += bytesRead;
return bytesRead;
}
} catch (IOException e) {
// do nothing
}
mPosition = -1; // need to seek on next read
return -1;
}
@Override
public long getSize() throws IOException {
return -1;
}
});
String exifOffsetStr = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_EXIF_OFFSET);
String exifLengthStr = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_EXIF_LENGTH);
String hasImage = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_HAS_IMAGE);
String hasVideo = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_HAS_VIDEO);
String width = null;
String height = null;
String rotation = null;
final String metadataValueYes = "yes";
// If the file has both image and video, prefer image info over video info.
// App querying ExifInterface is most likely using the bitmap path which
// picks the image first.
if (metadataValueYes.equals(hasImage)) {
width = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_IMAGE_WIDTH);
height = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_IMAGE_HEIGHT);
rotation = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_IMAGE_ROTATION);
} else if (metadataValueYes.equals(hasVideo)) {
width = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_VIDEO_WIDTH);
height = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_VIDEO_HEIGHT);
rotation = retriever.extractMetadata(
MediaMetadataRetriever.METADATA_KEY_VIDEO_ROTATION);
}
if (width != null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_WIDTH,
ExifAttribute.createUShort(Integer.parseInt(width), mExifByteOrder));
}
if (height != null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_LENGTH,
ExifAttribute.createUShort(Integer.parseInt(height), mExifByteOrder));
}
if (rotation != null) {
int orientation = ExifInterface.ORIENTATION_NORMAL;
// all rotation angles in CW
switch (Integer.parseInt(rotation)) {
case 90:
orientation = ExifInterface.ORIENTATION_ROTATE_90;
break;
case 180:
orientation = ExifInterface.ORIENTATION_ROTATE_180;
break;
case 270:
orientation = ExifInterface.ORIENTATION_ROTATE_270;
break;
}
mAttributes[IFD_TYPE_PRIMARY].put(TAG_ORIENTATION,
ExifAttribute.createUShort(orientation, mExifByteOrder));
}
if (exifOffsetStr != null && exifLengthStr != null) {
int offset = Integer.parseInt(exifOffsetStr);
int length = Integer.parseInt(exifLengthStr);
if (length <= 6) {
throw new IOException("Invalid exif length");
}
in.seek(offset);
byte[] identifier = new byte[6];
if (in.read(identifier) != 6) {
throw new IOException("Can't read identifier");
}
offset += 6;
length -= 6;
if (!Arrays.equals(identifier, IDENTIFIER_EXIF_APP1)) {
throw new IOException("Invalid identifier");
}
// TODO: Need to handle potential OutOfMemoryError
byte[] bytes = new byte[length];
if (in.read(bytes) != length) {
throw new IOException("Can't read exif");
}
// Save offset to EXIF data for handling thumbnail and attribute offsets.
mOffsetToExifData = offset;
readExifSegment(bytes, IFD_TYPE_PRIMARY);
}
if (DEBUG) {
Log.d(TAG, "Heif meta: " + width + "x" + height + ", rotation " + rotation);
}
} catch (RuntimeException e) {
throw new UnsupportedOperationException("Failed to read EXIF from HEIF file. "
+ "Given stream is either malformed or unsupported.");
} finally {
retriever.release();
}
} else {
throw new UnsupportedOperationException("Reading EXIF from HEIF files "
+ "is supported from SDK 28 and above");
}
}
private void getStandaloneAttributes(SeekableByteOrderedDataInputStream in) throws IOException {
in.skipFully(IDENTIFIER_EXIF_APP1.length);
// TODO: Need to handle potential OutOfMemoryError
byte[] data = new byte[in.available()];
in.readFully(data);
// Save offset to EXIF data for handling thumbnail and attribute offsets.
mOffsetToExifData = IDENTIFIER_EXIF_APP1.length;
readExifSegment(data, IFD_TYPE_PRIMARY);
}
/**
* ORF files contains a primary image data and a MakerNote data that contains preview/thumbnail
* images. Both data takes the form of IFDs and can therefore be read with the
* readImageFileDirectory() method.
* This method reads all the necessary data and updates the primary/preview/thumbnail image
* information according to the GetOlympusPreviewImage() method in piex.cc.
* For data format details, see the following:
* http://fileformats.archiveteam.org/wiki/Olympus_ORF
* https://libopenraw.freedesktop.org/wiki/Olympus_ORF
*/
private void getOrfAttributes(SeekableByteOrderedDataInputStream in) throws IOException {
// Retrieve primary image data
// Other Exif data will be located in the Makernote.
getRawAttributes(in);
// Additionally retrieve preview/thumbnail information from MakerNote tag, which contains
// proprietary tags and therefore does not have offical documentation
// See GetOlympusPreviewImage() in piex.cc & http://www.exiv2.org/tags-olympus.html
ExifAttribute makerNoteAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_EXIF].get(TAG_MAKER_NOTE);
if (makerNoteAttribute != null) {
// Create an ordered DataInputStream for MakerNote
SeekableByteOrderedDataInputStream makerNoteDataInputStream =
new SeekableByteOrderedDataInputStream(makerNoteAttribute.bytes);
makerNoteDataInputStream.setByteOrder(mExifByteOrder);
// There are two types of headers for Olympus MakerNotes
// See http://www.exiv2.org/makernote.html#R1
byte[] makerNoteHeader1Bytes = new byte[ORF_MAKER_NOTE_HEADER_1.length];
makerNoteDataInputStream.readFully(makerNoteHeader1Bytes);
makerNoteDataInputStream.seek(0);
byte[] makerNoteHeader2Bytes = new byte[ORF_MAKER_NOTE_HEADER_2.length];
makerNoteDataInputStream.readFully(makerNoteHeader2Bytes);
// Skip the corresponding amount of bytes for each header type
if (Arrays.equals(makerNoteHeader1Bytes, ORF_MAKER_NOTE_HEADER_1)) {
makerNoteDataInputStream.seek(ORF_MAKER_NOTE_HEADER_1_SIZE);
} else if (Arrays.equals(makerNoteHeader2Bytes, ORF_MAKER_NOTE_HEADER_2)) {
makerNoteDataInputStream.seek(ORF_MAKER_NOTE_HEADER_2_SIZE);
}
// Read IFD data from MakerNote
readImageFileDirectory(makerNoteDataInputStream, IFD_TYPE_ORF_MAKER_NOTE);
// Retrieve & update preview image offset & length values
ExifAttribute imageStartAttribute = (ExifAttribute)
mAttributes[IFD_TYPE_ORF_CAMERA_SETTINGS].get(TAG_ORF_PREVIEW_IMAGE_START);
ExifAttribute imageLengthAttribute = (ExifAttribute)
mAttributes[IFD_TYPE_ORF_CAMERA_SETTINGS].get(TAG_ORF_PREVIEW_IMAGE_LENGTH);
if (imageStartAttribute != null && imageLengthAttribute != null) {
mAttributes[IFD_TYPE_PREVIEW].put(TAG_JPEG_INTERCHANGE_FORMAT,
imageStartAttribute);
mAttributes[IFD_TYPE_PREVIEW].put(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH,
imageLengthAttribute);
}
// TODO: Check this behavior in other ORF files
// Retrieve primary image length & width values
// See piex.cc GetOlympusPreviewImage()
ExifAttribute aspectFrameAttribute = (ExifAttribute)
mAttributes[IFD_TYPE_ORF_IMAGE_PROCESSING].get(TAG_ORF_ASPECT_FRAME);
if (aspectFrameAttribute != null) {
int[] aspectFrameValues = (int[]) aspectFrameAttribute.getValue(mExifByteOrder);
if (aspectFrameValues == null || aspectFrameValues.length != 4) {
Log.w(TAG, "Invalid aspect frame values. frame="
+ Arrays.toString(aspectFrameValues));
return;
}
if (aspectFrameValues[2] > aspectFrameValues[0] &&
aspectFrameValues[3] > aspectFrameValues[1]) {
int primaryImageWidth = aspectFrameValues[2] - aspectFrameValues[0] + 1;
int primaryImageLength = aspectFrameValues[3] - aspectFrameValues[1] + 1;
// Swap width & length values
if (primaryImageWidth < primaryImageLength) {
primaryImageWidth += primaryImageLength;
primaryImageLength = primaryImageWidth - primaryImageLength;
primaryImageWidth -= primaryImageLength;
}
ExifAttribute primaryImageWidthAttribute =
ExifAttribute.createUShort(primaryImageWidth, mExifByteOrder);
ExifAttribute primaryImageLengthAttribute =
ExifAttribute.createUShort(primaryImageLength, mExifByteOrder);
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_WIDTH, primaryImageWidthAttribute);
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_LENGTH, primaryImageLengthAttribute);
}
}
}
}
// RW2 contains the primary image data in IFD0 and the preview and/or thumbnail image data in
// the JpgFromRaw tag
// See https://libopenraw.freedesktop.org/wiki/Panasonic_RAW/ and piex.cc Rw2GetPreviewData()
private void getRw2Attributes(SeekableByteOrderedDataInputStream in) throws IOException {
if (DEBUG) {
Log.d(TAG, "getRw2Attributes starting with: " + in);
}
// Retrieve primary image data
getRawAttributes(in);
// Retrieve preview and/or thumbnail image data
ExifAttribute jpgFromRawAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_PRIMARY].get(TAG_RW2_JPG_FROM_RAW);
if (jpgFromRawAttribute != null) {
ByteOrderedDataInputStream jpegInputStream =
new ByteOrderedDataInputStream(jpgFromRawAttribute.bytes);
getJpegAttributes(jpegInputStream, (int) jpgFromRawAttribute.bytesOffset,
IFD_TYPE_PREVIEW);
}
// Set ISO tag value if necessary
ExifAttribute rw2IsoAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_PRIMARY].get(TAG_RW2_ISO);
ExifAttribute exifIsoAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_EXIF].get(TAG_PHOTOGRAPHIC_SENSITIVITY);
if (rw2IsoAttribute != null && exifIsoAttribute == null) {
// Place this attribute only if it doesn't exist
mAttributes[IFD_TYPE_EXIF].put(TAG_PHOTOGRAPHIC_SENSITIVITY, rw2IsoAttribute);
}
}
// PNG contains the EXIF data as a Special-Purpose Chunk
private void getPngAttributes(ByteOrderedDataInputStream in) throws IOException {
if (DEBUG) {
Log.d(TAG, "getPngAttributes starting with: " + in);
}
// PNG uses Big Endian by default.
// See PNG (Portable Network Graphics) Specification, Version 1.2,
// 2.1. Integers and byte order
in.setByteOrder(ByteOrder.BIG_ENDIAN);
int bytesRead = 0;
// Skip the signature bytes
in.skipFully(PNG_SIGNATURE.length);
bytesRead += PNG_SIGNATURE.length;
// Each chunk is made up of four parts:
// 1) Length: 4-byte unsigned integer indicating the number of bytes in the
// Chunk Data field. Excludes Chunk Type and CRC bytes.
// 2) Chunk Type: 4-byte chunk type code.
// 3) Chunk Data: The data bytes. Can be zero-length.
// 4) CRC: 4-byte data calculated on the preceding bytes in the chunk. Always
// present.
// --> 4 (length bytes) + 4 (type bytes) + X (data bytes) + 4 (CRC bytes)
// See PNG (Portable Network Graphics) Specification, Version 1.2,
// 3.2. Chunk layout
try {
while (true) {
int length = in.readInt();
bytesRead += 4;
byte[] type = new byte[PNG_CHUNK_TYPE_BYTE_LENGTH];
if (in.read(type) != type.length) {
throw new IOException("Encountered invalid length while parsing PNG chunk"
+ "type");
}
bytesRead += PNG_CHUNK_TYPE_BYTE_LENGTH;
// The first chunk must be the IHDR chunk
if (bytesRead == 16 && !Arrays.equals(type, PNG_CHUNK_TYPE_IHDR)) {
throw new IOException("Encountered invalid PNG file--IHDR chunk should appear"
+ "as the first chunk");
}
if (Arrays.equals(type, PNG_CHUNK_TYPE_IEND)) {
// IEND marks the end of the image.
break;
} else if (Arrays.equals(type, PNG_CHUNK_TYPE_EXIF)) {
// TODO: Need to handle potential OutOfMemoryError
byte[] data = new byte[length];
if (in.read(data) != length) {
throw new IOException("Failed to read given length for given PNG chunk "
+ "type: " + byteArrayToHexString(type));
}
// Compare CRC values for potential data corruption.
int dataCrcValue = in.readInt();
// Cyclic Redundancy Code used to check for corruption of the data
CRC32 crc = new CRC32();
crc.update(type);
crc.update(data);
if ((int) crc.getValue() != dataCrcValue) {
throw new IOException("Encountered invalid CRC value for PNG-EXIF chunk."
+ "\n recorded CRC value: " + dataCrcValue + ", calculated CRC "
+ "value: " + crc.getValue());
}
// Save offset to EXIF data for handling thumbnail and attribute offsets.
mOffsetToExifData = bytesRead;
readExifSegment(data, IFD_TYPE_PRIMARY);
validateImages();
setThumbnailData(new ByteOrderedDataInputStream(data));
break;
} else {
// Skip to next chunk
in.skipFully(length + PNG_CHUNK_CRC_BYTE_LENGTH);
bytesRead += length + PNG_CHUNK_CRC_BYTE_LENGTH;
}
}
} catch (EOFException e) {
// Should not reach here. Will only reach here if the file is corrupted or
// does not follow the PNG specifications
throw new IOException("Encountered corrupt PNG file.");
}
}
// WebP contains EXIF data as a RIFF File Format Chunk
// All references below can be found in the following link.
// https://developers.google.com/speed/webp/docs/riff_container
private void getWebpAttributes(ByteOrderedDataInputStream in) throws IOException {
if (DEBUG) {
Log.d(TAG, "getWebpAttributes starting with: " + in);
}
// WebP uses little-endian by default.
// See Section "Terminology & Basics"
in.setByteOrder(ByteOrder.LITTLE_ENDIAN);
in.skipFully(WEBP_SIGNATURE_1.length);
// File size corresponds to the size of the entire file from offset 8.
// See Section "WebP File Header"
int fileSize = in.readInt() + 8;
int bytesRead = 8;
in.skipFully(WEBP_SIGNATURE_2.length);
bytesRead += WEBP_SIGNATURE_2.length;
try {
while (true) {
// TODO: Check the first Chunk Type, and if it is VP8X, check if the chunks are
// ordered properly.
// Each chunk is made up of three parts:
// 1) Chunk FourCC: 4-byte concatenating four ASCII characters.
// 2) Chunk Size: 4-byte unsigned integer indicating the size of the chunk.
// Excludes Chunk FourCC and Chunk Size bytes.
// 3) Chunk Payload: data payload. A single padding byte ('0') is added if
// Chunk Size is odd.
// See Section "RIFF File Format"
byte[] code = new byte[WEBP_CHUNK_TYPE_BYTE_LENGTH];
if (in.read(code) != code.length) {
throw new IOException("Encountered invalid length while parsing WebP chunk"
+ "type");
}
bytesRead += 4;
int chunkSize = in.readInt();
bytesRead += 4;
if (Arrays.equals(WEBP_CHUNK_TYPE_EXIF, code)) {
// TODO: Need to handle potential OutOfMemoryError
byte[] payload = new byte[chunkSize];
if (in.read(payload) != chunkSize) {
throw new IOException("Failed to read given length for given PNG chunk "
+ "type: " + byteArrayToHexString(code));
}
// Save offset to EXIF data for handling thumbnail and attribute offsets.
mOffsetToExifData = bytesRead;
readExifSegment(payload, IFD_TYPE_PRIMARY);
setThumbnailData(new ByteOrderedDataInputStream(payload));
break;
} else {
// Add a single padding byte at end if chunk size is odd
chunkSize = (chunkSize % 2 == 1) ? chunkSize + 1 : chunkSize;
// Check if skipping to next chunk is necessary
if (bytesRead + chunkSize == fileSize) {
// Reached end of file
break;
} else if (bytesRead + chunkSize > fileSize) {
throw new IOException("Encountered WebP file with invalid chunk size");
}
// Skip to next chunk
in.skipFully(chunkSize);
bytesRead += chunkSize;
}
}
} catch (EOFException e) {
// Should not reach here. Will only reach here if the file is corrupted or
// does not follow the WebP specifications
throw new IOException("Encountered corrupt WebP file.");
}
}
// Stores a new JPEG image with EXIF attributes into a given output stream.
private void saveJpegAttributes(InputStream inputStream, OutputStream outputStream)
throws IOException {
// See JPEG File Interchange Format Specification, "JFIF Specification"
if (DEBUG) {
Log.d(TAG, "saveJpegAttributes starting with (inputStream: " + inputStream
+ ", outputStream: " + outputStream + ")");
}
ByteOrderedDataInputStream dataInputStream = new ByteOrderedDataInputStream(inputStream);
ByteOrderedDataOutputStream dataOutputStream =
new ByteOrderedDataOutputStream(outputStream, ByteOrder.BIG_ENDIAN);
if (dataInputStream.readByte() != MARKER) {
throw new IOException("Invalid marker");
}
dataOutputStream.writeByte(MARKER);
if (dataInputStream.readByte() != MARKER_SOI) {
throw new IOException("Invalid marker");
}
dataOutputStream.writeByte(MARKER_SOI);
// Remove XMP data if it is from a separate marker (IDENTIFIER_XMP_APP1, not
// IDENTIFIER_EXIF_APP1)
// Will re-add it later after the rest of the file is written
ExifAttribute xmpAttribute = null;
if (getAttribute(TAG_XMP) != null && mXmpIsFromSeparateMarker) {
xmpAttribute = mAttributes[IFD_TYPE_PRIMARY].remove(TAG_XMP);
}
// Write EXIF APP1 segment
dataOutputStream.writeByte(MARKER);
dataOutputStream.writeByte(MARKER_APP1);
writeExifSegment(dataOutputStream);
// Re-add previously removed XMP data.
if (xmpAttribute != null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_XMP, xmpAttribute);
}
byte[] bytes = new byte[4096];
while (true) {
byte marker = dataInputStream.readByte();
if (marker != MARKER) {
throw new IOException("Invalid marker");
}
marker = dataInputStream.readByte();
switch (marker) {
case MARKER_APP1: {
int length = dataInputStream.readUnsignedShort() - 2;
if (length < 0) {
throw new IOException("Invalid length");
}
byte[] identifier = new byte[6];
if (length >= 6) {
if (dataInputStream.read(identifier) != 6) {
throw new IOException("Invalid exif");
}
if (Arrays.equals(identifier, IDENTIFIER_EXIF_APP1)) {
// Skip the original EXIF APP1 segment.
dataInputStream.skipFully(length - 6);
break;
}
}
// Copy non-EXIF APP1 segment.
dataOutputStream.writeByte(MARKER);
dataOutputStream.writeByte(marker);
dataOutputStream.writeUnsignedShort(length + 2);
if (length >= 6) {
length -= 6;
dataOutputStream.write(identifier);
}
int read;
while (length > 0 && (read = dataInputStream.read(
bytes, 0, Math.min(length, bytes.length))) >= 0) {
dataOutputStream.write(bytes, 0, read);
length -= read;
}
break;
}
case MARKER_EOI:
case MARKER_SOS: {
dataOutputStream.writeByte(MARKER);
dataOutputStream.writeByte(marker);
// Copy all the remaining data
copy(dataInputStream, dataOutputStream);
return;
}
default: {
// Copy JPEG segment
dataOutputStream.writeByte(MARKER);
dataOutputStream.writeByte(marker);
int length = dataInputStream.readUnsignedShort();
dataOutputStream.writeUnsignedShort(length);
length -= 2;
if (length < 0) {
throw new IOException("Invalid length");
}
int read;
while (length > 0 && (read = dataInputStream.read(
bytes, 0, Math.min(length, bytes.length))) >= 0) {
dataOutputStream.write(bytes, 0, read);
length -= read;
}
break;
}
}
}
}
private void savePngAttributes(InputStream inputStream, OutputStream outputStream)
throws IOException {
if (DEBUG) {
Log.d(TAG, "savePngAttributes starting with (inputStream: " + inputStream
+ ", outputStream: " + outputStream + ")");
}
ByteOrderedDataInputStream dataInputStream = new ByteOrderedDataInputStream(inputStream);
ByteOrderedDataOutputStream dataOutputStream =
new ByteOrderedDataOutputStream(outputStream, ByteOrder.BIG_ENDIAN);
// Copy PNG signature bytes
copy(dataInputStream, dataOutputStream, PNG_SIGNATURE.length);
// EXIF chunk can appear anywhere between the first (IHDR) and last (IEND) chunks, except
// between IDAT chunks.
// Adhering to these rules,
// 1) if EXIF chunk did not exist in the original file, it will be stored right after the
// first chunk,
// 2) if EXIF chunk existed in the original file, it will be stored in the same location.
if (mOffsetToExifData == 0) {
// Copy IHDR chunk bytes
int ihdrChunkLength = dataInputStream.readInt();
dataOutputStream.writeInt(ihdrChunkLength);
copy(dataInputStream, dataOutputStream, PNG_CHUNK_TYPE_BYTE_LENGTH
+ ihdrChunkLength + PNG_CHUNK_CRC_BYTE_LENGTH);
} else {
// Copy up until the point where EXIF chunk length information is stored.
int copyLength = mOffsetToExifData - PNG_SIGNATURE.length
- 4 /* PNG EXIF chunk length bytes */
- PNG_CHUNK_TYPE_BYTE_LENGTH;
copy(dataInputStream, dataOutputStream, copyLength);
// Skip to the start of the chunk after the EXIF chunk
int exifChunkLength = dataInputStream.readInt();
dataInputStream.skipFully(PNG_CHUNK_TYPE_BYTE_LENGTH + exifChunkLength
+ PNG_CHUNK_CRC_BYTE_LENGTH);
}
// Write EXIF data
ByteArrayOutputStream exifByteArrayOutputStream = null;
try {
// A byte array is needed to calculate the CRC value of this chunk which requires
// the chunk type bytes and the chunk data bytes.
exifByteArrayOutputStream = new ByteArrayOutputStream();
ByteOrderedDataOutputStream exifDataOutputStream =
new ByteOrderedDataOutputStream(exifByteArrayOutputStream,
ByteOrder.BIG_ENDIAN);
// Store Exif data in separate byte array
writeExifSegment(exifDataOutputStream);
byte[] exifBytes =
((ByteArrayOutputStream) exifDataOutputStream.mOutputStream).toByteArray();
// Write EXIF chunk data
dataOutputStream.write(exifBytes);
// Write EXIF chunk CRC
CRC32 crc = new CRC32();
crc.update(exifBytes, 4 /* skip length bytes */, exifBytes.length - 4);
dataOutputStream.writeInt((int) crc.getValue());
} finally {
closeQuietly(exifByteArrayOutputStream);
}
// Copy the rest of the file
copy(dataInputStream, dataOutputStream);
}
// A WebP file has a header and a series of chunks.
// The header is composed of:
// "RIFF" + File Size + "WEBP"
//
// The structure of the chunks can be divided largely into two categories:
// 1) Contains only image data,
// 2) Contains image data and extra data.
// In the first category, there is only one chunk: type "VP8" (compression with loss) or "VP8L"
// (lossless compression).
// In the second category, the first chunk will be of type "VP8X", which contains flags
// indicating which extra data exist in later chunks. The proceeding chunks must conform to
// the following order based on type (if they exist):
// Color Profile ("ICCP") + Animation Control Data ("ANIM") + Image Data ("VP8"/"VP8L")
// + Exif metadata ("EXIF") + XMP metadata ("XMP")
//
// And in order to have EXIF data, a WebP file must be of the second structure and thus follow
// the following rules:
// 1) "VP8X" chunk as the first chunk,
// 2) flag for EXIF inside "VP8X" chunk set to 1, and
// 3) contain the "EXIF" chunk in the correct order amongst other chunks.
//
// Based on these rules, this API will support three different cases depending on the contents
// of the original file:
// 1) "EXIF" chunk already exists
// -> replace it with the new "EXIF" chunk
// 2) "EXIF" chunk does not exist and the first chunk is "VP8" or "VP8L"
// -> add "VP8X" before the "VP8"/"VP8L" chunk (with EXIF flag set to 1), and add new
// "EXIF" chunk after the "VP8"/"VP8L" chunk.
// 3) "EXIF" chunk does not exist and the first chunk is "VP8X"
// -> set EXIF flag in "VP8X" chunk to 1, and add new "EXIF" chunk at the proper location.
//
// See https://developers.google.com/speed/webp/docs/riff_container for more details.
private void saveWebpAttributes(InputStream inputStream, OutputStream outputStream)
throws IOException {
if (DEBUG) {
Log.d(TAG, "saveWebpAttributes starting with (inputStream: " + inputStream
+ ", outputStream: " + outputStream + ")");
}
ByteOrderedDataInputStream totalInputStream =
new ByteOrderedDataInputStream(inputStream, ByteOrder.LITTLE_ENDIAN);
ByteOrderedDataOutputStream totalOutputStream =
new ByteOrderedDataOutputStream(outputStream, ByteOrder.LITTLE_ENDIAN);
// WebP signature
copy(totalInputStream, totalOutputStream, WEBP_SIGNATURE_1.length);
// File length will be written after all the chunks have been written
totalInputStream.skipFully(WEBP_FILE_SIZE_BYTE_LENGTH + WEBP_SIGNATURE_2.length);
// Create a separate byte array to calculate file length
ByteArrayOutputStream nonHeaderByteArrayOutputStream = null;
try {
nonHeaderByteArrayOutputStream = new ByteArrayOutputStream();
ByteOrderedDataOutputStream nonHeaderOutputStream =
new ByteOrderedDataOutputStream(nonHeaderByteArrayOutputStream,
ByteOrder.LITTLE_ENDIAN);
if (mOffsetToExifData != 0) {
// EXIF chunk exists in the original file
// Tested by webp_with_exif.webp
int bytesRead = WEBP_SIGNATURE_1.length + WEBP_FILE_SIZE_BYTE_LENGTH
+ WEBP_SIGNATURE_2.length;
copy(totalInputStream, nonHeaderOutputStream,
mOffsetToExifData - bytesRead - WEBP_CHUNK_TYPE_BYTE_LENGTH
- WEBP_CHUNK_SIZE_BYTE_LENGTH);
// Skip input stream to the end of the EXIF chunk
totalInputStream.skipFully(WEBP_CHUNK_TYPE_BYTE_LENGTH);
int exifChunkLength = totalInputStream.readInt();
totalInputStream.skipFully(exifChunkLength);
// Write new EXIF chunk to output stream
writeExifSegment(nonHeaderOutputStream);
} else {
// EXIF chunk does not exist in the original file
byte[] firstChunkType = new byte[WEBP_CHUNK_TYPE_BYTE_LENGTH];
if (totalInputStream.read(firstChunkType) != firstChunkType.length) {
throw new IOException("Encountered invalid length while parsing WebP chunk "
+ "type");
}
if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8X)) {
// Original file already includes other extra data
int size = totalInputStream.readInt();
// WebP files have a single padding byte at the end if the chunk size is odd.
byte[] data = new byte[(size % 2) == 1 ? size + 1 : size];
totalInputStream.read(data);
// Set the EXIF flag to 1
data[0] = (byte) (data[0] | (1 << 3));
// Retrieve Animation flag--in order to check where EXIF data should start
boolean containsAnimation = ((data[0] >> 1) & 1) == 1;
// Write the original VP8X chunk
nonHeaderOutputStream.write(WEBP_CHUNK_TYPE_VP8X);
nonHeaderOutputStream.writeInt(size);
nonHeaderOutputStream.write(data);
// Animation control data is composed of 1 ANIM chunk and multiple ANMF
// chunks and since the image data (VP8/VP8L) chunks are included in the ANMF
// chunks, EXIF data should come after the last ANMF chunk.
// Also, because there is no value indicating the amount of ANMF chunks, we need
// to keep iterating through chunks until we either reach the end of the file or
// the XMP chunk (if it exists).
// Tested by webp_with_anim_without_exif.webp
if (containsAnimation) {
copyChunksUpToGivenChunkType(totalInputStream, nonHeaderOutputStream,
WEBP_CHUNK_TYPE_ANIM, null);
while (true) {
byte[] type = new byte[WEBP_CHUNK_TYPE_BYTE_LENGTH];
@SuppressWarnings("unused")
int read = inputStream.read(type);
if (!Arrays.equals(type, WEBP_CHUNK_TYPE_ANMF)) {
// Either we have reached EOF or the start of a non-ANMF chunk
writeExifSegment(nonHeaderOutputStream);
break;
}
copyWebPChunk(totalInputStream, nonHeaderOutputStream, type);
}
} else {
// Skip until we find the VP8 or VP8L chunk
copyChunksUpToGivenChunkType(totalInputStream, nonHeaderOutputStream,
WEBP_CHUNK_TYPE_VP8, WEBP_CHUNK_TYPE_VP8L);
writeExifSegment(nonHeaderOutputStream);
}
} else if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8)
|| Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8L)) {
int size = totalInputStream.readInt();
int bytesToRead = size;
// WebP files have a single padding byte at the end if the chunk size is odd.
if (size % 2 == 1) {
bytesToRead += 1;
}
// Retrieve image width/height
int widthAndHeight = 0;
int width = 0;
int height = 0;
int alpha = 0;
// Save VP8 frame data for later
byte[] vp8Frame = new byte[3];
if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8)) {
totalInputStream.read(vp8Frame);
// Check signature
byte[] vp8Signature = new byte[3];
if (totalInputStream.read(vp8Signature) != vp8Signature.length
|| !Arrays.equals(WEBP_VP8_SIGNATURE, vp8Signature)) {
throw new IOException("Encountered error while checking VP8 "
+ "signature");
}
// Retrieve image width/height
widthAndHeight = totalInputStream.readInt();
width = (widthAndHeight << 18) >> 18;
height = (widthAndHeight << 2) >> 18;
bytesToRead -= (vp8Frame.length + vp8Signature.length + 4);
} else if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8L)) {
// Check signature
byte vp8lSignature = totalInputStream.readByte();
if (vp8lSignature != WEBP_VP8L_SIGNATURE) {
throw new IOException("Encountered error while checking VP8L "
+ "signature");
}
// Retrieve image width/height
widthAndHeight = totalInputStream.readInt();
// VP8L stores width - 1 and height - 1 values. See "2 RIFF Header" of
// "WebP Lossless Bitstream Specification"
width = ((widthAndHeight << 18) >> 18) + 1;
height = ((widthAndHeight << 4) >> 18) + 1;
// Retrieve alpha bit
alpha = widthAndHeight & (1 << 3);
bytesToRead -= (1 /* VP8L signature */ + 4);
}
// Create VP8X with Exif flag set to 1
nonHeaderOutputStream.write(WEBP_CHUNK_TYPE_VP8X);
nonHeaderOutputStream.writeInt(WEBP_CHUNK_TYPE_VP8X_DEFAULT_LENGTH);
byte[] data = new byte[WEBP_CHUNK_TYPE_VP8X_DEFAULT_LENGTH];
// EXIF flag
data[0] = (byte) (data[0] | (1 << 3));
// ALPHA flag
data[0] = (byte) (data[0] | (alpha << 4));
// VP8X stores Width - 1 and Height - 1 values
width -= 1;
height -= 1;
data[4] = (byte) width;
data[5] = (byte) (width >> 8);
data[6] = (byte) (width >> 16);
data[7] = (byte) height;
data[8] = (byte) (height >> 8);
data[9] = (byte) (height >> 16);
nonHeaderOutputStream.write(data);
// Write VP8 or VP8L data
nonHeaderOutputStream.write(firstChunkType);
nonHeaderOutputStream.writeInt(size);
if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8)) {
nonHeaderOutputStream.write(vp8Frame);
nonHeaderOutputStream.write(WEBP_VP8_SIGNATURE);
nonHeaderOutputStream.writeInt(widthAndHeight);
} else if (Arrays.equals(firstChunkType, WEBP_CHUNK_TYPE_VP8L)) {
nonHeaderOutputStream.write(WEBP_VP8L_SIGNATURE);
nonHeaderOutputStream.writeInt(widthAndHeight);
}
copy(totalInputStream, nonHeaderOutputStream, bytesToRead);
// Write EXIF chunk
writeExifSegment(nonHeaderOutputStream);
}
}
// Copy the rest of the file
copy(totalInputStream, nonHeaderOutputStream);
// Write file length + second signature
totalOutputStream.writeInt(nonHeaderByteArrayOutputStream.size()
+ WEBP_SIGNATURE_2.length);
totalOutputStream.write(WEBP_SIGNATURE_2);
nonHeaderByteArrayOutputStream.writeTo(totalOutputStream);
} catch (Exception e) {
throw new IOException("Failed to save WebP file", e);
} finally {
closeQuietly(nonHeaderByteArrayOutputStream);
}
}
private void copyChunksUpToGivenChunkType(ByteOrderedDataInputStream inputStream,
ByteOrderedDataOutputStream outputStream, byte[] firstGivenType,
byte[] secondGivenType) throws IOException {
while (true) {
byte[] type = new byte[WEBP_CHUNK_TYPE_BYTE_LENGTH];
if (inputStream.read(type) != type.length) {
throw new IOException("Encountered invalid length while copying WebP chunks up to"
+ "chunk type " + new String(firstGivenType, ASCII)
+ ((secondGivenType == null) ? "" : " or " + new String(secondGivenType,
ASCII)));
}
copyWebPChunk(inputStream, outputStream, type);
if (Arrays.equals(type, firstGivenType)
|| (secondGivenType != null && Arrays.equals(type, secondGivenType))) {
break;
}
}
}
private void copyWebPChunk(ByteOrderedDataInputStream inputStream,
ByteOrderedDataOutputStream outputStream, byte[] type) throws IOException {
int size = inputStream.readInt();
outputStream.write(type);
outputStream.writeInt(size);
// WebP files have a single padding byte at the end if the chunk size is odd.
copy(inputStream, outputStream, (size % 2) == 1 ? size + 1 : size);
}
// Reads the given EXIF byte area and save its tag data into attributes.
private void readExifSegment(byte[] exifBytes, int imageType) throws IOException {
SeekableByteOrderedDataInputStream dataInputStream =
new SeekableByteOrderedDataInputStream(exifBytes);
// Parse TIFF Headers. See JEITA CP-3451C Section 4.5.2. Table 1.
parseTiffHeaders(dataInputStream);
// Read TIFF image file directories. See JEITA CP-3451C Section 4.5.2. Figure 6.
readImageFileDirectory(dataInputStream, imageType);
}
private void addDefaultValuesForCompatibility() {
// If DATETIME tag has no value, then set the value to DATETIME_ORIGINAL tag's.
String valueOfDateTimeOriginal = getAttribute(TAG_DATETIME_ORIGINAL);
if (valueOfDateTimeOriginal != null && getAttribute(TAG_DATETIME) == null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_DATETIME,
ExifAttribute.createString(valueOfDateTimeOriginal));
}
// Add the default value.
if (getAttribute(TAG_IMAGE_WIDTH) == null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_WIDTH,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (getAttribute(TAG_IMAGE_LENGTH) == null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_LENGTH,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (getAttribute(TAG_ORIENTATION) == null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_ORIENTATION,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (getAttribute(TAG_LIGHT_SOURCE) == null) {
mAttributes[IFD_TYPE_EXIF].put(TAG_LIGHT_SOURCE,
ExifAttribute.createULong(0, mExifByteOrder));
}
}
private ByteOrder readByteOrder(ByteOrderedDataInputStream dataInputStream)
throws IOException {
// Read byte order.
short byteOrder = dataInputStream.readShort();
switch (byteOrder) {
case BYTE_ALIGN_II:
if (DEBUG) {
Log.d(TAG, "readExifSegment: Byte Align II");
}
return ByteOrder.LITTLE_ENDIAN;
case BYTE_ALIGN_MM:
if (DEBUG) {
Log.d(TAG, "readExifSegment: Byte Align MM");
}
return ByteOrder.BIG_ENDIAN;
default:
throw new IOException("Invalid byte order: " + Integer.toHexString(byteOrder));
}
}
private void parseTiffHeaders(ByteOrderedDataInputStream dataInputStream) throws IOException {
// Read byte order
mExifByteOrder = readByteOrder(dataInputStream);
// Set byte order
dataInputStream.setByteOrder(mExifByteOrder);
// Check start code
int startCode = dataInputStream.readUnsignedShort();
if (mMimeType != IMAGE_TYPE_ORF && mMimeType != IMAGE_TYPE_RW2 && startCode != START_CODE) {
throw new IOException("Invalid start code: " + Integer.toHexString(startCode));
}
// Read and skip to first ifd offset
int firstIfdOffset = dataInputStream.readInt();
if (firstIfdOffset < 8) {
throw new IOException("Invalid first Ifd offset: " + firstIfdOffset);
}
firstIfdOffset -= 8;
if (firstIfdOffset > 0) {
dataInputStream.skipFully(firstIfdOffset);
}
}
// Reads image file directory, which is a tag group in EXIF.
private void readImageFileDirectory(SeekableByteOrderedDataInputStream dataInputStream,
@IfdType int ifdType) throws IOException {
// Save offset of current IFD to prevent reading an IFD that is already read.
mAttributesOffsets.add(dataInputStream.mPosition);
// See TIFF 6.0 Section 2: TIFF Structure, Figure 1.
short numberOfDirectoryEntry = dataInputStream.readShort();
if (DEBUG) {
Log.d(TAG, "numberOfDirectoryEntry: " + numberOfDirectoryEntry);
}
if (numberOfDirectoryEntry <= 0) {
// Return if the size of entries is negative.
return;
}
// See TIFF 6.0 Section 2: TIFF Structure, "Image File Directory".
for (short i = 0; i < numberOfDirectoryEntry; ++i) {
int tagNumber = dataInputStream.readUnsignedShort();
int dataFormat = dataInputStream.readUnsignedShort();
int numberOfComponents = dataInputStream.readInt();
// Next four bytes is for data offset or value.
long nextEntryOffset = dataInputStream.position() + 4L;
// Look up a corresponding tag from tag number
ExifTag tag = (ExifTag) sExifTagMapsForReading[ifdType].get(tagNumber);
if (DEBUG) {
Log.d(TAG, String.format("ifdType: %d, tagNumber: %d, tagName: %s, dataFormat: %d, "
+ "numberOfComponents: %d", ifdType, tagNumber,
tag != null ? tag.name : null, dataFormat, numberOfComponents));
}
long byteCount = 0;
boolean valid = false;
if (tag == null) {
if (DEBUG) {
Log.d(TAG, "Skip the tag entry since tag number is not defined: " + tagNumber);
}
} else if (dataFormat <= 0 || dataFormat >= IFD_FORMAT_BYTES_PER_FORMAT.length) {
if (DEBUG) {
Log.d(TAG, "Skip the tag entry since data format is invalid: " + dataFormat);
}
} else if (!tag.isFormatCompatible(dataFormat)) {
if (DEBUG) {
Log.d(TAG, "Skip the tag entry since data format ("
+ IFD_FORMAT_NAMES[dataFormat] + ") is unexpected for tag: "
+ tag.name);
}
} else {
if (dataFormat == IFD_FORMAT_UNDEFINED) {
dataFormat = tag.primaryFormat;
}
byteCount = (long) numberOfComponents * IFD_FORMAT_BYTES_PER_FORMAT[dataFormat];
if (byteCount < 0 || byteCount > Integer.MAX_VALUE) {
if (DEBUG) {
Log.d(TAG, "Skip the tag entry since the number of components is invalid: "
+ numberOfComponents);
}
} else {
valid = true;
}
}
if (!valid) {
dataInputStream.seek(nextEntryOffset);
continue;
}
// Read a value from data field or seek to the value offset which is stored in data
// field if the size of the entry value is bigger than 4.
if (byteCount > 4) {
int offset = dataInputStream.readInt();
if (DEBUG) {
Log.d(TAG, "seek to data offset: " + offset);
}
if (mMimeType == IMAGE_TYPE_ORF) {
if (TAG_MAKER_NOTE.equals(tag.name)) {
// Save offset value for reading thumbnail
mOrfMakerNoteOffset = offset;
} else if (ifdType == IFD_TYPE_ORF_MAKER_NOTE
&& TAG_ORF_THUMBNAIL_IMAGE.equals(tag.name)) {
// Retrieve & update values for thumbnail offset and length values for ORF
mOrfThumbnailOffset = offset;
mOrfThumbnailLength = numberOfComponents;
ExifAttribute compressionAttribute =
ExifAttribute.createUShort(DATA_JPEG, mExifByteOrder);
ExifAttribute jpegInterchangeFormatAttribute =
ExifAttribute.createULong(mOrfThumbnailOffset, mExifByteOrder);
ExifAttribute jpegInterchangeFormatLengthAttribute =
ExifAttribute.createULong(mOrfThumbnailLength, mExifByteOrder);
mAttributes[IFD_TYPE_THUMBNAIL].put(TAG_COMPRESSION, compressionAttribute);
mAttributes[IFD_TYPE_THUMBNAIL].put(TAG_JPEG_INTERCHANGE_FORMAT,
jpegInterchangeFormatAttribute);
mAttributes[IFD_TYPE_THUMBNAIL].put(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH,
jpegInterchangeFormatLengthAttribute);
}
}
dataInputStream.seek(offset);
}
// Recursively parse IFD when a IFD pointer tag appears.
Integer nextIfdType = sExifPointerTagMap.get(tagNumber);
if (DEBUG) {
Log.d(TAG, "nextIfdType: " + nextIfdType + " byteCount: " + byteCount);
}
if (nextIfdType != null) {
long offset = -1L;
// Get offset from data field
switch (dataFormat) {
case IFD_FORMAT_USHORT: {
offset = dataInputStream.readUnsignedShort();
break;
}
case IFD_FORMAT_SSHORT: {
offset = dataInputStream.readShort();
break;
}
case IFD_FORMAT_ULONG: {
offset = dataInputStream.readUnsignedInt();
break;
}
case IFD_FORMAT_SLONG:
case IFD_FORMAT_IFD: {
offset = dataInputStream.readInt();
break;
}
default: {
// Nothing to do
break;
}
}
if (DEBUG) {
Log.d(TAG, String.format("Offset: %d, tagName: %s", offset, tag.name));
}
// Check if the next IFD offset
// 1. Is a non-negative value, and
// 2. Does not point to a previously read IFD.
if (offset > 0L) {
if (!mAttributesOffsets.contains((int) offset)) {
dataInputStream.seek(offset);
readImageFileDirectory(dataInputStream, nextIfdType);
} else {
if (DEBUG) {
Log.d(TAG, "Skip jump into the IFD since it has already been read: "
+ "IfdType " + nextIfdType + " (at " + offset + ")");
}
}
} else {
if (DEBUG) {
Log.d(TAG, "Skip jump into the IFD since its offset is invalid: " + offset);
}
}
dataInputStream.seek(nextEntryOffset);
continue;
}
final int bytesOffset = dataInputStream.position() + mOffsetToExifData;
final byte[] bytes = new byte[(int) byteCount];
dataInputStream.readFully(bytes);
ExifAttribute attribute = new ExifAttribute(dataFormat, numberOfComponents,
bytesOffset, bytes);
mAttributes[ifdType].put(tag.name, attribute);
// DNG files have a DNG Version tag specifying the version of specifications that the
// image file is following.
// See http://fileformats.archiveteam.org/wiki/DNG
if (TAG_DNG_VERSION.equals(tag.name)) {
mMimeType = IMAGE_TYPE_DNG;
}
// PEF files have a Make or Model tag that begins with "PENTAX" or a compression tag
// that is 65535.
// See http://fileformats.archiveteam.org/wiki/Pentax_PEF
if (((TAG_MAKE.equals(tag.name) || TAG_MODEL.equals(tag.name))
&& attribute.getStringValue(mExifByteOrder).contains(PEF_SIGNATURE))
|| (TAG_COMPRESSION.equals(tag.name)
&& attribute.getIntValue(mExifByteOrder) == 65535)) {
mMimeType = IMAGE_TYPE_PEF;
}
// Seek to next tag offset
if (dataInputStream.position() != nextEntryOffset) {
dataInputStream.seek(nextEntryOffset);
}
}
int nextIfdOffset = dataInputStream.readInt();
if (DEBUG) {
Log.d(TAG, String.format("nextIfdOffset: %d", nextIfdOffset));
}
// Check if the next IFD offset
// 1. Is a non-negative value, and
// 2. Does not point to a previously read IFD.
if (nextIfdOffset > 0L) {
if (!mAttributesOffsets.contains(nextIfdOffset)) {
dataInputStream.seek(nextIfdOffset);
if (mAttributes[IFD_TYPE_THUMBNAIL].isEmpty()) {
// Do not overwrite thumbnail IFD data if it already exists.
readImageFileDirectory(dataInputStream, IFD_TYPE_THUMBNAIL);
} else if (mAttributes[IFD_TYPE_PREVIEW].isEmpty()) {
readImageFileDirectory(dataInputStream, IFD_TYPE_PREVIEW);
}
} else {
if (DEBUG) {
Log.d(TAG, "Stop reading file since re-reading an IFD may cause an "
+ "infinite loop: " + nextIfdOffset);
}
}
} else {
if (DEBUG) {
Log.d(TAG, "Stop reading file since a wrong offset may cause an infinite loop: "
+ nextIfdOffset);
}
}
}
/**
* JPEG compressed images do not contain IMAGE_LENGTH & IMAGE_WIDTH tags.
* This value uses JpegInterchangeFormat(JPEG data offset) value, and calls getJpegAttributes()
* to locate SOF(Start of Frame) marker and update the image length & width values.
* See JEITA CP-3451C Table 5 and Section 4.8.1. B.
*/
private void retrieveJpegImageSize(SeekableByteOrderedDataInputStream in, int imageType)
throws IOException {
// Check if image already has IMAGE_LENGTH & IMAGE_WIDTH values
ExifAttribute imageLengthAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_IMAGE_LENGTH);
ExifAttribute imageWidthAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_IMAGE_WIDTH);
if (imageLengthAttribute == null || imageWidthAttribute == null) {
// Find if offset for JPEG data exists
ExifAttribute jpegInterchangeFormatAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_JPEG_INTERCHANGE_FORMAT);
ExifAttribute jpegInterchangeFormatLengthAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH);
if (jpegInterchangeFormatAttribute != null
&& jpegInterchangeFormatLengthAttribute != null) {
int jpegInterchangeFormat =
jpegInterchangeFormatAttribute.getIntValue(mExifByteOrder);
int jpegInterchangeFormatLength =
jpegInterchangeFormatAttribute.getIntValue(mExifByteOrder);
// Searches for SOF marker in JPEG data and updates IMAGE_LENGTH & IMAGE_WIDTH tags
in.seek(jpegInterchangeFormat);
byte[] jpegBytes = new byte[jpegInterchangeFormatLength];
in.read(jpegBytes);
getJpegAttributes(new ByteOrderedDataInputStream(jpegBytes), jpegInterchangeFormat,
imageType);
}
}
}
// Sets thumbnail offset & length attributes based on JpegInterchangeFormat or StripOffsets tags
private void setThumbnailData(ByteOrderedDataInputStream in) throws IOException {
HashMap thumbnailData = mAttributes[IFD_TYPE_THUMBNAIL];
ExifAttribute compressionAttribute =
(ExifAttribute) thumbnailData.get(TAG_COMPRESSION);
if (compressionAttribute != null) {
mThumbnailCompression = compressionAttribute.getIntValue(mExifByteOrder);
switch (mThumbnailCompression) {
case DATA_JPEG: {
handleThumbnailFromJfif(in, thumbnailData);
break;
}
case DATA_UNCOMPRESSED:
case DATA_JPEG_COMPRESSED: {
if (isSupportedDataType(thumbnailData)) {
handleThumbnailFromStrips(in, thumbnailData);
}
break;
}
}
} else {
// Thumbnail data may not contain Compression tag value
mThumbnailCompression = DATA_JPEG;
handleThumbnailFromJfif(in, thumbnailData);
}
}
// Check JpegInterchangeFormat(JFIF) tags to retrieve thumbnail offset & length values
// and reads the corresponding bytes if stream does not support seek function
private void handleThumbnailFromJfif(ByteOrderedDataInputStream in, HashMap thumbnailData)
throws IOException {
ExifAttribute jpegInterchangeFormatAttribute =
(ExifAttribute) thumbnailData.get(TAG_JPEG_INTERCHANGE_FORMAT);
ExifAttribute jpegInterchangeFormatLengthAttribute =
(ExifAttribute) thumbnailData.get(TAG_JPEG_INTERCHANGE_FORMAT_LENGTH);
if (jpegInterchangeFormatAttribute != null
&& jpegInterchangeFormatLengthAttribute != null) {
int thumbnailOffset = jpegInterchangeFormatAttribute.getIntValue(mExifByteOrder);
int thumbnailLength = jpegInterchangeFormatLengthAttribute.getIntValue(mExifByteOrder);
if (mMimeType == IMAGE_TYPE_ORF) {
// Update offset value since RAF files have IFD data preceding MakerNote data.
thumbnailOffset += mOrfMakerNoteOffset;
}
if (thumbnailOffset > 0 && thumbnailLength > 0) {
mHasThumbnail = true;
if (mFilename == null && mAssetInputStream == null
&& mSeekableFileDescriptor == null) {
// TODO: Need to handle potential OutOfMemoryError
// Save the thumbnail in memory if the input doesn't support reading again.
byte[] thumbnailBytes = new byte[thumbnailLength];
in.skip(thumbnailOffset);
in.read(thumbnailBytes);
mThumbnailBytes = thumbnailBytes;
}
mThumbnailOffset = thumbnailOffset;
mThumbnailLength = thumbnailLength;
}
if (DEBUG) {
Log.d(TAG, "Setting thumbnail attributes with offset: " + thumbnailOffset
+ ", length: " + thumbnailLength);
}
}
}
// Check StripOffsets & StripByteCounts tags to retrieve thumbnail offset & length values
private void handleThumbnailFromStrips(ByteOrderedDataInputStream in, HashMap thumbnailData)
throws IOException {
ExifAttribute stripOffsetsAttribute =
(ExifAttribute) thumbnailData.get(TAG_STRIP_OFFSETS);
ExifAttribute stripByteCountsAttribute =
(ExifAttribute) thumbnailData.get(TAG_STRIP_BYTE_COUNTS);
if (stripOffsetsAttribute != null && stripByteCountsAttribute != null) {
long[] stripOffsets =
convertToLongArray(stripOffsetsAttribute.getValue(mExifByteOrder));
long[] stripByteCounts =
convertToLongArray(stripByteCountsAttribute.getValue(mExifByteOrder));
if (stripOffsets == null || stripOffsets.length == 0) {
Log.w(TAG, "stripOffsets should not be null or have zero length.");
return;
}
if (stripByteCounts == null || stripByteCounts.length == 0) {
Log.w(TAG, "stripByteCounts should not be null or have zero length.");
return;
}
if (stripOffsets.length != stripByteCounts.length) {
Log.w(TAG, "stripOffsets and stripByteCounts should have same length.");
return;
}
long totalStripByteCount = 0;
for (long byteCount : stripByteCounts) {
totalStripByteCount += byteCount;
}
// TODO: Need to handle potential OutOfMemoryError
// Set thumbnail byte array data for non-consecutive strip bytes
byte[] totalStripBytes = new byte[(int) totalStripByteCount];
int bytesRead = 0;
int bytesAdded = 0;
mHasThumbnail = mHasThumbnailStrips = mAreThumbnailStripsConsecutive = true;
for (int i = 0; i < stripOffsets.length; i++) {
int stripOffset = (int) stripOffsets[i];
int stripByteCount = (int) stripByteCounts[i];
// Check if strips are consecutive
// TODO: Add test for non-consecutive thumbnail image
if (i < stripOffsets.length - 1
&& stripOffset + stripByteCount != stripOffsets[i + 1]) {
mAreThumbnailStripsConsecutive = false;
}
// Skip to offset
int bytesToSkip = stripOffset - bytesRead;
if (bytesToSkip < 0) {
Log.d(TAG, "Invalid strip offset value");
return;
}
if (in.skip(bytesToSkip) != bytesToSkip) {
Log.d(TAG, "Failed to skip " + bytesToSkip + " bytes.");
return;
}
bytesRead += bytesToSkip;
// TODO: Need to handle potential OutOfMemoryError
byte[] stripBytes = new byte[stripByteCount];
if (in.read(stripBytes) != stripByteCount) {
Log.d(TAG, "Failed to read " + stripByteCount + " bytes.");
return;
}
bytesRead += stripByteCount;
// Add bytes to array
System.arraycopy(stripBytes, 0, totalStripBytes, bytesAdded,
stripBytes.length);
bytesAdded += stripBytes.length;
}
mThumbnailBytes = totalStripBytes;
if (mAreThumbnailStripsConsecutive) {
mThumbnailOffset = (int) stripOffsets[0];
mThumbnailLength = totalStripBytes.length;
}
}
}
// Check if thumbnail data type is currently supported or not
private boolean isSupportedDataType(HashMap thumbnailData) throws IOException {
ExifAttribute bitsPerSampleAttribute =
(ExifAttribute) thumbnailData.get(TAG_BITS_PER_SAMPLE);
if (bitsPerSampleAttribute != null) {
int[] bitsPerSampleValue = (int[]) bitsPerSampleAttribute.getValue(mExifByteOrder);
if (Arrays.equals(BITS_PER_SAMPLE_RGB, bitsPerSampleValue)) {
return true;
}
// See DNG Specification 1.4.0.0. Section 3, Compression.
if (mMimeType == IMAGE_TYPE_DNG) {
ExifAttribute photometricInterpretationAttribute =
(ExifAttribute) thumbnailData.get(TAG_PHOTOMETRIC_INTERPRETATION);
if (photometricInterpretationAttribute != null) {
int photometricInterpretationValue
= photometricInterpretationAttribute.getIntValue(mExifByteOrder);
if ((photometricInterpretationValue == PHOTOMETRIC_INTERPRETATION_BLACK_IS_ZERO
&& Arrays.equals(bitsPerSampleValue, BITS_PER_SAMPLE_GREYSCALE_2))
|| ((photometricInterpretationValue == PHOTOMETRIC_INTERPRETATION_YCBCR)
&& Arrays.equals(bitsPerSampleValue, BITS_PER_SAMPLE_RGB))) {
return true;
} else {
// TODO: Add support for lossless Huffman JPEG data
}
}
}
}
if (DEBUG) {
Log.d(TAG, "Unsupported data type value");
}
return false;
}
// Returns true if the image length and width values are <= 512.
// See Section 4.8 of http://standardsproposals.bsigroup.com/Home/getPDF/567
private boolean isThumbnail(HashMap map) throws IOException {
ExifAttribute imageLengthAttribute = (ExifAttribute) map.get(TAG_IMAGE_LENGTH);
ExifAttribute imageWidthAttribute = (ExifAttribute) map.get(TAG_IMAGE_WIDTH);
if (imageLengthAttribute != null && imageWidthAttribute != null) {
int imageLengthValue = imageLengthAttribute.getIntValue(mExifByteOrder);
int imageWidthValue = imageWidthAttribute.getIntValue(mExifByteOrder);
if (imageLengthValue <= MAX_THUMBNAIL_SIZE && imageWidthValue <= MAX_THUMBNAIL_SIZE) {
return true;
}
}
return false;
}
// Validate primary, preview, thumbnail image data by comparing image size
private void validateImages() throws IOException {
// Swap images based on size (primary > preview > thumbnail)
swapBasedOnImageSize(IFD_TYPE_PRIMARY, IFD_TYPE_PREVIEW);
swapBasedOnImageSize(IFD_TYPE_PRIMARY, IFD_TYPE_THUMBNAIL);
swapBasedOnImageSize(IFD_TYPE_PREVIEW, IFD_TYPE_THUMBNAIL);
// TODO (b/142296453): Revise image width/height setting logic
// Check if image has PixelXDimension/PixelYDimension tags, which contain valid image
// sizes, excluding padding at the right end or bottom end of the image to make sure that
// the values are multiples of 64. See JEITA CP-3451C Table 5 and Section 4.8.1. B.
ExifAttribute pixelXDimAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_EXIF].get(TAG_PIXEL_X_DIMENSION);
ExifAttribute pixelYDimAttribute =
(ExifAttribute) mAttributes[IFD_TYPE_EXIF].get(TAG_PIXEL_Y_DIMENSION);
if (pixelXDimAttribute != null && pixelYDimAttribute != null) {
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_WIDTH, pixelXDimAttribute);
mAttributes[IFD_TYPE_PRIMARY].put(TAG_IMAGE_LENGTH, pixelYDimAttribute);
}
// Check whether thumbnail image exists and whether preview image satisfies the thumbnail
// image requirements
if (mAttributes[IFD_TYPE_THUMBNAIL].isEmpty()) {
if (isThumbnail(mAttributes[IFD_TYPE_PREVIEW])) {
mAttributes[IFD_TYPE_THUMBNAIL] = mAttributes[IFD_TYPE_PREVIEW];
mAttributes[IFD_TYPE_PREVIEW] = new HashMap<>();
}
}
// Check if the thumbnail image satisfies the thumbnail size requirements
if (!isThumbnail(mAttributes[IFD_TYPE_THUMBNAIL])) {
Log.d(TAG, "No image meets the size requirements of a thumbnail image.");
}
}
/**
* If image is uncompressed, ImageWidth/Length tags are used to store size info.
* However, uncompressed images often store extra pixels around the edges of the final image,
* which results in larger values for TAG_IMAGE_WIDTH and TAG_IMAGE_LENGTH tags.
* This method corrects those tag values by checking first the values of TAG_DEFAULT_CROP_SIZE
* See DNG Specification 1.4.0.0. Section 4. (DefaultCropSize)
*
* If image is a RW2 file, valid image sizes are stored in SensorBorder tags.
* See tiff_parser.cc GetFullDimension32()
* */
private void updateImageSizeValues(SeekableByteOrderedDataInputStream in, int imageType)
throws IOException {
// Uncompressed image valid image size values
ExifAttribute defaultCropSizeAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_DEFAULT_CROP_SIZE);
// RW2 image valid image size values
ExifAttribute topBorderAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_RW2_SENSOR_TOP_BORDER);
ExifAttribute leftBorderAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_RW2_SENSOR_LEFT_BORDER);
ExifAttribute bottomBorderAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_RW2_SENSOR_BOTTOM_BORDER);
ExifAttribute rightBorderAttribute =
(ExifAttribute) mAttributes[imageType].get(TAG_RW2_SENSOR_RIGHT_BORDER);
if (defaultCropSizeAttribute != null) {
// Update for uncompressed image
ExifAttribute defaultCropSizeXAttribute, defaultCropSizeYAttribute;
if (defaultCropSizeAttribute.format == IFD_FORMAT_URATIONAL) {
Rational[] defaultCropSizeValue =
(Rational[]) defaultCropSizeAttribute.getValue(mExifByteOrder);
if (defaultCropSizeValue == null || defaultCropSizeValue.length != 2) {
Log.w(TAG, "Invalid crop size values. cropSize="
+ Arrays.toString(defaultCropSizeValue));
return;
}
defaultCropSizeXAttribute =
ExifAttribute.createURational(defaultCropSizeValue[0], mExifByteOrder);
defaultCropSizeYAttribute =
ExifAttribute.createURational(defaultCropSizeValue[1], mExifByteOrder);
} else {
int[] defaultCropSizeValue =
(int[]) defaultCropSizeAttribute.getValue(mExifByteOrder);
if (defaultCropSizeValue == null || defaultCropSizeValue.length != 2) {
Log.w(TAG, "Invalid crop size values. cropSize="
+ Arrays.toString(defaultCropSizeValue));
return;
}
defaultCropSizeXAttribute =
ExifAttribute.createUShort(defaultCropSizeValue[0], mExifByteOrder);
defaultCropSizeYAttribute =
ExifAttribute.createUShort(defaultCropSizeValue[1], mExifByteOrder);
}
mAttributes[imageType].put(TAG_IMAGE_WIDTH, defaultCropSizeXAttribute);
mAttributes[imageType].put(TAG_IMAGE_LENGTH, defaultCropSizeYAttribute);
} else if (topBorderAttribute != null && leftBorderAttribute != null &&
bottomBorderAttribute != null && rightBorderAttribute != null) {
// Update for RW2 image
int topBorderValue = topBorderAttribute.getIntValue(mExifByteOrder);
int bottomBorderValue = bottomBorderAttribute.getIntValue(mExifByteOrder);
int rightBorderValue = rightBorderAttribute.getIntValue(mExifByteOrder);
int leftBorderValue = leftBorderAttribute.getIntValue(mExifByteOrder);
if (bottomBorderValue > topBorderValue && rightBorderValue > leftBorderValue) {
int length = bottomBorderValue - topBorderValue;
int width = rightBorderValue - leftBorderValue;
ExifAttribute imageLengthAttribute =
ExifAttribute.createUShort(length, mExifByteOrder);
ExifAttribute imageWidthAttribute =
ExifAttribute.createUShort(width, mExifByteOrder);
mAttributes[imageType].put(TAG_IMAGE_LENGTH, imageLengthAttribute);
mAttributes[imageType].put(TAG_IMAGE_WIDTH, imageWidthAttribute);
}
} else {
retrieveJpegImageSize(in, imageType);
}
}
// Writes an Exif segment into the given output stream.
private int writeExifSegment(ByteOrderedDataOutputStream dataOutputStream) throws IOException {
// The following variables are for calculating each IFD tag group size in bytes.
int[] ifdOffsets = new int[EXIF_TAGS.length];
int[] ifdDataSizes = new int[EXIF_TAGS.length];
// Remove IFD pointer tags (we'll re-add it later.)
for (ExifTag tag : EXIF_POINTER_TAGS) {
removeAttribute(tag.name);
}
// Remove old thumbnail data
removeAttribute(JPEG_INTERCHANGE_FORMAT_TAG.name);
removeAttribute(JPEG_INTERCHANGE_FORMAT_LENGTH_TAG.name);
// Remove null value tags.
for (int ifdType = 0; ifdType < EXIF_TAGS.length; ++ifdType) {
for (Object obj : mAttributes[ifdType].entrySet().toArray()) {
final Map.Entry entry = (Map.Entry) obj;
if (entry.getValue() == null) {
mAttributes[ifdType].remove(entry.getKey());
}
}
}
// Add IFD pointer tags. The next offset of primary image TIFF IFD will have thumbnail IFD
// offset when there is one or more tags in the thumbnail IFD.
if (!mAttributes[IFD_TYPE_EXIF].isEmpty()) {
mAttributes[IFD_TYPE_PRIMARY].put(EXIF_POINTER_TAGS[1].name,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (!mAttributes[IFD_TYPE_GPS].isEmpty()) {
mAttributes[IFD_TYPE_PRIMARY].put(EXIF_POINTER_TAGS[2].name,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (!mAttributes[IFD_TYPE_INTEROPERABILITY].isEmpty()) {
mAttributes[IFD_TYPE_EXIF].put(EXIF_POINTER_TAGS[3].name,
ExifAttribute.createULong(0, mExifByteOrder));
}
if (mHasThumbnail) {
mAttributes[IFD_TYPE_THUMBNAIL].put(JPEG_INTERCHANGE_FORMAT_TAG.name,
ExifAttribute.createULong(0, mExifByteOrder));
mAttributes[IFD_TYPE_THUMBNAIL].put(JPEG_INTERCHANGE_FORMAT_LENGTH_TAG.name,
ExifAttribute.createULong(mThumbnailLength, mExifByteOrder));
}
// Calculate IFD group data area sizes. IFD group data area is assigned to save the entry
// value which has a bigger size than 4 bytes.
for (int i = 0; i < EXIF_TAGS.length; ++i) {
int sum = 0;
for (Map.Entry<String, ExifAttribute> entry : mAttributes[i].entrySet()) {
final ExifAttribute exifAttribute = entry.getValue();
final int size = exifAttribute.size();
if (size > 4) {
sum += size;
}
}
ifdDataSizes[i] += sum;
}
// Calculate IFD offsets.
// 8 bytes are for TIFF headers: 2 bytes (byte order) + 2 bytes (identifier) + 4 bytes
// (offset of IFDs)
int position = 8;
for (int ifdType = 0; ifdType < EXIF_TAGS.length; ++ifdType) {
if (!mAttributes[ifdType].isEmpty()) {
ifdOffsets[ifdType] = position;
position += 2 + mAttributes[ifdType].size() * 12 + 4 + ifdDataSizes[ifdType];
}
}
if (mHasThumbnail) {
int thumbnailOffset = position;
mAttributes[IFD_TYPE_THUMBNAIL].put(JPEG_INTERCHANGE_FORMAT_TAG.name,
ExifAttribute.createULong(thumbnailOffset, mExifByteOrder));
mThumbnailOffset = thumbnailOffset;
position += mThumbnailLength;
}
int totalSize = position;
if (mMimeType == IMAGE_TYPE_JPEG) {
// Add 8 bytes for APP1 size and identifier data
totalSize += 8;
}
if (DEBUG) {
for (int i = 0; i < EXIF_TAGS.length; ++i) {
Log.d(TAG, String.format("index: %d, offsets: %d, tag count: %d, data sizes: %d, "
+ "total size: %d", i, ifdOffsets[i], mAttributes[i].size(),
ifdDataSizes[i], totalSize));
}
}
// Update IFD pointer tags with the calculated offsets.
if (!mAttributes[IFD_TYPE_EXIF].isEmpty()) {
mAttributes[IFD_TYPE_PRIMARY].put(EXIF_POINTER_TAGS[1].name,
ExifAttribute.createULong(ifdOffsets[IFD_TYPE_EXIF], mExifByteOrder));
}
if (!mAttributes[IFD_TYPE_GPS].isEmpty()) {
mAttributes[IFD_TYPE_PRIMARY].put(EXIF_POINTER_TAGS[2].name,
ExifAttribute.createULong(ifdOffsets[IFD_TYPE_GPS], mExifByteOrder));
}
if (!mAttributes[IFD_TYPE_INTEROPERABILITY].isEmpty()) {
mAttributes[IFD_TYPE_EXIF].put(EXIF_POINTER_TAGS[3].name, ExifAttribute.createULong(
ifdOffsets[IFD_TYPE_INTEROPERABILITY], mExifByteOrder));
}
switch (mMimeType) {
case IMAGE_TYPE_JPEG:
// Write JPEG specific data (APP1 size, APP1 identifier)
dataOutputStream.writeUnsignedShort(totalSize);
dataOutputStream.write(IDENTIFIER_EXIF_APP1);
break;
case IMAGE_TYPE_PNG:
// Write PNG specific data (chunk size, chunk type)
dataOutputStream.writeInt(totalSize);
dataOutputStream.write(PNG_CHUNK_TYPE_EXIF);
break;
case IMAGE_TYPE_WEBP:
// Write WebP specific data (chunk type, chunk size)
dataOutputStream.write(WEBP_CHUNK_TYPE_EXIF);
dataOutputStream.writeInt(totalSize);
break;
}
// Write TIFF Headers. See JEITA CP-3451C Section 4.5.2. Table 1.
dataOutputStream.writeShort(mExifByteOrder == ByteOrder.BIG_ENDIAN
? BYTE_ALIGN_MM : BYTE_ALIGN_II);
dataOutputStream.setByteOrder(mExifByteOrder);
dataOutputStream.writeUnsignedShort(START_CODE);
dataOutputStream.writeUnsignedInt(IFD_OFFSET);
// Write IFD groups. See JEITA CP-3451C Section 4.5.8. Figure 9.
for (int ifdType = 0; ifdType < EXIF_TAGS.length; ++ifdType) {
if (!mAttributes[ifdType].isEmpty()) {
// See JEITA CP-3451C Section 4.6.2: IFD structure.
// Write entry count
dataOutputStream.writeUnsignedShort(mAttributes[ifdType].size());
// Write entry info
int dataOffset = ifdOffsets[ifdType] + 2 + mAttributes[ifdType].size() * 12 + 4;
for (Map.Entry<String, ExifAttribute> entry : mAttributes[ifdType].entrySet()) {
// Convert tag name to tag number.
final ExifTag tag = sExifTagMapsForWriting[ifdType].get(entry.getKey());
final int tagNumber = tag.number;
final ExifAttribute attribute = entry.getValue();
final int size = attribute.size();
dataOutputStream.writeUnsignedShort(tagNumber);
dataOutputStream.writeUnsignedShort(attribute.format);
dataOutputStream.writeInt(attribute.numberOfComponents);
if (size > 4) {
dataOutputStream.writeUnsignedInt(dataOffset);
dataOffset += size;
} else {
dataOutputStream.write(attribute.bytes);
// Fill zero up to 4 bytes
if (size < 4) {
for (int i = size; i < 4; ++i) {
dataOutputStream.writeByte(0);
}
}
}
}
// Write the next offset. It writes the offset of thumbnail IFD if there is one or
// more tags in the thumbnail IFD when the current IFD is the primary image TIFF
// IFD; Otherwise 0.
if (ifdType == 0 && !mAttributes[IFD_TYPE_THUMBNAIL].isEmpty()) {
dataOutputStream.writeUnsignedInt(ifdOffsets[IFD_TYPE_THUMBNAIL]);
} else {
dataOutputStream.writeUnsignedInt(0);
}
// Write values of data field exceeding 4 bytes after the next offset.
for (Map.Entry<String, ExifAttribute> entry : mAttributes[ifdType].entrySet()) {
ExifAttribute attribute = entry.getValue();
if (attribute.bytes.length > 4) {
dataOutputStream.write(attribute.bytes, 0, attribute.bytes.length);
}
}
}
}
// Write thumbnail
if (mHasThumbnail) {
dataOutputStream.write(getThumbnailBytes());
}
// For WebP files, add a single padding byte at end if chunk size is odd
if (mMimeType == IMAGE_TYPE_WEBP && totalSize % 2 == 1) {
dataOutputStream.writeByte(0);
}
// Reset the byte order to big endian in order to write remaining parts of the JPEG file.
dataOutputStream.setByteOrder(ByteOrder.BIG_ENDIAN);
return totalSize;
}
/**
* Determines the data format of EXIF entry value.
*
* @param entryValue The value to be determined.
* @return Returns two data formats guessed as a pair in integer. If there is no two candidate
data formats for the given entry value, returns {@code -1} in the second of the pair.
*/
private static Pair<Integer, Integer> guessDataFormat(String entryValue) {
// See TIFF 6.0 Section 2, "Image File Directory".
// Take the first component if there are more than one component.
if (entryValue.contains(",")) {
String[] entryValues = entryValue.split(",", -1);
Pair<Integer, Integer> dataFormat = guessDataFormat(entryValues[0]);
if (dataFormat.first == IFD_FORMAT_STRING) {
return dataFormat;
}
for (int i = 1; i < entryValues.length; ++i) {
final Pair<Integer, Integer> guessDataFormat = guessDataFormat(entryValues[i]);
int first = -1, second = -1;
if (guessDataFormat.first.equals(dataFormat.first)
|| guessDataFormat.second.equals(dataFormat.first)) {
first = dataFormat.first;
}
if (dataFormat.second != -1 && (guessDataFormat.first.equals(dataFormat.second)
|| guessDataFormat.second.equals(dataFormat.second))) {
second = dataFormat.second;
}
if (first == -1 && second == -1) {
return new Pair<>(IFD_FORMAT_STRING, -1);
}
if (first == -1) {
dataFormat = new Pair<>(second, -1);
continue;
}
if (second == -1) {
dataFormat = new Pair<>(first, -1);
continue;
}
}
return dataFormat;
}
if (entryValue.contains("/")) {
String[] rationalNumber = entryValue.split("/", -1);
if (rationalNumber.length == 2) {
try {
long numerator = (long) Double.parseDouble(rationalNumber[0]);
long denominator = (long) Double.parseDouble(rationalNumber[1]);
if (numerator < 0L || denominator < 0L) {
return new Pair<>(IFD_FORMAT_SRATIONAL, -1);
}
if (numerator > Integer.MAX_VALUE || denominator > Integer.MAX_VALUE) {
return new Pair<>(IFD_FORMAT_URATIONAL, -1);
}
return new Pair<>(IFD_FORMAT_SRATIONAL, IFD_FORMAT_URATIONAL);
} catch (NumberFormatException e) {
// Ignored
}
}
return new Pair<>(IFD_FORMAT_STRING, -1);
}
try {
Long longValue = Long.parseLong(entryValue);
if (longValue >= 0 && longValue <= 65535) {
return new Pair<>(IFD_FORMAT_USHORT, IFD_FORMAT_ULONG);
}
if (longValue < 0) {
return new Pair<>(IFD_FORMAT_SLONG, -1);
}
return new Pair<>(IFD_FORMAT_ULONG, -1);
} catch (NumberFormatException e) {
// Ignored
}
try {
Double.parseDouble(entryValue);
return new Pair<>(IFD_FORMAT_DOUBLE, -1);
} catch (NumberFormatException e) {
// Ignored
}
return new Pair<>(IFD_FORMAT_STRING, -1);
}
// An input stream class that can parse both little and big endian order data and also
// supports seeking to any position in the stream via mark/reset.
private static class SeekableByteOrderedDataInputStream extends ByteOrderedDataInputStream {
SeekableByteOrderedDataInputStream(byte[] bytes) throws IOException {
super(bytes);
// No need to check if mark is supported here since ByteOrderedDataInputStream will
// create a ByteArrayInputStream, which supports mark by default.
mDataInputStream.mark(Integer.MAX_VALUE);
}
/**
* Given input stream should support mark/reset, and should be set to the beginning of
* the stream.
*/
SeekableByteOrderedDataInputStream(InputStream in) throws IOException {
super(in);
if (!in.markSupported()) {
throw new IllegalArgumentException("Cannot create "
+ "SeekableByteOrderedDataInputStream with stream that does not support "
+ "mark/reset");
}
// Mark given InputStream to the maximum value (we can't know the length of the
// stream for certain) so that InputStream.reset() may be called at any point in the
// stream to reset the stream to an earlier position.
mDataInputStream.mark(Integer.MAX_VALUE);
}
/**
* Seek to the given absolute position in the stream (i.e. the number of bytes from the
* beginning of the stream).
*/
public void seek(long position) throws IOException {
if (mPosition > position) {
mPosition = 0;
mDataInputStream.reset();
} else {
position -= mPosition;
}
skipFully((int) position);
}
}
// An input stream class that can parse both little and big endian order data.
private static class ByteOrderedDataInputStream extends InputStream implements DataInput {
private static final ByteOrder LITTLE_ENDIAN = ByteOrder.LITTLE_ENDIAN;
private static final ByteOrder BIG_ENDIAN = ByteOrder.BIG_ENDIAN;
final DataInputStream mDataInputStream;
private ByteOrder mByteOrder = ByteOrder.BIG_ENDIAN;
@SuppressWarnings("WeakerAccess") /* synthetic access */
int mPosition;
private byte[] mSkipBuffer;
ByteOrderedDataInputStream(byte[] bytes) throws IOException {
this(new ByteArrayInputStream(bytes), ByteOrder.BIG_ENDIAN);
}
ByteOrderedDataInputStream(InputStream in) throws IOException {
this(in, ByteOrder.BIG_ENDIAN);
}
ByteOrderedDataInputStream(InputStream in, ByteOrder byteOrder) throws IOException {
mDataInputStream = new DataInputStream(in);
mDataInputStream.mark(0);
mPosition = 0;
mByteOrder = byteOrder;
}
public void setByteOrder(ByteOrder byteOrder) {
mByteOrder = byteOrder;
}
public int position() {
return mPosition;
}
@Override
public int available() throws IOException {
return mDataInputStream.available();
}
@Override
public int read() throws IOException {
++mPosition;
return mDataInputStream.read();
}
@Override
public int read(byte[] b, int off, int len) throws IOException {
int bytesRead = mDataInputStream.read(b, off, len);
mPosition += bytesRead;
return bytesRead;
}
@Override
public int readUnsignedByte() throws IOException {
++mPosition;
return mDataInputStream.readUnsignedByte();
}
@Override
public String readLine() throws IOException {
Log.d(TAG, "Currently unsupported");
return null;
}
@Override
public boolean readBoolean() throws IOException {
++mPosition;
return mDataInputStream.readBoolean();
}
@Override
public char readChar() throws IOException {
mPosition += 2;
return mDataInputStream.readChar();
}
@Override
public String readUTF() throws IOException {
mPosition += 2;
return mDataInputStream.readUTF();
}
@Override
public void readFully(byte[] buffer, int offset, int length) throws IOException {
mPosition += length;
mDataInputStream.readFully(buffer, offset, length);
}
@Override
public void readFully(byte[] buffer) throws IOException {
mPosition += buffer.length;
mDataInputStream.readFully(buffer);
}
@Override
public byte readByte() throws IOException {
++mPosition;
int ch = mDataInputStream.read();
if (ch < 0) {
throw new EOFException();
}
return (byte) ch;
}
@Override
public short readShort() throws IOException {
mPosition += 2;
int ch1 = mDataInputStream.read();
int ch2 = mDataInputStream.read();
if ((ch1 | ch2) < 0) {
throw new EOFException();
}
if (mByteOrder == LITTLE_ENDIAN) {
return (short) ((ch2 << 8) + ch1);
} else if (mByteOrder == BIG_ENDIAN) {
return (short) ((ch1 << 8) + ch2);
}
throw new IOException("Invalid byte order: " + mByteOrder);
}
@Override
public int readInt() throws IOException {
mPosition += 4;
int ch1 = mDataInputStream.read();
int ch2 = mDataInputStream.read();
int ch3 = mDataInputStream.read();
int ch4 = mDataInputStream.read();
if ((ch1 | ch2 | ch3 | ch4) < 0) {
throw new EOFException();
}
if (mByteOrder == LITTLE_ENDIAN) {
return ((ch4 << 24) + (ch3 << 16) + (ch2 << 8) + ch1);
} else if (mByteOrder == BIG_ENDIAN) {
return ((ch1 << 24) + (ch2 << 16) + (ch3 << 8) + ch4);
}
throw new IOException("Invalid byte order: " + mByteOrder);
}
@Override
public int skipBytes(int n) throws IOException {
throw new UnsupportedOperationException("skipBytes is currently unsupported");
}
/**
* Discards n bytes of data from the input stream. This method will block until either
* the full amount has been skipped or the end of the stream is reached, whichever happens
* first.
*/
public void skipFully(int n) throws IOException {
int totalSkipped = 0;
while (totalSkipped < n) {
int skipped = (int) mDataInputStream.skip(n - totalSkipped);
if (skipped <= 0) {
if (mSkipBuffer == null) {
mSkipBuffer = new byte[SKIP_BUFFER_SIZE];
}
int bytesToSkip = Math.min(SKIP_BUFFER_SIZE, n - totalSkipped);
if ((skipped = mDataInputStream.read(mSkipBuffer, 0, bytesToSkip)) == -1) {
throw new EOFException("Reached EOF while skipping " + n + " bytes.");
}
}
totalSkipped += skipped;
}
mPosition += totalSkipped;
}
@Override
public int readUnsignedShort() throws IOException {
mPosition += 2;
int ch1 = mDataInputStream.read();
int ch2 = mDataInputStream.read();
if ((ch1 | ch2) < 0) {
throw new EOFException();
}
if (mByteOrder == LITTLE_ENDIAN) {
return ((ch2 << 8) + ch1);
} else if (mByteOrder == BIG_ENDIAN) {
return ((ch1 << 8) + ch2);
}
throw new IOException("Invalid byte order: " + mByteOrder);
}
public long readUnsignedInt() throws IOException {
return readInt() & 0xffffffffL;
}
@Override
public long readLong() throws IOException {
mPosition += 8;
int ch1 = mDataInputStream.read();
int ch2 = mDataInputStream.read();
int ch3 = mDataInputStream.read();
int ch4 = mDataInputStream.read();
int ch5 = mDataInputStream.read();
int ch6 = mDataInputStream.read();
int ch7 = mDataInputStream.read();
int ch8 = mDataInputStream.read();
if ((ch1 | ch2 | ch3 | ch4 | ch5 | ch6 | ch7 | ch8) < 0) {
throw new EOFException();
}
if (mByteOrder == LITTLE_ENDIAN) {
return (((long) ch8 << 56) + ((long) ch7 << 48) + ((long) ch6 << 40)
+ ((long) ch5 << 32) + ((long) ch4 << 24) + ((long) ch3 << 16)
+ ((long) ch2 << 8) + (long) ch1);
} else if (mByteOrder == BIG_ENDIAN) {
return (((long) ch1 << 56) + ((long) ch2 << 48) + ((long) ch3 << 40)
+ ((long) ch4 << 32) + ((long) ch5 << 24) + ((long) ch6 << 16)
+ ((long) ch7 << 8) + (long) ch8);
}
throw new IOException("Invalid byte order: " + mByteOrder);
}
@Override
public float readFloat() throws IOException {
return Float.intBitsToFloat(readInt());
}
@Override
public double readDouble() throws IOException {
return Double.longBitsToDouble(readLong());
}
@Override
public void mark(int readlimit) {
throw new UnsupportedOperationException("Mark is currently unsupported");
}
@Override
public void reset() {
throw new UnsupportedOperationException("Reset is currently unsupported");
}
}
// An output stream to write EXIF data area, which can be written in either little or big endian
// order.
private static class ByteOrderedDataOutputStream extends FilterOutputStream {
final OutputStream mOutputStream;
private ByteOrder mByteOrder;
public ByteOrderedDataOutputStream(OutputStream out, ByteOrder byteOrder) {
super(out);
mOutputStream = out;
mByteOrder = byteOrder;
}
public void setByteOrder(ByteOrder byteOrder) {
mByteOrder = byteOrder;
}
@Override
public void write(byte[] bytes) throws IOException {
mOutputStream.write(bytes);
}
@Override
public void write(byte[] bytes, int offset, int length) throws IOException {
mOutputStream.write(bytes, offset, length);
}
public void writeByte(int val) throws IOException {
mOutputStream.write(val);
}
public void writeShort(short val) throws IOException {
if (mByteOrder == ByteOrder.LITTLE_ENDIAN) {
mOutputStream.write((val >>> 0) & 0xFF);
mOutputStream.write((val >>> 8) & 0xFF);
} else if (mByteOrder == ByteOrder.BIG_ENDIAN) {
mOutputStream.write((val >>> 8) & 0xFF);
mOutputStream.write((val >>> 0) & 0xFF);
}
}
public void writeInt(int val) throws IOException {
if (mByteOrder == ByteOrder.LITTLE_ENDIAN) {
mOutputStream.write((val >>> 0) & 0xFF);
mOutputStream.write((val >>> 8) & 0xFF);
mOutputStream.write((val >>> 16) & 0xFF);
mOutputStream.write((val >>> 24) & 0xFF);
} else if (mByteOrder == ByteOrder.BIG_ENDIAN) {
mOutputStream.write((val >>> 24) & 0xFF);
mOutputStream.write((val >>> 16) & 0xFF);
mOutputStream.write((val >>> 8) & 0xFF);
mOutputStream.write((val >>> 0) & 0xFF);
}
}
public void writeUnsignedShort(int val) throws IOException {
writeShort((short) val);
}
public void writeUnsignedInt(long val) throws IOException {
writeInt((int) val);
}
}
// Swaps image data based on image size
private void swapBasedOnImageSize(@IfdType int firstIfdType, @IfdType int secondIfdType)
throws IOException {
if (mAttributes[firstIfdType].isEmpty() || mAttributes[secondIfdType].isEmpty()) {
if (DEBUG) {
Log.d(TAG, "Cannot perform swap since only one image data exists");
}
return;
}
ExifAttribute firstImageLengthAttribute =
(ExifAttribute) mAttributes[firstIfdType].get(TAG_IMAGE_LENGTH);
ExifAttribute firstImageWidthAttribute =
(ExifAttribute) mAttributes[firstIfdType].get(TAG_IMAGE_WIDTH);
ExifAttribute secondImageLengthAttribute =
(ExifAttribute) mAttributes[secondIfdType].get(TAG_IMAGE_LENGTH);
ExifAttribute secondImageWidthAttribute =
(ExifAttribute) mAttributes[secondIfdType].get(TAG_IMAGE_WIDTH);
if (firstImageLengthAttribute == null || firstImageWidthAttribute == null) {
if (DEBUG) {
Log.d(TAG, "First image does not contain valid size information");
}
} else if (secondImageLengthAttribute == null || secondImageWidthAttribute == null) {
if (DEBUG) {
Log.d(TAG, "Second image does not contain valid size information");
}
} else {
int firstImageLengthValue = firstImageLengthAttribute.getIntValue(mExifByteOrder);
int firstImageWidthValue = firstImageWidthAttribute.getIntValue(mExifByteOrder);
int secondImageLengthValue = secondImageLengthAttribute.getIntValue(mExifByteOrder);
int secondImageWidthValue = secondImageWidthAttribute.getIntValue(mExifByteOrder);
if (firstImageLengthValue < secondImageLengthValue &&
firstImageWidthValue < secondImageWidthValue) {
HashMap<String, ExifAttribute> tempMap = mAttributes[firstIfdType];
mAttributes[firstIfdType] = mAttributes[secondIfdType];
mAttributes[secondIfdType] = tempMap;
}
}
}
/**
* Parsing EXIF data requires seek (moving to any position in the stream), so all MIME
* types should support seek via mark/reset, unless the MIME type specifies the position and
* length of the EXIF data and the EXIF data can be read from the file and wrapped with a
* ByteArrayInputStream.
*/
private static boolean shouldSupportSeek(int mimeType) {
if (mimeType == IMAGE_TYPE_JPEG || mimeType == IMAGE_TYPE_RAF || mimeType == IMAGE_TYPE_PNG
|| mimeType == IMAGE_TYPE_WEBP) {
return false;
}
return true;
}
private static boolean isSupportedFormatForSavingAttributes(int mimeType) {
if (mimeType == IMAGE_TYPE_JPEG || mimeType == IMAGE_TYPE_PNG
|| mimeType == IMAGE_TYPE_WEBP) {
return true;
}
return false;
}
}