blob: ca13afcbaf35806f1173fc748ca582667d413871 [file] [log] [blame] [edit]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExternalVibrationUtils"
#include <cstring>
#include <android_os_vibrator.h>
#include <algorithm>
#include <math.h>
#include <log/log.h>
#include <vibrator/ExternalVibrationUtils.h>
namespace android::os {
namespace {
static constexpr float HAPTIC_SCALE_VERY_LOW_RATIO = 2.0f / 3.0f;
static constexpr float HAPTIC_SCALE_LOW_RATIO = 3.0f / 4.0f;
static constexpr float HAPTIC_MAX_AMPLITUDE_FLOAT = 1.0f;
static constexpr float SCALE_GAMMA = 0.65f; // Same as VibrationEffect.SCALE_GAMMA
static constexpr float SCALE_LEVEL_GAIN = 1.4f; // Same as VibrationConfig.DEFAULT_SCALE_LEVEL_GAIN
float getOldHapticScaleGamma(HapticLevel level) {
switch (level) {
case HapticLevel::VERY_LOW:
return 2.0f;
case HapticLevel::LOW:
return 1.5f;
case HapticLevel::HIGH:
return 0.5f;
case HapticLevel::VERY_HIGH:
return 0.25f;
default:
return 1.0f;
}
}
float getOldHapticMaxAmplitudeRatio(HapticLevel level) {
switch (level) {
case HapticLevel::VERY_LOW:
return HAPTIC_SCALE_VERY_LOW_RATIO;
case HapticLevel::LOW:
return HAPTIC_SCALE_LOW_RATIO;
case HapticLevel::NONE:
case HapticLevel::HIGH:
case HapticLevel::VERY_HIGH:
return 1.0f;
default:
return 0.0f;
}
}
/* Same as VibrationScaler.getScaleFactor */
float getHapticScaleFactor(HapticScale scale) {
if (android_os_vibrator_haptics_scale_v2_enabled()) {
if (scale.getScaleFactor() >= 0) {
// ExternalVibratorService provided the scale factor, use it.
return scale.getScaleFactor();
}
HapticLevel level = scale.getLevel();
switch (level) {
case HapticLevel::MUTE:
return 0.0f;
case HapticLevel::NONE:
return 1.0f;
default:
float scaleFactor = powf(SCALE_LEVEL_GAIN, static_cast<int32_t>(level));
if (scaleFactor <= 0) {
ALOGE("Invalid scale factor %.2f for level %d, using fallback to 1.0",
scaleFactor, static_cast<int32_t>(level));
scaleFactor = 1.0f;
}
return scaleFactor;
}
}
// Same as VibrationScaler.SCALE_FACTOR_*
switch (scale.getLevel()) {
case HapticLevel::MUTE:
return 0.0f;
case HapticLevel::VERY_LOW:
return 0.6f;
case HapticLevel::LOW:
return 0.8f;
case HapticLevel::HIGH:
return 1.2f;
case HapticLevel::VERY_HIGH:
return 1.4f;
default:
return 1.0f;
}
}
float applyOldHapticScale(float value, float gamma, float maxAmplitudeRatio) {
float sign = value >= 0 ? 1.0 : -1.0;
return powf(fabsf(value / HAPTIC_MAX_AMPLITUDE_FLOAT), gamma)
* maxAmplitudeRatio * HAPTIC_MAX_AMPLITUDE_FLOAT * sign;
}
float applyNewHapticScale(float value, float scaleFactor) {
if (android_os_vibrator_haptics_scale_v2_enabled()) {
if (scaleFactor <= 1 || value == 0) {
return value * scaleFactor;
} else {
// Using S * x / (1 + (S - 1) * x^2) as the scale up function to converge to 1.0.
return (value * scaleFactor) / (1 + (scaleFactor - 1) * value * value);
}
}
float scale = powf(scaleFactor, 1.0f / SCALE_GAMMA);
if (scaleFactor <= 1) {
// Scale down is simply a gamma corrected application of scaleFactor to the intensity.
// Scale up requires a different curve to ensure the intensity will not become > 1.
return value * scale;
}
float sign = value >= 0 ? 1.0f : -1.0f;
float extraScale = powf(scaleFactor, 4.0f - scaleFactor);
float x = fabsf(value) * scale * extraScale;
float maxX = scale * extraScale; // scaled x for intensity == 1
float expX = expf(x);
float expMaxX = expf(maxX);
// Using f = tanh as the scale up function so the max value will converge.
// a = 1/f(maxX), used to scale f so that a*f(maxX) = 1 (the value will converge to 1).
float a = (expMaxX + 1.0f) / (expMaxX - 1.0f);
float fx = (expX - 1.0f) / (expX + 1.0f);
return sign * std::clamp(a * fx, 0.0f, 1.0f);
}
void applyHapticScale(float* buffer, size_t length, HapticScale scale) {
if (scale.isScaleMute()) {
memset(buffer, 0, length * sizeof(float));
return;
}
if (scale.isScaleNone()) {
return;
}
HapticLevel hapticLevel = scale.getLevel();
float scaleFactor = getHapticScaleFactor(scale);
float adaptiveScaleFactor = scale.getAdaptiveScaleFactor();
float oldGamma = getOldHapticScaleGamma(hapticLevel);
float oldMaxAmplitudeRatio = getOldHapticMaxAmplitudeRatio(hapticLevel);
for (size_t i = 0; i < length; i++) {
if (hapticLevel != HapticLevel::NONE) {
if (android_os_vibrator_fix_audio_coupled_haptics_scaling() ||
android_os_vibrator_haptics_scale_v2_enabled()) {
buffer[i] = applyNewHapticScale(buffer[i], scaleFactor);
} else {
buffer[i] = applyOldHapticScale(buffer[i], oldGamma, oldMaxAmplitudeRatio);
}
}
if (adaptiveScaleFactor >= 0 && adaptiveScaleFactor != 1.0f) {
buffer[i] *= adaptiveScaleFactor;
}
}
}
void clipHapticData(float* buffer, size_t length, float limit) {
if (isnan(limit) || limit == 0) {
return;
}
limit = fabsf(limit);
for (size_t i = 0; i < length; i++) {
float sign = buffer[i] >= 0 ? 1.0 : -1.0;
if (fabsf(buffer[i]) > limit) {
buffer[i] = limit * sign;
}
}
}
} // namespace
bool isValidHapticScale(HapticScale scale) {
switch (scale.getLevel()) {
case HapticLevel::MUTE:
case HapticLevel::VERY_LOW:
case HapticLevel::LOW:
case HapticLevel::NONE:
case HapticLevel::HIGH:
case HapticLevel::VERY_HIGH:
return true;
}
return false;
}
void scaleHapticData(float* buffer, size_t length, HapticScale scale, float limit) {
if (isValidHapticScale(scale)) {
applyHapticScale(buffer, length, scale);
}
clipHapticData(buffer, length, limit);
}
} // namespace android::os