blob: 1210f711dec7d9cb0a61130180af0daa7e3e0d0a [file] [log] [blame] [edit]
/*
* Copyright 2024 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <attestation/HmacKeyManager.h>
#include <ftl/enum.h>
#include <gtest/gtest.h>
#include <input/BlockingQueue.h>
#include <input/InputConsumerNoResampling.h>
#include <input/InputTransport.h>
using android::base::Result;
namespace android {
namespace {
static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION;
static constexpr int32_t ACTION_MOVE = AMOTION_EVENT_ACTION_MOVE;
static constexpr int32_t POINTER_1_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t POINTER_2_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static auto constexpr TIMEOUT = 5s;
struct Pointer {
int32_t id;
float x;
float y;
bool isResampled = false;
};
// A collection of arguments to be sent as publishMotionEvent(). The saved members of this struct
// allow to check the expectations against the event acquired from the InputConsumerCallbacks. To
// help simplify expectation checking it carries members not present in MotionEvent, like
// |rawXScale|.
struct PublishMotionArgs {
const int32_t action;
const nsecs_t downTime;
const uint32_t seq;
int32_t eventId;
const int32_t deviceId = 1;
const uint32_t source = AINPUT_SOURCE_TOUCHSCREEN;
const ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT;
const int32_t actionButton = 0;
const int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_TOP;
const int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON;
const int32_t buttonState = AMOTION_EVENT_BUTTON_PRIMARY;
const MotionClassification classification = MotionClassification::AMBIGUOUS_GESTURE;
const float xScale = 2;
const float yScale = 3;
const float xOffset = -10;
const float yOffset = -20;
const float rawXScale = 4;
const float rawYScale = -5;
const float rawXOffset = -11;
const float rawYOffset = 42;
const float xPrecision = 0.25;
const float yPrecision = 0.5;
const float xCursorPosition = 1.3;
const float yCursorPosition = 50.6;
std::array<uint8_t, 32> hmac;
int32_t flags;
ui::Transform transform;
ui::Transform rawTransform;
const nsecs_t eventTime;
size_t pointerCount;
std::vector<PointerProperties> pointerProperties;
std::vector<PointerCoords> pointerCoords;
PublishMotionArgs(int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers,
const uint32_t seq);
};
PublishMotionArgs::PublishMotionArgs(int32_t inAction, nsecs_t inDownTime,
const std::vector<Pointer>& pointers, const uint32_t inSeq)
: action(inAction),
downTime(inDownTime),
seq(inSeq),
eventId(InputEvent::nextId()),
eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) {
hmac = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
flags = AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED |
AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION |
AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION;
if (action == AMOTION_EVENT_ACTION_CANCEL) {
flags |= AMOTION_EVENT_FLAG_CANCELED;
}
pointerCount = pointers.size();
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties.push_back({});
pointerProperties[i].clear();
pointerProperties[i].id = pointers[i].id;
pointerProperties[i].toolType = ToolType::FINGER;
pointerCoords.push_back({});
pointerCoords[i].clear();
pointerCoords[i].isResampled = pointers[i].isResampled;
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, pointers[i].x);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, pointers[i].y);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 0.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 0.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 1.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 1.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.5 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.7 * i);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 3.5 * i);
}
transform.set({xScale, 0, xOffset, 0, yScale, yOffset, 0, 0, 1});
rawTransform.set({rawXScale, 0, rawXOffset, 0, rawYScale, rawYOffset, 0, 0, 1});
}
// Checks expectations against |motionEvent| acquired from an InputConsumer. Floating point
// comparisons limit precision to EPSILON.
void verifyArgsEqualToEvent(const PublishMotionArgs& args, const MotionEvent& motionEvent) {
EXPECT_EQ(args.eventId, motionEvent.getId());
EXPECT_EQ(args.deviceId, motionEvent.getDeviceId());
EXPECT_EQ(args.source, motionEvent.getSource());
EXPECT_EQ(args.displayId, motionEvent.getDisplayId());
EXPECT_EQ(args.hmac, motionEvent.getHmac());
EXPECT_EQ(args.action, motionEvent.getAction());
EXPECT_EQ(args.downTime, motionEvent.getDownTime());
EXPECT_EQ(args.flags, motionEvent.getFlags());
EXPECT_EQ(args.edgeFlags, motionEvent.getEdgeFlags());
EXPECT_EQ(args.metaState, motionEvent.getMetaState());
EXPECT_EQ(args.buttonState, motionEvent.getButtonState());
EXPECT_EQ(args.classification, motionEvent.getClassification());
EXPECT_EQ(args.transform, motionEvent.getTransform());
EXPECT_NEAR((-args.rawXOffset / args.rawXScale) * args.xScale + args.xOffset,
motionEvent.getRawXOffset(), EPSILON);
EXPECT_NEAR((-args.rawYOffset / args.rawYScale) * args.yScale + args.yOffset,
motionEvent.getRawYOffset(), EPSILON);
EXPECT_EQ(args.xPrecision, motionEvent.getXPrecision());
EXPECT_EQ(args.yPrecision, motionEvent.getYPrecision());
EXPECT_NEAR(args.xCursorPosition, motionEvent.getRawXCursorPosition(), EPSILON);
EXPECT_NEAR(args.yCursorPosition, motionEvent.getRawYCursorPosition(), EPSILON);
EXPECT_NEAR(args.xCursorPosition * args.xScale + args.xOffset, motionEvent.getXCursorPosition(),
EPSILON);
EXPECT_NEAR(args.yCursorPosition * args.yScale + args.yOffset, motionEvent.getYCursorPosition(),
EPSILON);
EXPECT_EQ(args.rawTransform, motionEvent.getRawTransform());
EXPECT_EQ(args.eventTime, motionEvent.getEventTime());
EXPECT_EQ(args.pointerCount, motionEvent.getPointerCount());
EXPECT_EQ(0U, motionEvent.getHistorySize());
for (size_t i = 0; i < args.pointerCount; i++) {
SCOPED_TRACE(i);
EXPECT_EQ(args.pointerProperties[i].id, motionEvent.getPointerId(i));
EXPECT_EQ(args.pointerProperties[i].toolType, motionEvent.getToolType(i));
const auto& pc = args.pointerCoords[i];
EXPECT_EQ(pc, motionEvent.getSamplePointerCoords()[i]);
EXPECT_NEAR(pc.getX() * args.rawXScale + args.rawXOffset, motionEvent.getRawX(i), EPSILON);
EXPECT_NEAR(pc.getY() * args.rawYScale + args.rawYOffset, motionEvent.getRawY(i), EPSILON);
EXPECT_NEAR(pc.getX() * args.xScale + args.xOffset, motionEvent.getX(i), EPSILON);
EXPECT_NEAR(pc.getY() * args.yScale + args.yOffset, motionEvent.getY(i), EPSILON);
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), motionEvent.getPressure(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_SIZE), motionEvent.getSize(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), motionEvent.getTouchMajor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), motionEvent.getTouchMinor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), motionEvent.getToolMajor(i));
EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), motionEvent.getToolMinor(i));
// Calculate the orientation after scaling, keeping in mind that an orientation of 0 is
// "up", and the positive y direction is "down".
const float unscaledOrientation = pc.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION);
const float x = sinf(unscaledOrientation) * args.xScale;
const float y = -cosf(unscaledOrientation) * args.yScale;
EXPECT_EQ(atan2f(x, -y), motionEvent.getOrientation(i));
}
}
void publishMotionEvent(InputPublisher& publisher, const PublishMotionArgs& a) {
status_t status =
publisher.publishMotionEvent(a.seq, a.eventId, a.deviceId, a.source, a.displayId,
a.hmac, a.action, a.actionButton, a.flags, a.edgeFlags,
a.metaState, a.buttonState, a.classification, a.transform,
a.xPrecision, a.yPrecision, a.xCursorPosition,
a.yCursorPosition, a.rawTransform, a.downTime, a.eventTime,
a.pointerCount, a.pointerProperties.data(),
a.pointerCoords.data());
ASSERT_EQ(OK, status) << "publisher publishMotionEvent should return OK";
}
Result<InputPublisher::ConsumerResponse> receiveConsumerResponse(
InputPublisher& publisher, std::chrono::milliseconds timeout) {
const std::chrono::time_point start = std::chrono::steady_clock::now();
while (true) {
Result<InputPublisher::ConsumerResponse> result = publisher.receiveConsumerResponse();
if (result.ok()) {
return result;
}
const std::chrono::duration waited = std::chrono::steady_clock::now() - start;
if (waited > timeout) {
return result;
}
}
}
void verifyFinishedSignal(InputPublisher& publisher, uint32_t seq, nsecs_t publishTime) {
Result<InputPublisher::ConsumerResponse> result = receiveConsumerResponse(publisher, TIMEOUT);
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse returned " << result.error().message();
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result);
ASSERT_EQ(seq, finish.seq)
<< "receiveConsumerResponse should have returned the original sequence number";
ASSERT_TRUE(finish.handled)
<< "receiveConsumerResponse should have set handled to consumer's reply";
ASSERT_GE(finish.consumeTime, publishTime)
<< "finished signal's consume time should be greater than publish time";
}
} // namespace
class InputConsumerMessageHandler : public MessageHandler {
public:
InputConsumerMessageHandler(std::function<void(const Message&)> function)
: mFunction(function) {}
private:
void handleMessage(const Message& message) override { mFunction(message); }
std::function<void(const Message&)> mFunction;
};
class InputPublisherAndConsumerNoResamplingTest : public testing::Test,
public InputConsumerCallbacks {
protected:
std::unique_ptr<InputChannel> mClientChannel;
std::unique_ptr<InputPublisher> mPublisher;
std::unique_ptr<InputConsumerNoResampling> mConsumer;
std::thread mLooperThread;
sp<Looper> mLooper = sp<Looper>::make(/*allowNonCallbacks=*/false);
// LOOPER CONTROL
// Set to false when you want the looper to exit
std::atomic<bool> mExitLooper = false;
std::mutex mLock;
// Used by test to notify looper that the value of "mLooperMayProceed" has changed
std::condition_variable mNotifyLooperMayProceed;
bool mLooperMayProceed GUARDED_BY(mLock){true};
// Used by looper to notify the test that it's about to block on "mLooperMayProceed" -> true
std::condition_variable mNotifyLooperWaiting;
bool mLooperIsBlocked GUARDED_BY(mLock){false};
std::condition_variable mNotifyConsumerDestroyed;
bool mConsumerDestroyed GUARDED_BY(mLock){false};
void runLooper() {
static constexpr int LOOP_INDEFINITELY = -1;
Looper::setForThread(mLooper);
// Loop forever -- this thread is dedicated to servicing the looper callbacks.
while (!mExitLooper) {
mLooper->pollOnce(/*timeoutMillis=*/LOOP_INDEFINITELY);
}
}
void SetUp() override {
std::unique_ptr<InputChannel> serverChannel;
status_t result =
InputChannel::openInputChannelPair("channel name", serverChannel, mClientChannel);
ASSERT_EQ(OK, result);
mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel));
mMessageHandler = sp<InputConsumerMessageHandler>::make(
[this](const Message& message) { handleMessage(message); });
mLooperThread = std::thread([this] { runLooper(); });
sendMessage(LooperMessage::CREATE_CONSUMER);
}
void publishAndConsumeKeyEvent();
void publishAndConsumeMotionStream();
void publishAndConsumeMotionDown(nsecs_t downTime);
void publishAndConsumeSinglePointerMultipleSamples(const size_t nSamples);
void publishAndConsumeBatchedMotionMove(nsecs_t downTime);
void publishAndConsumeFocusEvent();
void publishAndConsumeCaptureEvent();
void publishAndConsumeDragEvent();
void publishAndConsumeTouchModeEvent();
void publishAndConsumeMotionEvent(int32_t action, nsecs_t downTime,
const std::vector<Pointer>& pointers);
void TearDown() override {
// Destroy the consumer, flushing any of the pending ack's.
sendMessage(LooperMessage::DESTROY_CONSUMER);
{
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
mNotifyConsumerDestroyed.wait(lock, [this] { return mConsumerDestroyed; });
}
// Stop the looper thread so that we can destroy the object.
mExitLooper = true;
mLooper->wake();
mLooperThread.join();
}
protected:
// Interaction with the looper thread
enum class LooperMessage : int {
CALL_PROBABLY_HAS_INPUT,
CREATE_CONSUMER,
DESTROY_CONSUMER,
CALL_REPORT_TIMELINE,
BLOCK_LOOPER,
};
void sendMessage(LooperMessage message);
struct ReportTimelineArgs {
int32_t inputEventId;
nsecs_t gpuCompletedTime;
nsecs_t presentTime;
};
// The input to the function "InputConsumer::reportTimeline". Populated on the test thread and
// accessed on the looper thread.
BlockingQueue<ReportTimelineArgs> mReportTimelineArgs;
// The output of calling "InputConsumer::probablyHasInput()". Populated on the looper thread and
// accessed on the test thread.
BlockingQueue<bool> mProbablyHasInputResponses;
private:
sp<MessageHandler> mMessageHandler;
void handleMessage(const Message& message);
static auto constexpr NO_EVENT_TIMEOUT = 10ms;
// The sequence number to use when publishing the next event
uint32_t mSeq = 1;
BlockingQueue<std::unique_ptr<KeyEvent>> mKeyEvents;
BlockingQueue<std::unique_ptr<MotionEvent>> mMotionEvents;
BlockingQueue<std::unique_ptr<FocusEvent>> mFocusEvents;
BlockingQueue<std::unique_ptr<CaptureEvent>> mCaptureEvents;
BlockingQueue<std::unique_ptr<DragEvent>> mDragEvents;
BlockingQueue<std::unique_ptr<TouchModeEvent>> mTouchModeEvents;
// InputConsumerCallbacks interface
void onKeyEvent(std::unique_ptr<KeyEvent> event, uint32_t seq) override {
mKeyEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
}
void onMotionEvent(std::unique_ptr<MotionEvent> event, uint32_t seq) override {
mMotionEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
}
void onBatchedInputEventPending(int32_t pendingBatchSource) override {
if (!mConsumer->probablyHasInput()) {
ADD_FAILURE() << "should deterministically have input because there is a batch";
}
mConsumer->consumeBatchedInputEvents(/*frameTime=*/std::nullopt);
};
void onFocusEvent(std::unique_ptr<FocusEvent> event, uint32_t seq) override {
mFocusEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
};
void onCaptureEvent(std::unique_ptr<CaptureEvent> event, uint32_t seq) override {
mCaptureEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
};
void onDragEvent(std::unique_ptr<DragEvent> event, uint32_t seq) override {
mDragEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
}
void onTouchModeEvent(std::unique_ptr<TouchModeEvent> event, uint32_t seq) override {
mTouchModeEvents.push(std::move(event));
mConsumer->finishInputEvent(seq, true);
};
};
void InputPublisherAndConsumerNoResamplingTest::sendMessage(LooperMessage message) {
Message msg{ftl::to_underlying(message)};
mLooper->sendMessage(mMessageHandler, msg);
}
void InputPublisherAndConsumerNoResamplingTest::handleMessage(const Message& message) {
switch (static_cast<LooperMessage>(message.what)) {
case LooperMessage::CALL_PROBABLY_HAS_INPUT: {
mProbablyHasInputResponses.push(mConsumer->probablyHasInput());
break;
}
case LooperMessage::CREATE_CONSUMER: {
mConsumer =
std::make_unique<InputConsumerNoResampling>(std::move(mClientChannel), mLooper,
*this, /*resampler=*/nullptr);
break;
}
case LooperMessage::DESTROY_CONSUMER: {
mConsumer = nullptr;
{
std::unique_lock lock(mLock);
mConsumerDestroyed = true;
}
mNotifyConsumerDestroyed.notify_all();
break;
}
case LooperMessage::CALL_REPORT_TIMELINE: {
std::optional<ReportTimelineArgs> args = mReportTimelineArgs.pop();
if (!args.has_value()) {
ADD_FAILURE() << "Couldn't get the 'reportTimeline' args in time";
return;
}
mConsumer->reportTimeline(args->inputEventId, args->gpuCompletedTime,
args->presentTime);
break;
}
case LooperMessage::BLOCK_LOOPER: {
{
std::unique_lock lock(mLock);
mLooperIsBlocked = true;
}
mNotifyLooperWaiting.notify_all();
{
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
mNotifyLooperMayProceed.wait(lock, [this] { return mLooperMayProceed; });
}
{
std::unique_lock lock(mLock);
mLooperIsBlocked = false;
}
mNotifyLooperWaiting.notify_all();
break;
}
}
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeKeyEvent() {
status_t status;
const uint32_t seq = mSeq++;
int32_t eventId = InputEvent::nextId();
constexpr int32_t deviceId = 1;
constexpr uint32_t source = AINPUT_SOURCE_KEYBOARD;
constexpr ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT;
constexpr std::array<uint8_t, 32> hmac = {31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
constexpr int32_t action = AKEY_EVENT_ACTION_DOWN;
constexpr int32_t flags = AKEY_EVENT_FLAG_FROM_SYSTEM;
constexpr int32_t keyCode = AKEYCODE_ENTER;
constexpr int32_t scanCode = 13;
constexpr int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON;
constexpr int32_t repeatCount = 1;
constexpr nsecs_t downTime = 3;
constexpr nsecs_t eventTime = 4;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishKeyEvent(seq, eventId, deviceId, source, displayId, hmac, action,
flags, keyCode, scanCode, metaState, repeatCount, downTime,
eventTime);
ASSERT_EQ(OK, status) << "publisher publishKeyEvent should return OK";
std::optional<std::unique_ptr<KeyEvent>> optKeyEvent = mKeyEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optKeyEvent.has_value()) << "consumer should have returned non-NULL event";
std::unique_ptr<KeyEvent> keyEvent = std::move(*optKeyEvent);
sendMessage(LooperMessage::CALL_PROBABLY_HAS_INPUT);
std::optional<bool> probablyHasInput = mProbablyHasInputResponses.popWithTimeout(TIMEOUT);
ASSERT_TRUE(probablyHasInput.has_value());
ASSERT_FALSE(probablyHasInput.value()) << "no events should be waiting after being consumed";
EXPECT_EQ(eventId, keyEvent->getId());
EXPECT_EQ(deviceId, keyEvent->getDeviceId());
EXPECT_EQ(source, keyEvent->getSource());
EXPECT_EQ(displayId, keyEvent->getDisplayId());
EXPECT_EQ(hmac, keyEvent->getHmac());
EXPECT_EQ(action, keyEvent->getAction());
EXPECT_EQ(flags, keyEvent->getFlags());
EXPECT_EQ(keyCode, keyEvent->getKeyCode());
EXPECT_EQ(scanCode, keyEvent->getScanCode());
EXPECT_EQ(metaState, keyEvent->getMetaState());
EXPECT_EQ(repeatCount, keyEvent->getRepeatCount());
EXPECT_EQ(downTime, keyEvent->getDownTime());
EXPECT_EQ(eventTime, keyEvent->getEventTime());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionStream() {
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300}});
publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 300, .y = 400}});
// Provide a consistent input stream - cancel the gesture that was started above
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 300, .y = 400}});
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionDown(nsecs_t downTime) {
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
}
/*
* Decompose a potential multi-sampled MotionEvent into multiple MotionEvents
* with a single sample.
*/
std::vector<MotionEvent> splitBatchedMotionEvent(const MotionEvent& batchedMotionEvent) {
std::vector<MotionEvent> singleMotionEvents;
const size_t batchSize = batchedMotionEvent.getHistorySize() + 1;
for (size_t i = 0; i < batchSize; ++i) {
MotionEvent singleMotionEvent;
singleMotionEvent
.initialize(batchedMotionEvent.getId(), batchedMotionEvent.getDeviceId(),
batchedMotionEvent.getSource(), batchedMotionEvent.getDisplayId(),
batchedMotionEvent.getHmac(), batchedMotionEvent.getAction(),
batchedMotionEvent.getActionButton(), batchedMotionEvent.getFlags(),
batchedMotionEvent.getEdgeFlags(), batchedMotionEvent.getMetaState(),
batchedMotionEvent.getButtonState(),
batchedMotionEvent.getClassification(),
batchedMotionEvent.getTransform(), batchedMotionEvent.getXPrecision(),
batchedMotionEvent.getYPrecision(),
batchedMotionEvent.getRawXCursorPosition(),
batchedMotionEvent.getRawYCursorPosition(),
batchedMotionEvent.getRawTransform(), batchedMotionEvent.getDownTime(),
batchedMotionEvent.getHistoricalEventTime(/*historicalIndex=*/i),
batchedMotionEvent.getPointerCount(),
batchedMotionEvent.getPointerProperties(),
(batchedMotionEvent.getSamplePointerCoords() + i));
singleMotionEvents.push_back(singleMotionEvent);
}
return singleMotionEvents;
}
/*
* Simulates a single pointer touching the screen and leaving it there for a period of time.
* Publishes a DOWN event and consumes it right away. Then, publishes a sequence of MOVE
* samples for the same pointer, and waits until it has been consumed. Splits batched MotionEvents
* into individual samples. Checks the consumed MotionEvents against the published ones.
* This test is non-deterministic because it depends on the timing of arrival of events to the
* socket.
*
* @param nSamples The number of MOVE samples to publish before attempting consumption.
*/
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeSinglePointerMultipleSamples(
const size_t nSamples) {
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
const Pointer pointer(0, 20, 30);
const PublishMotionArgs argsDown(AMOTION_EVENT_ACTION_DOWN, downTime, {pointer}, mSeq);
const nsecs_t publishTimeOfDown = systemTime(SYSTEM_TIME_MONOTONIC);
publishMotionEvent(*mPublisher, argsDown);
// Consume the DOWN event.
ASSERT_TRUE(mMotionEvents.popWithTimeout(TIMEOUT).has_value());
verifyFinishedSignal(*mPublisher, mSeq, publishTimeOfDown);
std::vector<nsecs_t> publishTimes;
std::vector<PublishMotionArgs> argsMoves;
std::queue<uint32_t> publishedSequenceNumbers;
// Block Looper to increase the chance of batching events
{
std::scoped_lock l(mLock);
mLooperMayProceed = false;
}
sendMessage(LooperMessage::BLOCK_LOOPER);
{
std::unique_lock l(mLock);
mNotifyLooperWaiting.wait(l, [this] { return mLooperIsBlocked; });
}
uint32_t firstSampleId;
for (size_t i = 0; i < nSamples; ++i) {
publishedSequenceNumbers.push(++mSeq);
PublishMotionArgs argsMove(AMOTION_EVENT_ACTION_MOVE, downTime, {pointer}, mSeq);
// A batched MotionEvent only has a single event id, currently determined when the
// MotionEvent is initialized. Therefore, to pass the eventId comparisons inside
// verifyArgsEqualToEvent, we need to override the event id of the published args to match
// the event id of the first sample inside the MotionEvent.
if (i == 0) {
firstSampleId = argsMove.eventId;
}
argsMove.eventId = firstSampleId;
publishTimes.push_back(systemTime(SYSTEM_TIME_MONOTONIC));
argsMoves.push_back(argsMove);
publishMotionEvent(*mPublisher, argsMove);
}
std::vector<MotionEvent> singleSampledMotionEvents;
// Unblock Looper
{
std::scoped_lock l(mLock);
mLooperMayProceed = true;
}
mNotifyLooperMayProceed.notify_all();
// We have no control over the socket behavior, so the consumer can receive
// the motion as a batched event, or as a sequence of multiple single-sample MotionEvents (or a
// mix of those)
while (singleSampledMotionEvents.size() != nSamples) {
const std::optional<std::unique_ptr<MotionEvent>> batchedMotionEvent =
mMotionEvents.popWithTimeout(TIMEOUT);
// The events received by these calls are never null
std::vector<MotionEvent> splitMotionEvents = splitBatchedMotionEvent(**batchedMotionEvent);
singleSampledMotionEvents.insert(singleSampledMotionEvents.end(), splitMotionEvents.begin(),
splitMotionEvents.end());
}
// Consumer can choose to finish events in any order. For simplicity,
// we verify the events in sequence (since that is how the test is implemented).
for (size_t i = 0; i < nSamples; ++i) {
verifyArgsEqualToEvent(argsMoves[i], singleSampledMotionEvents[i]);
verifyFinishedSignal(*mPublisher, publishedSequenceNumbers.front(), publishTimes[i]);
publishedSequenceNumbers.pop();
}
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeBatchedMotionMove(
nsecs_t downTime) {
uint32_t seq = mSeq++;
const std::vector<Pointer> pointers = {Pointer{.id = 0, .x = 20, .y = 30}};
PublishMotionArgs args(AMOTION_EVENT_ACTION_MOVE, downTime, pointers, seq);
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Block the looper thread, preventing it from being able to service any of the fd callbacks.
{
std::scoped_lock lock(mLock);
mLooperMayProceed = false;
}
sendMessage(LooperMessage::BLOCK_LOOPER);
{
std::unique_lock lock(mLock);
mNotifyLooperWaiting.wait(lock, [this] { return mLooperIsBlocked; });
}
publishMotionEvent(*mPublisher, args);
// Ensure no event arrives because the UI thread is blocked
std::optional<std::unique_ptr<MotionEvent>> noEvent =
mMotionEvents.popWithTimeout(NO_EVENT_TIMEOUT);
ASSERT_FALSE(noEvent.has_value()) << "Got unexpected event: " << *noEvent;
Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse();
ASSERT_FALSE(result.ok());
ASSERT_EQ(WOULD_BLOCK, result.error().code());
// We shouldn't be calling mConsumer on the UI thread, but in this situation, the looper
// thread is locked, so this should be safe to do.
ASSERT_TRUE(mConsumer->probablyHasInput())
<< "should deterministically have input because there is a batch";
// Now, unblock the looper thread, so that the event can arrive.
{
std::scoped_lock lock(mLock);
mLooperMayProceed = true;
}
mNotifyLooperMayProceed.notify_all();
std::optional<std::unique_ptr<MotionEvent>> optMotion = mMotionEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optMotion.has_value());
std::unique_ptr<MotionEvent> motion = std::move(*optMotion);
ASSERT_EQ(ACTION_MOVE, motion->getAction());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionEvent(
int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers) {
uint32_t seq = mSeq++;
PublishMotionArgs args(action, downTime, pointers, seq);
nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishMotionEvent(*mPublisher, args);
std::optional<std::unique_ptr<MotionEvent>> optMotion = mMotionEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optMotion.has_value());
std::unique_ptr<MotionEvent> event = std::move(*optMotion);
verifyArgsEqualToEvent(args, *event);
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeFocusEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool hasFocus = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishFocusEvent(seq, eventId, hasFocus);
ASSERT_EQ(OK, status) << "publisher publishFocusEvent should return OK";
std::optional<std::unique_ptr<FocusEvent>> optFocusEvent = mFocusEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optFocusEvent.has_value()) << "consumer should have returned non-NULL event";
std::unique_ptr<FocusEvent> focusEvent = std::move(*optFocusEvent);
EXPECT_EQ(eventId, focusEvent->getId());
EXPECT_EQ(hasFocus, focusEvent->getHasFocus());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeCaptureEvent() {
status_t status;
constexpr uint32_t seq = 42;
int32_t eventId = InputEvent::nextId();
constexpr bool captureEnabled = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishCaptureEvent(seq, eventId, captureEnabled);
ASSERT_EQ(OK, status) << "publisher publishCaptureEvent should return OK";
std::optional<std::unique_ptr<CaptureEvent>> optEvent = mCaptureEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optEvent.has_value()) << "consumer should have returned non-NULL event";
std::unique_ptr<CaptureEvent> event = std::move(*optEvent);
const CaptureEvent& captureEvent = *event;
EXPECT_EQ(eventId, captureEvent.getId());
EXPECT_EQ(captureEnabled, captureEvent.getPointerCaptureEnabled());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeDragEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool isExiting = false;
constexpr float x = 10;
constexpr float y = 15;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishDragEvent(seq, eventId, x, y, isExiting);
ASSERT_EQ(OK, status) << "publisher publishDragEvent should return OK";
std::optional<std::unique_ptr<DragEvent>> optEvent = mDragEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optEvent.has_value()) << "consumer should have returned non-NULL event";
std::unique_ptr<DragEvent> event = std::move(*optEvent);
const DragEvent& dragEvent = *event;
EXPECT_EQ(eventId, dragEvent.getId());
EXPECT_EQ(isExiting, dragEvent.isExiting());
EXPECT_EQ(x, dragEvent.getX());
EXPECT_EQ(y, dragEvent.getY());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeTouchModeEvent() {
status_t status;
constexpr uint32_t seq = 15;
int32_t eventId = InputEvent::nextId();
constexpr bool touchModeEnabled = true;
const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC);
status = mPublisher->publishTouchModeEvent(seq, eventId, touchModeEnabled);
ASSERT_EQ(OK, status) << "publisher publishTouchModeEvent should return OK";
std::optional<std::unique_ptr<TouchModeEvent>> optEvent =
mTouchModeEvents.popWithTimeout(TIMEOUT);
ASSERT_TRUE(optEvent.has_value());
std::unique_ptr<TouchModeEvent> event = std::move(*optEvent);
const TouchModeEvent& touchModeEvent = *event;
EXPECT_EQ(eventId, touchModeEvent.getId());
EXPECT_EQ(touchModeEnabled, touchModeEvent.isInTouchMode());
verifyFinishedSignal(*mPublisher, seq, publishTime);
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, SendTimeline) {
const int32_t inputEventId = 20;
const nsecs_t gpuCompletedTime = 30;
const nsecs_t presentTime = 40;
mReportTimelineArgs.emplace(inputEventId, gpuCompletedTime, presentTime);
sendMessage(LooperMessage::CALL_REPORT_TIMELINE);
Result<InputPublisher::ConsumerResponse> result = receiveConsumerResponse(*mPublisher, TIMEOUT);
ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK";
ASSERT_TRUE(std::holds_alternative<InputPublisher::Timeline>(*result));
const InputPublisher::Timeline& timeline = std::get<InputPublisher::Timeline>(*result);
ASSERT_EQ(inputEventId, timeline.inputEventId);
ASSERT_EQ(gpuCompletedTime, timeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME]);
ASSERT_EQ(presentTime, timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME]);
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishKeyEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMotionEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionStream());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMotionMoveEvent_EndToEnd) {
// Publish a DOWN event before MOVE to pass the InputVerifier checks.
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionDown(downTime));
// Publish the MOVE event and check expectations.
ASSERT_NO_FATAL_FAILURE(publishAndConsumeBatchedMotionMove(downTime));
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishFocusEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishCaptureEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishDragEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishTouchModeEvent_EndToEnd) {
ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest,
PublishMotionEvent_WhenSequenceNumberIsZero_ReturnsError) {
status_t status;
const size_t pointerCount = 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerCoords[i].clear();
}
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(0, InputEvent::nextId(), 0, 0,
ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0,
0, 0, MotionClassification::NONE, identityTransform, 0,
0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerNoResamplingTest,
PublishMotionEvent_WhenPointerCountLessThan1_ReturnsError) {
status_t status;
const size_t pointerCount = 0;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0,
ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0,
0, 0, MotionClassification::NONE, identityTransform, 0,
0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerNoResamplingTest,
PublishMotionEvent_WhenPointerCountGreaterThanMax_ReturnsError) {
status_t status;
const size_t pointerCount = MAX_POINTERS + 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerCoords[i].clear();
}
ui::Transform identityTransform;
status =
mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0,
ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0,
0, 0, MotionClassification::NONE, identityTransform, 0,
0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
0, 0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE";
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMultipleEvents_EndToEnd) {
const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC);
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent());
publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent());
// Provide a consistent input stream - cancel the gesture that was started above
publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime,
{Pointer{.id = 0, .x = 20, .y = 30},
Pointer{.id = 1, .x = 200, .y = 300},
Pointer{.id = 2, .x = 200, .y = 300}});
ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent());
ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent());
}
TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishAndConsumeSinglePointer) {
publishAndConsumeSinglePointerMultipleSamples(3);
}
} // namespace android