| /* |
| * Copyright 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <android-base/logging.h> |
| #include <attestation/HmacKeyManager.h> |
| #include <ftl/enum.h> |
| #include <gtest/gtest.h> |
| #include <input/BlockingQueue.h> |
| #include <input/InputConsumerNoResampling.h> |
| #include <input/InputTransport.h> |
| |
| using android::base::Result; |
| |
| namespace android { |
| |
| namespace { |
| |
| static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION; |
| static constexpr int32_t ACTION_MOVE = AMOTION_EVENT_ACTION_MOVE; |
| static constexpr int32_t POINTER_1_DOWN = |
| AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| static constexpr int32_t POINTER_2_DOWN = |
| AMOTION_EVENT_ACTION_POINTER_DOWN | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| |
| static auto constexpr TIMEOUT = 5s; |
| |
| struct Pointer { |
| int32_t id; |
| float x; |
| float y; |
| bool isResampled = false; |
| }; |
| |
| // A collection of arguments to be sent as publishMotionEvent(). The saved members of this struct |
| // allow to check the expectations against the event acquired from the InputConsumerCallbacks. To |
| // help simplify expectation checking it carries members not present in MotionEvent, like |
| // |rawXScale|. |
| struct PublishMotionArgs { |
| const int32_t action; |
| const nsecs_t downTime; |
| const uint32_t seq; |
| int32_t eventId; |
| const int32_t deviceId = 1; |
| const uint32_t source = AINPUT_SOURCE_TOUCHSCREEN; |
| const ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT; |
| const int32_t actionButton = 0; |
| const int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_TOP; |
| const int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON; |
| const int32_t buttonState = AMOTION_EVENT_BUTTON_PRIMARY; |
| const MotionClassification classification = MotionClassification::AMBIGUOUS_GESTURE; |
| const float xScale = 2; |
| const float yScale = 3; |
| const float xOffset = -10; |
| const float yOffset = -20; |
| const float rawXScale = 4; |
| const float rawYScale = -5; |
| const float rawXOffset = -11; |
| const float rawYOffset = 42; |
| const float xPrecision = 0.25; |
| const float yPrecision = 0.5; |
| const float xCursorPosition = 1.3; |
| const float yCursorPosition = 50.6; |
| std::array<uint8_t, 32> hmac; |
| int32_t flags; |
| ui::Transform transform; |
| ui::Transform rawTransform; |
| const nsecs_t eventTime; |
| size_t pointerCount; |
| std::vector<PointerProperties> pointerProperties; |
| std::vector<PointerCoords> pointerCoords; |
| |
| PublishMotionArgs(int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers, |
| const uint32_t seq); |
| }; |
| |
| PublishMotionArgs::PublishMotionArgs(int32_t inAction, nsecs_t inDownTime, |
| const std::vector<Pointer>& pointers, const uint32_t inSeq) |
| : action(inAction), |
| downTime(inDownTime), |
| seq(inSeq), |
| eventId(InputEvent::nextId()), |
| eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) { |
| hmac = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; |
| |
| flags = AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED | |
| AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION | |
| AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION; |
| if (action == AMOTION_EVENT_ACTION_CANCEL) { |
| flags |= AMOTION_EVENT_FLAG_CANCELED; |
| } |
| pointerCount = pointers.size(); |
| for (size_t i = 0; i < pointerCount; i++) { |
| pointerProperties.push_back({}); |
| pointerProperties[i].clear(); |
| pointerProperties[i].id = pointers[i].id; |
| pointerProperties[i].toolType = ToolType::FINGER; |
| |
| pointerCoords.push_back({}); |
| pointerCoords[i].clear(); |
| pointerCoords[i].isResampled = pointers[i].isResampled; |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, pointers[i].x); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, pointers[i].y); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 0.5 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 0.7 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 1.5 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 1.7 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.5 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.7 * i); |
| pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 3.5 * i); |
| } |
| transform.set({xScale, 0, xOffset, 0, yScale, yOffset, 0, 0, 1}); |
| rawTransform.set({rawXScale, 0, rawXOffset, 0, rawYScale, rawYOffset, 0, 0, 1}); |
| } |
| |
| // Checks expectations against |motionEvent| acquired from an InputConsumer. Floating point |
| // comparisons limit precision to EPSILON. |
| void verifyArgsEqualToEvent(const PublishMotionArgs& args, const MotionEvent& motionEvent) { |
| EXPECT_EQ(args.eventId, motionEvent.getId()); |
| EXPECT_EQ(args.deviceId, motionEvent.getDeviceId()); |
| EXPECT_EQ(args.source, motionEvent.getSource()); |
| EXPECT_EQ(args.displayId, motionEvent.getDisplayId()); |
| EXPECT_EQ(args.hmac, motionEvent.getHmac()); |
| EXPECT_EQ(args.action, motionEvent.getAction()); |
| EXPECT_EQ(args.downTime, motionEvent.getDownTime()); |
| EXPECT_EQ(args.flags, motionEvent.getFlags()); |
| EXPECT_EQ(args.edgeFlags, motionEvent.getEdgeFlags()); |
| EXPECT_EQ(args.metaState, motionEvent.getMetaState()); |
| EXPECT_EQ(args.buttonState, motionEvent.getButtonState()); |
| EXPECT_EQ(args.classification, motionEvent.getClassification()); |
| EXPECT_EQ(args.transform, motionEvent.getTransform()); |
| EXPECT_NEAR((-args.rawXOffset / args.rawXScale) * args.xScale + args.xOffset, |
| motionEvent.getRawXOffset(), EPSILON); |
| EXPECT_NEAR((-args.rawYOffset / args.rawYScale) * args.yScale + args.yOffset, |
| motionEvent.getRawYOffset(), EPSILON); |
| EXPECT_EQ(args.xPrecision, motionEvent.getXPrecision()); |
| EXPECT_EQ(args.yPrecision, motionEvent.getYPrecision()); |
| EXPECT_NEAR(args.xCursorPosition, motionEvent.getRawXCursorPosition(), EPSILON); |
| EXPECT_NEAR(args.yCursorPosition, motionEvent.getRawYCursorPosition(), EPSILON); |
| EXPECT_NEAR(args.xCursorPosition * args.xScale + args.xOffset, motionEvent.getXCursorPosition(), |
| EPSILON); |
| EXPECT_NEAR(args.yCursorPosition * args.yScale + args.yOffset, motionEvent.getYCursorPosition(), |
| EPSILON); |
| EXPECT_EQ(args.rawTransform, motionEvent.getRawTransform()); |
| EXPECT_EQ(args.eventTime, motionEvent.getEventTime()); |
| EXPECT_EQ(args.pointerCount, motionEvent.getPointerCount()); |
| EXPECT_EQ(0U, motionEvent.getHistorySize()); |
| |
| for (size_t i = 0; i < args.pointerCount; i++) { |
| SCOPED_TRACE(i); |
| EXPECT_EQ(args.pointerProperties[i].id, motionEvent.getPointerId(i)); |
| EXPECT_EQ(args.pointerProperties[i].toolType, motionEvent.getToolType(i)); |
| |
| const auto& pc = args.pointerCoords[i]; |
| EXPECT_EQ(pc, motionEvent.getSamplePointerCoords()[i]); |
| |
| EXPECT_NEAR(pc.getX() * args.rawXScale + args.rawXOffset, motionEvent.getRawX(i), EPSILON); |
| EXPECT_NEAR(pc.getY() * args.rawYScale + args.rawYOffset, motionEvent.getRawY(i), EPSILON); |
| EXPECT_NEAR(pc.getX() * args.xScale + args.xOffset, motionEvent.getX(i), EPSILON); |
| EXPECT_NEAR(pc.getY() * args.yScale + args.yOffset, motionEvent.getY(i), EPSILON); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), motionEvent.getPressure(i)); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_SIZE), motionEvent.getSize(i)); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), motionEvent.getTouchMajor(i)); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), motionEvent.getTouchMinor(i)); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), motionEvent.getToolMajor(i)); |
| EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), motionEvent.getToolMinor(i)); |
| |
| // Calculate the orientation after scaling, keeping in mind that an orientation of 0 is |
| // "up", and the positive y direction is "down". |
| const float unscaledOrientation = pc.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION); |
| const float x = sinf(unscaledOrientation) * args.xScale; |
| const float y = -cosf(unscaledOrientation) * args.yScale; |
| EXPECT_EQ(atan2f(x, -y), motionEvent.getOrientation(i)); |
| } |
| } |
| |
| void publishMotionEvent(InputPublisher& publisher, const PublishMotionArgs& a) { |
| status_t status = |
| publisher.publishMotionEvent(a.seq, a.eventId, a.deviceId, a.source, a.displayId, |
| a.hmac, a.action, a.actionButton, a.flags, a.edgeFlags, |
| a.metaState, a.buttonState, a.classification, a.transform, |
| a.xPrecision, a.yPrecision, a.xCursorPosition, |
| a.yCursorPosition, a.rawTransform, a.downTime, a.eventTime, |
| a.pointerCount, a.pointerProperties.data(), |
| a.pointerCoords.data()); |
| ASSERT_EQ(OK, status) << "publisher publishMotionEvent should return OK"; |
| } |
| |
| Result<InputPublisher::ConsumerResponse> receiveConsumerResponse( |
| InputPublisher& publisher, std::chrono::milliseconds timeout) { |
| const std::chrono::time_point start = std::chrono::steady_clock::now(); |
| |
| while (true) { |
| Result<InputPublisher::ConsumerResponse> result = publisher.receiveConsumerResponse(); |
| if (result.ok()) { |
| return result; |
| } |
| const std::chrono::duration waited = std::chrono::steady_clock::now() - start; |
| if (waited > timeout) { |
| return result; |
| } |
| } |
| } |
| |
| void verifyFinishedSignal(InputPublisher& publisher, uint32_t seq, nsecs_t publishTime) { |
| Result<InputPublisher::ConsumerResponse> result = receiveConsumerResponse(publisher, TIMEOUT); |
| ASSERT_TRUE(result.ok()) << "receiveConsumerResponse returned " << result.error().message(); |
| ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*result)); |
| const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*result); |
| ASSERT_EQ(seq, finish.seq) |
| << "receiveConsumerResponse should have returned the original sequence number"; |
| ASSERT_TRUE(finish.handled) |
| << "receiveConsumerResponse should have set handled to consumer's reply"; |
| ASSERT_GE(finish.consumeTime, publishTime) |
| << "finished signal's consume time should be greater than publish time"; |
| } |
| |
| } // namespace |
| |
| class InputConsumerMessageHandler : public MessageHandler { |
| public: |
| InputConsumerMessageHandler(std::function<void(const Message&)> function) |
| : mFunction(function) {} |
| |
| private: |
| void handleMessage(const Message& message) override { mFunction(message); } |
| |
| std::function<void(const Message&)> mFunction; |
| }; |
| |
| class InputPublisherAndConsumerNoResamplingTest : public testing::Test, |
| public InputConsumerCallbacks { |
| protected: |
| std::unique_ptr<InputChannel> mClientChannel; |
| std::unique_ptr<InputPublisher> mPublisher; |
| std::unique_ptr<InputConsumerNoResampling> mConsumer; |
| |
| std::thread mLooperThread; |
| sp<Looper> mLooper = sp<Looper>::make(/*allowNonCallbacks=*/false); |
| |
| // LOOPER CONTROL |
| // Set to false when you want the looper to exit |
| std::atomic<bool> mExitLooper = false; |
| std::mutex mLock; |
| |
| // Used by test to notify looper that the value of "mLooperMayProceed" has changed |
| std::condition_variable mNotifyLooperMayProceed; |
| bool mLooperMayProceed GUARDED_BY(mLock){true}; |
| // Used by looper to notify the test that it's about to block on "mLooperMayProceed" -> true |
| std::condition_variable mNotifyLooperWaiting; |
| bool mLooperIsBlocked GUARDED_BY(mLock){false}; |
| |
| std::condition_variable mNotifyConsumerDestroyed; |
| bool mConsumerDestroyed GUARDED_BY(mLock){false}; |
| |
| void runLooper() { |
| static constexpr int LOOP_INDEFINITELY = -1; |
| Looper::setForThread(mLooper); |
| // Loop forever -- this thread is dedicated to servicing the looper callbacks. |
| while (!mExitLooper) { |
| mLooper->pollOnce(/*timeoutMillis=*/LOOP_INDEFINITELY); |
| } |
| } |
| |
| void SetUp() override { |
| std::unique_ptr<InputChannel> serverChannel; |
| status_t result = |
| InputChannel::openInputChannelPair("channel name", serverChannel, mClientChannel); |
| ASSERT_EQ(OK, result); |
| |
| mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel)); |
| mMessageHandler = sp<InputConsumerMessageHandler>::make( |
| [this](const Message& message) { handleMessage(message); }); |
| mLooperThread = std::thread([this] { runLooper(); }); |
| sendMessage(LooperMessage::CREATE_CONSUMER); |
| } |
| |
| void publishAndConsumeKeyEvent(); |
| void publishAndConsumeMotionStream(); |
| void publishAndConsumeMotionDown(nsecs_t downTime); |
| void publishAndConsumeSinglePointerMultipleSamples(const size_t nSamples); |
| void publishAndConsumeBatchedMotionMove(nsecs_t downTime); |
| void publishAndConsumeFocusEvent(); |
| void publishAndConsumeCaptureEvent(); |
| void publishAndConsumeDragEvent(); |
| void publishAndConsumeTouchModeEvent(); |
| void publishAndConsumeMotionEvent(int32_t action, nsecs_t downTime, |
| const std::vector<Pointer>& pointers); |
| |
| void TearDown() override { |
| // Destroy the consumer, flushing any of the pending ack's. |
| sendMessage(LooperMessage::DESTROY_CONSUMER); |
| { |
| std::unique_lock lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| mNotifyConsumerDestroyed.wait(lock, [this] { return mConsumerDestroyed; }); |
| } |
| // Stop the looper thread so that we can destroy the object. |
| mExitLooper = true; |
| mLooper->wake(); |
| mLooperThread.join(); |
| } |
| |
| protected: |
| // Interaction with the looper thread |
| enum class LooperMessage : int { |
| CALL_PROBABLY_HAS_INPUT, |
| CREATE_CONSUMER, |
| DESTROY_CONSUMER, |
| CALL_REPORT_TIMELINE, |
| BLOCK_LOOPER, |
| }; |
| void sendMessage(LooperMessage message); |
| struct ReportTimelineArgs { |
| int32_t inputEventId; |
| nsecs_t gpuCompletedTime; |
| nsecs_t presentTime; |
| }; |
| // The input to the function "InputConsumer::reportTimeline". Populated on the test thread and |
| // accessed on the looper thread. |
| BlockingQueue<ReportTimelineArgs> mReportTimelineArgs; |
| // The output of calling "InputConsumer::probablyHasInput()". Populated on the looper thread and |
| // accessed on the test thread. |
| BlockingQueue<bool> mProbablyHasInputResponses; |
| |
| private: |
| sp<MessageHandler> mMessageHandler; |
| void handleMessage(const Message& message); |
| |
| static auto constexpr NO_EVENT_TIMEOUT = 10ms; |
| // The sequence number to use when publishing the next event |
| uint32_t mSeq = 1; |
| |
| BlockingQueue<std::unique_ptr<KeyEvent>> mKeyEvents; |
| BlockingQueue<std::unique_ptr<MotionEvent>> mMotionEvents; |
| BlockingQueue<std::unique_ptr<FocusEvent>> mFocusEvents; |
| BlockingQueue<std::unique_ptr<CaptureEvent>> mCaptureEvents; |
| BlockingQueue<std::unique_ptr<DragEvent>> mDragEvents; |
| BlockingQueue<std::unique_ptr<TouchModeEvent>> mTouchModeEvents; |
| |
| // InputConsumerCallbacks interface |
| void onKeyEvent(std::unique_ptr<KeyEvent> event, uint32_t seq) override { |
| mKeyEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onMotionEvent(std::unique_ptr<MotionEvent> event, uint32_t seq) override { |
| mMotionEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onBatchedInputEventPending(int32_t pendingBatchSource) override { |
| if (!mConsumer->probablyHasInput()) { |
| ADD_FAILURE() << "should deterministically have input because there is a batch"; |
| } |
| mConsumer->consumeBatchedInputEvents(/*frameTime=*/std::nullopt); |
| }; |
| void onFocusEvent(std::unique_ptr<FocusEvent> event, uint32_t seq) override { |
| mFocusEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| }; |
| void onCaptureEvent(std::unique_ptr<CaptureEvent> event, uint32_t seq) override { |
| mCaptureEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| }; |
| void onDragEvent(std::unique_ptr<DragEvent> event, uint32_t seq) override { |
| mDragEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onTouchModeEvent(std::unique_ptr<TouchModeEvent> event, uint32_t seq) override { |
| mTouchModeEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| }; |
| }; |
| |
| void InputPublisherAndConsumerNoResamplingTest::sendMessage(LooperMessage message) { |
| Message msg{ftl::to_underlying(message)}; |
| mLooper->sendMessage(mMessageHandler, msg); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::handleMessage(const Message& message) { |
| switch (static_cast<LooperMessage>(message.what)) { |
| case LooperMessage::CALL_PROBABLY_HAS_INPUT: { |
| mProbablyHasInputResponses.push(mConsumer->probablyHasInput()); |
| break; |
| } |
| case LooperMessage::CREATE_CONSUMER: { |
| mConsumer = |
| std::make_unique<InputConsumerNoResampling>(std::move(mClientChannel), mLooper, |
| *this, /*resampler=*/nullptr); |
| break; |
| } |
| case LooperMessage::DESTROY_CONSUMER: { |
| mConsumer = nullptr; |
| { |
| std::unique_lock lock(mLock); |
| mConsumerDestroyed = true; |
| } |
| mNotifyConsumerDestroyed.notify_all(); |
| break; |
| } |
| case LooperMessage::CALL_REPORT_TIMELINE: { |
| std::optional<ReportTimelineArgs> args = mReportTimelineArgs.pop(); |
| if (!args.has_value()) { |
| ADD_FAILURE() << "Couldn't get the 'reportTimeline' args in time"; |
| return; |
| } |
| mConsumer->reportTimeline(args->inputEventId, args->gpuCompletedTime, |
| args->presentTime); |
| break; |
| } |
| case LooperMessage::BLOCK_LOOPER: { |
| { |
| std::unique_lock lock(mLock); |
| mLooperIsBlocked = true; |
| } |
| mNotifyLooperWaiting.notify_all(); |
| |
| { |
| std::unique_lock lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| mNotifyLooperMayProceed.wait(lock, [this] { return mLooperMayProceed; }); |
| } |
| |
| { |
| std::unique_lock lock(mLock); |
| mLooperIsBlocked = false; |
| } |
| mNotifyLooperWaiting.notify_all(); |
| break; |
| } |
| } |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeKeyEvent() { |
| status_t status; |
| |
| const uint32_t seq = mSeq++; |
| int32_t eventId = InputEvent::nextId(); |
| constexpr int32_t deviceId = 1; |
| constexpr uint32_t source = AINPUT_SOURCE_KEYBOARD; |
| constexpr ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT; |
| constexpr std::array<uint8_t, 32> hmac = {31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, |
| 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, |
| 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; |
| constexpr int32_t action = AKEY_EVENT_ACTION_DOWN; |
| constexpr int32_t flags = AKEY_EVENT_FLAG_FROM_SYSTEM; |
| constexpr int32_t keyCode = AKEYCODE_ENTER; |
| constexpr int32_t scanCode = 13; |
| constexpr int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON; |
| constexpr int32_t repeatCount = 1; |
| constexpr nsecs_t downTime = 3; |
| constexpr nsecs_t eventTime = 4; |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| status = mPublisher->publishKeyEvent(seq, eventId, deviceId, source, displayId, hmac, action, |
| flags, keyCode, scanCode, metaState, repeatCount, downTime, |
| eventTime); |
| ASSERT_EQ(OK, status) << "publisher publishKeyEvent should return OK"; |
| |
| std::optional<std::unique_ptr<KeyEvent>> optKeyEvent = mKeyEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optKeyEvent.has_value()) << "consumer should have returned non-NULL event"; |
| std::unique_ptr<KeyEvent> keyEvent = std::move(*optKeyEvent); |
| |
| sendMessage(LooperMessage::CALL_PROBABLY_HAS_INPUT); |
| std::optional<bool> probablyHasInput = mProbablyHasInputResponses.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(probablyHasInput.has_value()); |
| ASSERT_FALSE(probablyHasInput.value()) << "no events should be waiting after being consumed"; |
| |
| EXPECT_EQ(eventId, keyEvent->getId()); |
| EXPECT_EQ(deviceId, keyEvent->getDeviceId()); |
| EXPECT_EQ(source, keyEvent->getSource()); |
| EXPECT_EQ(displayId, keyEvent->getDisplayId()); |
| EXPECT_EQ(hmac, keyEvent->getHmac()); |
| EXPECT_EQ(action, keyEvent->getAction()); |
| EXPECT_EQ(flags, keyEvent->getFlags()); |
| EXPECT_EQ(keyCode, keyEvent->getKeyCode()); |
| EXPECT_EQ(scanCode, keyEvent->getScanCode()); |
| EXPECT_EQ(metaState, keyEvent->getMetaState()); |
| EXPECT_EQ(repeatCount, keyEvent->getRepeatCount()); |
| EXPECT_EQ(downTime, keyEvent->getDownTime()); |
| EXPECT_EQ(eventTime, keyEvent->getEventTime()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionStream() { |
| const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}}); |
| |
| publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}}); |
| |
| publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}, |
| Pointer{.id = 2, .x = 300, .y = 400}}); |
| |
| // Provide a consistent input stream - cancel the gesture that was started above |
| publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}, |
| Pointer{.id = 2, .x = 300, .y = 400}}); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionDown(nsecs_t downTime) { |
| publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}}); |
| } |
| |
| /* |
| * Decompose a potential multi-sampled MotionEvent into multiple MotionEvents |
| * with a single sample. |
| */ |
| std::vector<MotionEvent> splitBatchedMotionEvent(const MotionEvent& batchedMotionEvent) { |
| std::vector<MotionEvent> singleMotionEvents; |
| const size_t batchSize = batchedMotionEvent.getHistorySize() + 1; |
| for (size_t i = 0; i < batchSize; ++i) { |
| MotionEvent singleMotionEvent; |
| singleMotionEvent |
| .initialize(batchedMotionEvent.getId(), batchedMotionEvent.getDeviceId(), |
| batchedMotionEvent.getSource(), batchedMotionEvent.getDisplayId(), |
| batchedMotionEvent.getHmac(), batchedMotionEvent.getAction(), |
| batchedMotionEvent.getActionButton(), batchedMotionEvent.getFlags(), |
| batchedMotionEvent.getEdgeFlags(), batchedMotionEvent.getMetaState(), |
| batchedMotionEvent.getButtonState(), |
| batchedMotionEvent.getClassification(), |
| batchedMotionEvent.getTransform(), batchedMotionEvent.getXPrecision(), |
| batchedMotionEvent.getYPrecision(), |
| batchedMotionEvent.getRawXCursorPosition(), |
| batchedMotionEvent.getRawYCursorPosition(), |
| batchedMotionEvent.getRawTransform(), batchedMotionEvent.getDownTime(), |
| batchedMotionEvent.getHistoricalEventTime(/*historicalIndex=*/i), |
| batchedMotionEvent.getPointerCount(), |
| batchedMotionEvent.getPointerProperties(), |
| (batchedMotionEvent.getSamplePointerCoords() + i)); |
| singleMotionEvents.push_back(singleMotionEvent); |
| } |
| return singleMotionEvents; |
| } |
| |
| /* |
| * Simulates a single pointer touching the screen and leaving it there for a period of time. |
| * Publishes a DOWN event and consumes it right away. Then, publishes a sequence of MOVE |
| * samples for the same pointer, and waits until it has been consumed. Splits batched MotionEvents |
| * into individual samples. Checks the consumed MotionEvents against the published ones. |
| * This test is non-deterministic because it depends on the timing of arrival of events to the |
| * socket. |
| * |
| * @param nSamples The number of MOVE samples to publish before attempting consumption. |
| */ |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeSinglePointerMultipleSamples( |
| const size_t nSamples) { |
| const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| const Pointer pointer(0, 20, 30); |
| |
| const PublishMotionArgs argsDown(AMOTION_EVENT_ACTION_DOWN, downTime, {pointer}, mSeq); |
| const nsecs_t publishTimeOfDown = systemTime(SYSTEM_TIME_MONOTONIC); |
| publishMotionEvent(*mPublisher, argsDown); |
| |
| // Consume the DOWN event. |
| ASSERT_TRUE(mMotionEvents.popWithTimeout(TIMEOUT).has_value()); |
| |
| verifyFinishedSignal(*mPublisher, mSeq, publishTimeOfDown); |
| |
| std::vector<nsecs_t> publishTimes; |
| std::vector<PublishMotionArgs> argsMoves; |
| std::queue<uint32_t> publishedSequenceNumbers; |
| |
| // Block Looper to increase the chance of batching events |
| { |
| std::scoped_lock l(mLock); |
| mLooperMayProceed = false; |
| } |
| sendMessage(LooperMessage::BLOCK_LOOPER); |
| { |
| std::unique_lock l(mLock); |
| mNotifyLooperWaiting.wait(l, [this] { return mLooperIsBlocked; }); |
| } |
| |
| uint32_t firstSampleId; |
| for (size_t i = 0; i < nSamples; ++i) { |
| publishedSequenceNumbers.push(++mSeq); |
| PublishMotionArgs argsMove(AMOTION_EVENT_ACTION_MOVE, downTime, {pointer}, mSeq); |
| // A batched MotionEvent only has a single event id, currently determined when the |
| // MotionEvent is initialized. Therefore, to pass the eventId comparisons inside |
| // verifyArgsEqualToEvent, we need to override the event id of the published args to match |
| // the event id of the first sample inside the MotionEvent. |
| if (i == 0) { |
| firstSampleId = argsMove.eventId; |
| } |
| argsMove.eventId = firstSampleId; |
| publishTimes.push_back(systemTime(SYSTEM_TIME_MONOTONIC)); |
| argsMoves.push_back(argsMove); |
| publishMotionEvent(*mPublisher, argsMove); |
| } |
| |
| std::vector<MotionEvent> singleSampledMotionEvents; |
| |
| // Unblock Looper |
| { |
| std::scoped_lock l(mLock); |
| mLooperMayProceed = true; |
| } |
| mNotifyLooperMayProceed.notify_all(); |
| |
| // We have no control over the socket behavior, so the consumer can receive |
| // the motion as a batched event, or as a sequence of multiple single-sample MotionEvents (or a |
| // mix of those) |
| while (singleSampledMotionEvents.size() != nSamples) { |
| const std::optional<std::unique_ptr<MotionEvent>> batchedMotionEvent = |
| mMotionEvents.popWithTimeout(TIMEOUT); |
| // The events received by these calls are never null |
| std::vector<MotionEvent> splitMotionEvents = splitBatchedMotionEvent(**batchedMotionEvent); |
| singleSampledMotionEvents.insert(singleSampledMotionEvents.end(), splitMotionEvents.begin(), |
| splitMotionEvents.end()); |
| } |
| |
| // Consumer can choose to finish events in any order. For simplicity, |
| // we verify the events in sequence (since that is how the test is implemented). |
| for (size_t i = 0; i < nSamples; ++i) { |
| verifyArgsEqualToEvent(argsMoves[i], singleSampledMotionEvents[i]); |
| verifyFinishedSignal(*mPublisher, publishedSequenceNumbers.front(), publishTimes[i]); |
| publishedSequenceNumbers.pop(); |
| } |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeBatchedMotionMove( |
| nsecs_t downTime) { |
| uint32_t seq = mSeq++; |
| const std::vector<Pointer> pointers = {Pointer{.id = 0, .x = 20, .y = 30}}; |
| PublishMotionArgs args(AMOTION_EVENT_ACTION_MOVE, downTime, pointers, seq); |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| // Block the looper thread, preventing it from being able to service any of the fd callbacks. |
| |
| { |
| std::scoped_lock lock(mLock); |
| mLooperMayProceed = false; |
| } |
| sendMessage(LooperMessage::BLOCK_LOOPER); |
| { |
| std::unique_lock lock(mLock); |
| mNotifyLooperWaiting.wait(lock, [this] { return mLooperIsBlocked; }); |
| } |
| |
| publishMotionEvent(*mPublisher, args); |
| |
| // Ensure no event arrives because the UI thread is blocked |
| std::optional<std::unique_ptr<MotionEvent>> noEvent = |
| mMotionEvents.popWithTimeout(NO_EVENT_TIMEOUT); |
| ASSERT_FALSE(noEvent.has_value()) << "Got unexpected event: " << *noEvent; |
| |
| Result<InputPublisher::ConsumerResponse> result = mPublisher->receiveConsumerResponse(); |
| ASSERT_FALSE(result.ok()); |
| ASSERT_EQ(WOULD_BLOCK, result.error().code()); |
| |
| // We shouldn't be calling mConsumer on the UI thread, but in this situation, the looper |
| // thread is locked, so this should be safe to do. |
| ASSERT_TRUE(mConsumer->probablyHasInput()) |
| << "should deterministically have input because there is a batch"; |
| |
| // Now, unblock the looper thread, so that the event can arrive. |
| { |
| std::scoped_lock lock(mLock); |
| mLooperMayProceed = true; |
| } |
| mNotifyLooperMayProceed.notify_all(); |
| |
| std::optional<std::unique_ptr<MotionEvent>> optMotion = mMotionEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optMotion.has_value()); |
| std::unique_ptr<MotionEvent> motion = std::move(*optMotion); |
| ASSERT_EQ(ACTION_MOVE, motion->getAction()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeMotionEvent( |
| int32_t action, nsecs_t downTime, const std::vector<Pointer>& pointers) { |
| uint32_t seq = mSeq++; |
| PublishMotionArgs args(action, downTime, pointers, seq); |
| nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| publishMotionEvent(*mPublisher, args); |
| |
| std::optional<std::unique_ptr<MotionEvent>> optMotion = mMotionEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optMotion.has_value()); |
| std::unique_ptr<MotionEvent> event = std::move(*optMotion); |
| |
| verifyArgsEqualToEvent(args, *event); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeFocusEvent() { |
| status_t status; |
| |
| constexpr uint32_t seq = 15; |
| int32_t eventId = InputEvent::nextId(); |
| constexpr bool hasFocus = true; |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| status = mPublisher->publishFocusEvent(seq, eventId, hasFocus); |
| ASSERT_EQ(OK, status) << "publisher publishFocusEvent should return OK"; |
| |
| std::optional<std::unique_ptr<FocusEvent>> optFocusEvent = mFocusEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optFocusEvent.has_value()) << "consumer should have returned non-NULL event"; |
| std::unique_ptr<FocusEvent> focusEvent = std::move(*optFocusEvent); |
| EXPECT_EQ(eventId, focusEvent->getId()); |
| EXPECT_EQ(hasFocus, focusEvent->getHasFocus()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeCaptureEvent() { |
| status_t status; |
| |
| constexpr uint32_t seq = 42; |
| int32_t eventId = InputEvent::nextId(); |
| constexpr bool captureEnabled = true; |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| status = mPublisher->publishCaptureEvent(seq, eventId, captureEnabled); |
| ASSERT_EQ(OK, status) << "publisher publishCaptureEvent should return OK"; |
| |
| std::optional<std::unique_ptr<CaptureEvent>> optEvent = mCaptureEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optEvent.has_value()) << "consumer should have returned non-NULL event"; |
| std::unique_ptr<CaptureEvent> event = std::move(*optEvent); |
| |
| const CaptureEvent& captureEvent = *event; |
| EXPECT_EQ(eventId, captureEvent.getId()); |
| EXPECT_EQ(captureEnabled, captureEvent.getPointerCaptureEnabled()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeDragEvent() { |
| status_t status; |
| |
| constexpr uint32_t seq = 15; |
| int32_t eventId = InputEvent::nextId(); |
| constexpr bool isExiting = false; |
| constexpr float x = 10; |
| constexpr float y = 15; |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| status = mPublisher->publishDragEvent(seq, eventId, x, y, isExiting); |
| ASSERT_EQ(OK, status) << "publisher publishDragEvent should return OK"; |
| |
| std::optional<std::unique_ptr<DragEvent>> optEvent = mDragEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optEvent.has_value()) << "consumer should have returned non-NULL event"; |
| std::unique_ptr<DragEvent> event = std::move(*optEvent); |
| |
| const DragEvent& dragEvent = *event; |
| EXPECT_EQ(eventId, dragEvent.getId()); |
| EXPECT_EQ(isExiting, dragEvent.isExiting()); |
| EXPECT_EQ(x, dragEvent.getX()); |
| EXPECT_EQ(y, dragEvent.getY()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| void InputPublisherAndConsumerNoResamplingTest::publishAndConsumeTouchModeEvent() { |
| status_t status; |
| |
| constexpr uint32_t seq = 15; |
| int32_t eventId = InputEvent::nextId(); |
| constexpr bool touchModeEnabled = true; |
| const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| status = mPublisher->publishTouchModeEvent(seq, eventId, touchModeEnabled); |
| ASSERT_EQ(OK, status) << "publisher publishTouchModeEvent should return OK"; |
| |
| std::optional<std::unique_ptr<TouchModeEvent>> optEvent = |
| mTouchModeEvents.popWithTimeout(TIMEOUT); |
| ASSERT_TRUE(optEvent.has_value()); |
| std::unique_ptr<TouchModeEvent> event = std::move(*optEvent); |
| |
| const TouchModeEvent& touchModeEvent = *event; |
| EXPECT_EQ(eventId, touchModeEvent.getId()); |
| EXPECT_EQ(touchModeEnabled, touchModeEvent.isInTouchMode()); |
| |
| verifyFinishedSignal(*mPublisher, seq, publishTime); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, SendTimeline) { |
| const int32_t inputEventId = 20; |
| const nsecs_t gpuCompletedTime = 30; |
| const nsecs_t presentTime = 40; |
| |
| mReportTimelineArgs.emplace(inputEventId, gpuCompletedTime, presentTime); |
| sendMessage(LooperMessage::CALL_REPORT_TIMELINE); |
| |
| Result<InputPublisher::ConsumerResponse> result = receiveConsumerResponse(*mPublisher, TIMEOUT); |
| ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; |
| ASSERT_TRUE(std::holds_alternative<InputPublisher::Timeline>(*result)); |
| const InputPublisher::Timeline& timeline = std::get<InputPublisher::Timeline>(*result); |
| ASSERT_EQ(inputEventId, timeline.inputEventId); |
| ASSERT_EQ(gpuCompletedTime, timeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME]); |
| ASSERT_EQ(presentTime, timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME]); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishKeyEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMotionEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionStream()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMotionMoveEvent_EndToEnd) { |
| // Publish a DOWN event before MOVE to pass the InputVerifier checks. |
| const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionDown(downTime)); |
| |
| // Publish the MOVE event and check expectations. |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeBatchedMotionMove(downTime)); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishFocusEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishCaptureEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishDragEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishTouchModeEvent_EndToEnd) { |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, |
| PublishMotionEvent_WhenSequenceNumberIsZero_ReturnsError) { |
| status_t status; |
| const size_t pointerCount = 1; |
| PointerProperties pointerProperties[pointerCount]; |
| PointerCoords pointerCoords[pointerCount]; |
| for (size_t i = 0; i < pointerCount; i++) { |
| pointerProperties[i].clear(); |
| pointerCoords[i].clear(); |
| } |
| |
| ui::Transform identityTransform; |
| status = |
| mPublisher->publishMotionEvent(0, InputEvent::nextId(), 0, 0, |
| ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, |
| 0, 0, MotionClassification::NONE, identityTransform, 0, |
| 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, |
| AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, |
| 0, 0, pointerCount, pointerProperties, pointerCoords); |
| ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, |
| PublishMotionEvent_WhenPointerCountLessThan1_ReturnsError) { |
| status_t status; |
| const size_t pointerCount = 0; |
| PointerProperties pointerProperties[pointerCount]; |
| PointerCoords pointerCoords[pointerCount]; |
| |
| ui::Transform identityTransform; |
| status = |
| mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, |
| ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, |
| 0, 0, MotionClassification::NONE, identityTransform, 0, |
| 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, |
| AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, |
| 0, 0, pointerCount, pointerProperties, pointerCoords); |
| ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, |
| PublishMotionEvent_WhenPointerCountGreaterThanMax_ReturnsError) { |
| status_t status; |
| const size_t pointerCount = MAX_POINTERS + 1; |
| PointerProperties pointerProperties[pointerCount]; |
| PointerCoords pointerCoords[pointerCount]; |
| for (size_t i = 0; i < pointerCount; i++) { |
| pointerProperties[i].clear(); |
| pointerCoords[i].clear(); |
| } |
| |
| ui::Transform identityTransform; |
| status = |
| mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, |
| ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, |
| 0, 0, MotionClassification::NONE, identityTransform, 0, |
| 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, |
| AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, |
| 0, 0, pointerCount, pointerProperties, pointerCoords); |
| ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishMultipleEvents_EndToEnd) { |
| const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}}); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); |
| publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}}); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent()); |
| publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}, |
| Pointer{.id = 2, .x = 200, .y = 300}}); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent()); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent()); |
| // Provide a consistent input stream - cancel the gesture that was started above |
| publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime, |
| {Pointer{.id = 0, .x = 20, .y = 30}, |
| Pointer{.id = 1, .x = 200, .y = 300}, |
| Pointer{.id = 2, .x = 200, .y = 300}}); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); |
| ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent()); |
| } |
| |
| TEST_F(InputPublisherAndConsumerNoResamplingTest, PublishAndConsumeSinglePointer) { |
| publishAndConsumeSinglePointerMultipleSamples(3); |
| } |
| |
| } // namespace android |