| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <mutex> |
| #include <array> |
| #include <sstream> |
| #include <algorithm> |
| |
| #include <gui/Surface.h> |
| #include <gui/BufferItemConsumer.h> |
| |
| #include <ui/GraphicBuffer.h> |
| #include <android/hardware/graphics/common/1.0/types.h> |
| #include <math/vec4.h> |
| |
| #include <GLES3/gl3.h> |
| #include <SkImageEncoder.h> |
| #include <SkStream.h> |
| #include "Hwc2TestBuffer.h" |
| #include "Hwc2TestLayers.h" |
| |
| using namespace android; |
| using android::hardware::graphics::common::V1_0::BufferUsage; |
| |
| /* Returns a fence from egl */ |
| typedef void (*FenceCallback)(int32_t fence, void* callbackArgs); |
| |
| /* Returns fence to fence generator */ |
| static void setFence(int32_t fence, void* fenceGenerator); |
| |
| |
| /* Used to receive the surfaces and fences from egl. The egl buffers are thrown |
| * away. The fences are sent to the requester via a callback */ |
| class Hwc2TestSurfaceManager { |
| public: |
| /* Listens for a new frame, detaches the buffer and returns the fence |
| * through saved callback. */ |
| class BufferListener : public ConsumerBase::FrameAvailableListener { |
| public: |
| BufferListener(sp<IGraphicBufferConsumer> consumer, |
| FenceCallback callback, void* callbackArgs) |
| : mConsumer(consumer), |
| mCallback(callback), |
| mCallbackArgs(callbackArgs) { } |
| |
| void onFrameAvailable(const BufferItem& /*item*/) |
| { |
| BufferItem item; |
| |
| if (mConsumer->acquireBuffer(&item, 0)) |
| return; |
| if (mConsumer->detachBuffer(item.mSlot)) |
| return; |
| |
| mCallback(item.mFence->dup(), mCallbackArgs); |
| } |
| |
| private: |
| sp<IGraphicBufferConsumer> mConsumer; |
| FenceCallback mCallback; |
| void* mCallbackArgs; |
| }; |
| |
| /* Creates a buffer listener that waits on a new frame from the buffer |
| * queue. */ |
| void initialize(const Area& bufferArea, android_pixel_format_t format, |
| FenceCallback callback, void* callbackArgs) |
| { |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| consumer->setDefaultBufferSize(bufferArea.width, bufferArea.height); |
| consumer->setDefaultBufferFormat(format); |
| |
| mBufferItemConsumer = new BufferItemConsumer(consumer, 0); |
| |
| mListener = new BufferListener(consumer, callback, callbackArgs); |
| mBufferItemConsumer->setFrameAvailableListener(mListener); |
| |
| mSurface = new Surface(producer, true); |
| } |
| |
| /* Used by Egl manager. The surface is never displayed. */ |
| sp<Surface> getSurface() const |
| { |
| return mSurface; |
| } |
| |
| private: |
| sp<BufferItemConsumer> mBufferItemConsumer; |
| sp<BufferListener> mListener; |
| /* Used by Egl manager. The surface is never displayed */ |
| sp<Surface> mSurface; |
| }; |
| |
| |
| /* Used to generate valid fences. It is not possible to create a dummy sync |
| * fence for testing. Egl can generate buffers along with a valid fence. |
| * The buffer cannot be guaranteed to be the same format across all devices so |
| * a CPU filled buffer is used instead. The Egl fence is used along with the |
| * CPU filled buffer. */ |
| class Hwc2TestEglManager { |
| public: |
| Hwc2TestEglManager() |
| : mEglDisplay(EGL_NO_DISPLAY), |
| mEglSurface(EGL_NO_SURFACE), |
| mEglContext(EGL_NO_CONTEXT) { } |
| |
| ~Hwc2TestEglManager() |
| { |
| cleanup(); |
| } |
| |
| int initialize(sp<Surface> surface) |
| { |
| mSurface = surface; |
| |
| mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| if (mEglDisplay == EGL_NO_DISPLAY) return false; |
| |
| EGLint major; |
| EGLint minor; |
| if (!eglInitialize(mEglDisplay, &major, &minor)) { |
| ALOGW("Could not initialize EGL"); |
| return false; |
| } |
| |
| /* We're going to use a 1x1 pbuffer surface later on |
| * The configuration distance doesn't really matter for what we're |
| * trying to do */ |
| EGLint configAttrs[] = { |
| EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, |
| EGL_RED_SIZE, 8, |
| EGL_GREEN_SIZE, 8, |
| EGL_BLUE_SIZE, 8, |
| EGL_ALPHA_SIZE, 0, |
| EGL_DEPTH_SIZE, 24, |
| EGL_STENCIL_SIZE, 0, |
| EGL_NONE |
| }; |
| |
| EGLConfig configs[1]; |
| EGLint configCnt; |
| if (!eglChooseConfig(mEglDisplay, configAttrs, configs, 1, |
| &configCnt)) { |
| ALOGW("Could not select EGL configuration"); |
| eglReleaseThread(); |
| eglTerminate(mEglDisplay); |
| return false; |
| } |
| |
| if (configCnt <= 0) { |
| ALOGW("Could not find EGL configuration"); |
| eglReleaseThread(); |
| eglTerminate(mEglDisplay); |
| return false; |
| } |
| |
| /* These objects are initialized below but the default "null" values are |
| * used to cleanup properly at any point in the initialization sequence */ |
| EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE }; |
| mEglContext = eglCreateContext(mEglDisplay, configs[0], EGL_NO_CONTEXT, |
| attrs); |
| if (mEglContext == EGL_NO_CONTEXT) { |
| ALOGW("Could not create EGL context"); |
| cleanup(); |
| return false; |
| } |
| |
| EGLint surfaceAttrs[] = { EGL_NONE }; |
| mEglSurface = eglCreateWindowSurface(mEglDisplay, configs[0], |
| mSurface.get(), surfaceAttrs); |
| if (mEglSurface == EGL_NO_SURFACE) { |
| ALOGW("Could not create EGL surface"); |
| cleanup(); |
| return false; |
| } |
| |
| if (!eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)) { |
| ALOGW("Could not change current EGL context"); |
| cleanup(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void makeCurrent() const |
| { |
| eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext); |
| } |
| |
| void present() const |
| { |
| eglSwapBuffers(mEglDisplay, mEglSurface); |
| } |
| |
| private: |
| void cleanup() |
| { |
| if (mEglDisplay == EGL_NO_DISPLAY) |
| return; |
| if (mEglSurface != EGL_NO_SURFACE) |
| eglDestroySurface(mEglDisplay, mEglSurface); |
| if (mEglContext != EGL_NO_CONTEXT) |
| eglDestroyContext(mEglDisplay, mEglContext); |
| |
| eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, |
| EGL_NO_CONTEXT); |
| eglReleaseThread(); |
| eglTerminate(mEglDisplay); |
| } |
| |
| sp<Surface> mSurface; |
| EGLDisplay mEglDisplay; |
| EGLSurface mEglSurface; |
| EGLContext mEglContext; |
| }; |
| |
| |
| static const std::array<vec2, 4> triangles = {{ |
| { 1.0f, 1.0f }, |
| { -1.0f, 1.0f }, |
| { 1.0f, -1.0f }, |
| { -1.0f, -1.0f }, |
| }}; |
| |
| class Hwc2TestFenceGenerator { |
| public: |
| |
| Hwc2TestFenceGenerator() |
| { |
| mSurfaceManager.initialize({1, 1}, HAL_PIXEL_FORMAT_RGBA_8888, |
| setFence, this); |
| |
| if (!mEglManager.initialize(mSurfaceManager.getSurface())) |
| return; |
| |
| mEglManager.makeCurrent(); |
| |
| glClearColor(0.0, 0.0, 0.0, 1.0); |
| glEnableVertexAttribArray(0); |
| } |
| |
| ~Hwc2TestFenceGenerator() |
| { |
| if (mFence >= 0) |
| close(mFence); |
| mFence = -1; |
| |
| mEglManager.makeCurrent(); |
| } |
| |
| /* It is not possible to simply generate a fence. The easiest way is to |
| * generate a buffer using egl and use the associated fence. The buffer |
| * cannot be guaranteed to be a certain format across all devices using this |
| * method. Instead the buffer is generated using the CPU */ |
| int32_t get() |
| { |
| if (mFence >= 0) { |
| return dup(mFence); |
| } |
| |
| std::unique_lock<std::mutex> lock(mMutex); |
| |
| /* If the pending is still set to false and times out, we cannot recover. |
| * Set an error and return */ |
| while (mPending != false) { |
| if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) |
| return -ETIME; |
| } |
| |
| /* Generate a fence. The fence will be returned through the setFence |
| * callback */ |
| mEglManager.makeCurrent(); |
| |
| glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangles.data()); |
| glClear(GL_COLOR_BUFFER_BIT); |
| |
| mEglManager.present(); |
| |
| /* Wait for the setFence callback */ |
| while (mPending != true) { |
| if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) |
| return -ETIME; |
| } |
| |
| mPending = false; |
| |
| return dup(mFence); |
| } |
| |
| /* Callback that sets the fence */ |
| void set(int32_t fence) |
| { |
| mFence = fence; |
| mPending = true; |
| |
| mCv.notify_all(); |
| } |
| |
| private: |
| |
| Hwc2TestSurfaceManager mSurfaceManager; |
| Hwc2TestEglManager mEglManager; |
| |
| std::mutex mMutex; |
| std::condition_variable mCv; |
| |
| int32_t mFence = -1; |
| bool mPending = false; |
| }; |
| |
| |
| static void setFence(int32_t fence, void* fenceGenerator) |
| { |
| static_cast<Hwc2TestFenceGenerator*>(fenceGenerator)->set(fence); |
| } |
| |
| |
| /* Sets the pixel of a buffer given the location, format, stride and color. |
| * Currently only supports RGBA_8888 */ |
| static void setColor(int32_t x, int32_t y, |
| android_pixel_format_t format, uint32_t stride, uint8_t* img, uint8_t r, |
| uint8_t g, uint8_t b, uint8_t a) |
| { |
| switch (format) { |
| case HAL_PIXEL_FORMAT_RGBA_8888: |
| img[(y * stride + x) * 4 + 0] = r; |
| img[(y * stride + x) * 4 + 1] = g; |
| img[(y * stride + x) * 4 + 2] = b; |
| img[(y * stride + x) * 4 + 3] = a; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| Hwc2TestBuffer::Hwc2TestBuffer() |
| : mFenceGenerator(new Hwc2TestFenceGenerator()) { } |
| |
| Hwc2TestBuffer::~Hwc2TestBuffer() = default; |
| |
| /* When the buffer changes sizes, save the new size and invalidate the current |
| * buffer */ |
| void Hwc2TestBuffer::updateBufferArea(const Area& bufferArea) |
| { |
| if (mBufferArea.width == bufferArea.width |
| && mBufferArea.height == bufferArea.height) |
| return; |
| |
| mBufferArea.width = bufferArea.width; |
| mBufferArea.height = bufferArea.height; |
| |
| mValidBuffer = false; |
| } |
| |
| /* Returns a valid buffer handle and fence. The handle is filled using the CPU |
| * to ensure the correct format across all devices. The fence is created using |
| * egl. */ |
| int Hwc2TestBuffer::get(buffer_handle_t* outHandle, int32_t* outFence) |
| { |
| if (mBufferArea.width == -1 || mBufferArea.height == -1) |
| return -EINVAL; |
| |
| /* If the current buffer is valid, the previous buffer can be reused. |
| * Otherwise, create new buffer */ |
| if (!mValidBuffer) { |
| int ret = generateBuffer(); |
| if (ret) |
| return ret; |
| } |
| |
| *outFence = mFenceGenerator->get(); |
| *outHandle = mHandle; |
| |
| mValidBuffer = true; |
| |
| return 0; |
| } |
| |
| /* CPU fills a buffer to guarantee the correct buffer format across all |
| * devices */ |
| int Hwc2TestBuffer::generateBuffer() |
| { |
| /* Create new graphic buffer with correct dimensions */ |
| mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height, |
| mFormat, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | |
| BufferUsage::COMPOSER_OVERLAY, "hwc2_test_buffer"); |
| |
| int ret = mGraphicBuffer->initCheck(); |
| if (ret) { |
| return ret; |
| } |
| if (!mGraphicBuffer->handle) { |
| return -EINVAL; |
| } |
| |
| /* Locks the buffer for writing */ |
| uint8_t* img; |
| mGraphicBuffer->lock(static_cast<uint32_t>(BufferUsage::CPU_WRITE_OFTEN), |
| (void**)(&img)); |
| |
| uint32_t stride = mGraphicBuffer->getStride(); |
| |
| /* Iterate from the top row of the buffer to the bottom row */ |
| for (int32_t y = 0; y < mBufferArea.height; y++) { |
| |
| /* Will be used as R, G and B values for pixel colors */ |
| uint8_t max = 255; |
| uint8_t min = 0; |
| |
| /* Divide the rows into 3 sections. The first section will contain |
| * the lighest colors. The last section will contain the darkest |
| * colors. */ |
| if (y < mBufferArea.height * 1.0 / 3.0) { |
| min = 255 / 2; |
| } else if (y >= mBufferArea.height * 2.0 / 3.0) { |
| max = 255 / 2; |
| } |
| |
| /* Divide the columns into 3 sections. The first section is red, |
| * the second is green and the third is blue */ |
| int32_t x = 0; |
| for (; x < mBufferArea.width / 3; x++) { |
| setColor(x, y, mFormat, stride, img, max, min, min, 255); |
| } |
| |
| for (; x < mBufferArea.width * 2 / 3; x++) { |
| setColor(x, y, mFormat, stride, img, min, max, min, 255); |
| } |
| |
| for (; x < mBufferArea.width; x++) { |
| setColor(x, y, mFormat, stride, img, min, min, max, 255); |
| } |
| } |
| |
| /* Unlock the buffer for reading */ |
| mGraphicBuffer->unlock(); |
| |
| mHandle = mGraphicBuffer->handle; |
| |
| return 0; |
| } |
| |
| |
| Hwc2TestClientTargetBuffer::Hwc2TestClientTargetBuffer() |
| : mFenceGenerator(new Hwc2TestFenceGenerator()) { } |
| |
| Hwc2TestClientTargetBuffer::~Hwc2TestClientTargetBuffer() { } |
| |
| /* Generates a buffer from layersToDraw. |
| * Takes into account the individual layer properties such as |
| * transform, blend mode, source crop, etc. */ |
| static void compositeBufferFromLayers( |
| const android::sp<android::GraphicBuffer>& graphicBuffer, |
| android_pixel_format_t format, const Area& bufferArea, |
| const Hwc2TestLayers* testLayers, |
| const std::set<hwc2_layer_t>* layersToDraw, |
| const std::set<hwc2_layer_t>* clearLayers) |
| { |
| /* Locks the buffer for writing */ |
| uint8_t* img; |
| graphicBuffer->lock(static_cast<uint32_t>(BufferUsage::CPU_WRITE_OFTEN), |
| (void**)(&img)); |
| |
| uint32_t stride = graphicBuffer->getStride(); |
| |
| float bWDiv3 = bufferArea.width / 3; |
| float bW2Div3 = bufferArea.width * 2 / 3; |
| float bHDiv3 = bufferArea.height / 3; |
| float bH2Div3 = bufferArea.height * 2 / 3; |
| |
| /* Cycle through every pixel in the buffer and determine what color it |
| * should be. */ |
| for (int32_t y = 0; y < bufferArea.height; y++) { |
| for (int32_t x = 0; x < bufferArea.width; x++) { |
| |
| uint8_t r = 0, g = 0, b = 0; |
| float a = 0.0f; |
| |
| /* Cycle through each layer from back to front and |
| * update the pixel color. */ |
| for (auto layer = layersToDraw->rbegin(); |
| layer != layersToDraw->rend(); ++layer) { |
| |
| const hwc_rect_t df = testLayers->getDisplayFrame(*layer); |
| |
| float dfL = df.left; |
| float dfT = df.top; |
| float dfR = df.right; |
| float dfB = df.bottom; |
| |
| /* If the pixel location falls outside of the layer display |
| * frame, skip the layer. */ |
| if (x < dfL || x >= dfR || y < dfT || y >= dfB) |
| continue; |
| |
| /* If the device has requested the layer be clear, clear |
| * the pixel and continue. */ |
| if (clearLayers->count(*layer) != 0) { |
| r = 0; |
| g = 0; |
| b = 0; |
| a = 0.0f; |
| continue; |
| } |
| |
| float planeAlpha = testLayers->getPlaneAlpha(*layer); |
| |
| /* If the layer is a solid color, fill the color and |
| * continue. */ |
| if (testLayers->getComposition(*layer) |
| == HWC2_COMPOSITION_SOLID_COLOR) { |
| const auto color = testLayers->getColor(*layer); |
| r = color.r; |
| g = color.g; |
| b = color.b; |
| a = color.a * planeAlpha; |
| continue; |
| } |
| |
| float xPos = x; |
| float yPos = y; |
| |
| hwc_transform_t transform = testLayers->getTransform(*layer); |
| |
| float dfW = dfR - dfL; |
| float dfH = dfB - dfT; |
| |
| /* If a layer has a transform, find which location on the |
| * layer will end up in the current pixel location. We |
| * can calculate the color of the current pixel using that |
| * location. */ |
| if (transform > 0) { |
| /* Change origin to be the center of the layer. */ |
| xPos = xPos - dfL - dfW / 2.0; |
| yPos = yPos - dfT - dfH / 2.0; |
| |
| /* Flip Horizontal by reflecting across the y axis. */ |
| if (transform & HWC_TRANSFORM_FLIP_H) |
| xPos = -xPos; |
| |
| /* Flip vertical by reflecting across the x axis. */ |
| if (transform & HWC_TRANSFORM_FLIP_V) |
| yPos = -yPos; |
| |
| /* Rotate 90 by using a basic linear algebra rotation |
| * and scaling the result so the display frame remains |
| * the same. For example, a buffer of size 100x50 should |
| * rotate 90 degress but remain the same dimension |
| * (100x50) at the end of the transformation. */ |
| if (transform & HWC_TRANSFORM_ROT_90) { |
| float tmp = xPos; |
| xPos = yPos * dfW / dfH; |
| yPos = -tmp * dfH / dfW; |
| } |
| |
| /* Change origin back to the top left corner of the |
| * layer. */ |
| xPos = xPos + dfL + dfW / 2.0; |
| yPos = yPos + dfT + dfH / 2.0; |
| } |
| |
| hwc_frect_t sc = testLayers->getSourceCrop(*layer); |
| float scL = sc.left, scT = sc.top; |
| |
| float dfWDivScW = dfW / (sc.right - scL); |
| float dfHDivScH = dfH / (sc.bottom - scT); |
| |
| float max = 255, min = 0; |
| |
| /* Choose the pixel color. Similar to generateBuffer, |
| * each layer will be divided into 3x3 colors. Because |
| * both the source crop and display frame must be taken into |
| * account, the formulas are more complicated. |
| * |
| * If the source crop and display frame were not taken into |
| * account, we would simply divide the buffer into three |
| * sections by height. Each section would get one color. |
| * For example the formula for the first section would be: |
| * |
| * if (yPos < bufferArea.height / 3) |
| * //Select first section color |
| * |
| * However the pixel color is chosen based on the source |
| * crop and displayed based on the display frame. |
| * |
| * If the display frame top was 0 and the source crop height |
| * and display frame height were the same. The only factor |
| * would be the source crop top. To calculate the new |
| * section boundary, the section boundary would be moved up |
| * by the height of the source crop top. The formula would |
| * be: |
| * if (yPos < (bufferArea.height / 3 - sourceCrop.top) |
| * //Select first section color |
| * |
| * If the display frame top could also vary but source crop |
| * and display frame heights were the same, the formula |
| * would be: |
| * if (yPos < (bufferArea.height / 3 - sourceCrop.top |
| * + displayFrameTop) |
| * //Select first section color |
| * |
| * If the heights were not the same, the conversion between |
| * the source crop and display frame dimensions must be |
| * taken into account. The formula would be: |
| * if (yPos < ((bufferArea.height / 3) - sourceCrop.top) |
| * * displayFrameHeight / sourceCropHeight |
| * + displayFrameTop) |
| * //Select first section color |
| */ |
| if (yPos < ((bHDiv3) - scT) * dfHDivScH + dfT) { |
| min = 255 / 2; |
| } else if (yPos >= ((bH2Div3) - scT) * dfHDivScH + dfT) { |
| max = 255 / 2; |
| } |
| |
| uint8_t rCur = min, gCur = min, bCur = min; |
| float aCur = 1.0f; |
| |
| /* This further divides the color sections from 3 to 3x3. |
| * The math behind it follows the same logic as the previous |
| * comment */ |
| if (xPos < ((bWDiv3) - scL) * (dfWDivScW) + dfL) { |
| rCur = max; |
| } else if (xPos < ((bW2Div3) - scL) * (dfWDivScW) + dfL) { |
| gCur = max; |
| } else { |
| bCur = max; |
| } |
| |
| |
| /* Blend the pixel color with the previous layers' pixel |
| * colors using the plane alpha and blend mode. The final |
| * pixel color is chosen using the plane alpha and blend |
| * mode formulas found in hwcomposer2.h */ |
| hwc2_blend_mode_t blendMode = testLayers->getBlendMode(*layer); |
| |
| if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { |
| rCur *= planeAlpha; |
| gCur *= planeAlpha; |
| bCur *= planeAlpha; |
| } |
| |
| aCur *= planeAlpha; |
| |
| if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { |
| r = rCur + r * (1.0 - aCur); |
| g = gCur + g * (1.0 - aCur); |
| b = bCur + b * (1.0 - aCur); |
| a = aCur + a * (1.0 - aCur); |
| } else if (blendMode == HWC2_BLEND_MODE_COVERAGE) { |
| r = rCur * aCur + r * (1.0 - aCur); |
| g = gCur * aCur + g * (1.0 - aCur); |
| b = bCur * aCur + b * (1.0 - aCur); |
| a = aCur * aCur + a * (1.0 - aCur); |
| } else { |
| r = rCur; |
| g = gCur; |
| b = bCur; |
| a = aCur; |
| } |
| } |
| |
| /* Set the pixel color */ |
| setColor(x, y, format, stride, img, r, g, b, a * 255); |
| } |
| } |
| |
| graphicBuffer->unlock(); |
| } |
| |
| /* Generates a client target buffer using the layers assigned for client |
| * composition. Takes into account the individual layer properties such as |
| * transform, blend mode, source crop, etc. */ |
| int Hwc2TestClientTargetBuffer::get(buffer_handle_t* outHandle, |
| int32_t* outFence, const Area& bufferArea, |
| const Hwc2TestLayers* testLayers, |
| const std::set<hwc2_layer_t>* clientLayers, |
| const std::set<hwc2_layer_t>* clearLayers) |
| { |
| /* Create new graphic buffer with correct dimensions */ |
| mGraphicBuffer = new GraphicBuffer(bufferArea.width, bufferArea.height, |
| mFormat, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN | |
| BufferUsage::COMPOSER_OVERLAY, "hwc2_test_buffer"); |
| |
| int ret = mGraphicBuffer->initCheck(); |
| if (ret) |
| return ret; |
| |
| if (!mGraphicBuffer->handle) |
| return -EINVAL; |
| |
| compositeBufferFromLayers(mGraphicBuffer, mFormat, bufferArea, testLayers, |
| clientLayers, clearLayers); |
| |
| *outFence = mFenceGenerator->get(); |
| *outHandle = mGraphicBuffer->handle; |
| |
| return 0; |
| } |
| |
| void Hwc2TestVirtualBuffer::updateBufferArea(const Area& bufferArea) |
| { |
| mBufferArea.width = bufferArea.width; |
| mBufferArea.height = bufferArea.height; |
| } |
| |
| bool Hwc2TestVirtualBuffer::writeBufferToFile(std::string path) |
| { |
| SkFILEWStream file(path.c_str()); |
| const SkImageInfo info = SkImageInfo::Make(mBufferArea.width, |
| mBufferArea.height, SkColorType::kRGBA_8888_SkColorType, |
| SkAlphaType::kPremul_SkAlphaType); |
| |
| uint8_t* img; |
| mGraphicBuffer->lock(static_cast<uint32_t>(BufferUsage::CPU_WRITE_OFTEN), |
| (void**)(&img)); |
| |
| SkPixmap pixmap(info, img, mGraphicBuffer->getStride()); |
| bool result = file.isValid() && SkEncodeImage(&file, pixmap, |
| SkEncodedImageFormat::kPNG, 100); |
| |
| mGraphicBuffer->unlock(); |
| return result; |
| } |
| |
| /* Generates a buffer that holds the expected result of compositing all of our |
| * layers */ |
| int Hwc2TestExpectedBuffer::generateExpectedBuffer( |
| const Hwc2TestLayers* testLayers, |
| const std::vector<hwc2_layer_t>* allLayers, |
| const std::set<hwc2_layer_t>* clearLayers) |
| { |
| mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height, |
| mFormat, BufferUsage::CPU_READ_OFTEN | BufferUsage::CPU_WRITE_OFTEN, |
| "hwc2_test_buffer"); |
| |
| int ret = mGraphicBuffer->initCheck(); |
| if (ret) |
| return ret; |
| |
| if (!mGraphicBuffer->handle) |
| return -EINVAL; |
| |
| const std::set<hwc2_layer_t> allLayerSet(allLayers->begin(), |
| allLayers->end()); |
| |
| compositeBufferFromLayers(mGraphicBuffer, mFormat, mBufferArea, testLayers, |
| &allLayerSet, clearLayers); |
| |
| return 0; |
| } |
| |
| int Hwc2TestOutputBuffer::getOutputBuffer(buffer_handle_t* outHandle, |
| int32_t* outFence) |
| { |
| if (mBufferArea.width == -1 || mBufferArea.height == -1) |
| return -EINVAL; |
| |
| mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height, |
| mFormat, BufferUsage::CPU_READ_OFTEN | |
| BufferUsage::GPU_RENDER_TARGET, "hwc2_test_buffer"); |
| |
| int ret = mGraphicBuffer->initCheck(); |
| if (ret) |
| return ret; |
| |
| if (!mGraphicBuffer->handle) |
| return -EINVAL; |
| |
| *outFence = -1; |
| *outHandle = mGraphicBuffer->handle; |
| |
| return 0; |
| } |