| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_LAYER_H |
| #define ANDROID_LAYER_H |
| |
| #include <sys/types.h> |
| |
| #include <utils/RefBase.h> |
| #include <utils/String8.h> |
| #include <utils/Timers.h> |
| |
| #include <ui/FloatRect.h> |
| #include <ui/FrameStats.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/Region.h> |
| |
| #include <gui/ISurfaceComposerClient.h> |
| #include <gui/LayerState.h> |
| #include <gui/BufferQueue.h> |
| |
| #include <list> |
| #include <cstdint> |
| |
| #include "Client.h" |
| #include "FrameTracker.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| #include "TimeStats/TimeStats.h" |
| #include "Transform.h" |
| |
| #include <layerproto/LayerProtoHeader.h> |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/HWComposerBufferCache.h" |
| #include "RenderArea.h" |
| #include "RenderEngine/Mesh.h" |
| #include "RenderEngine/Texture.h" |
| |
| #include <math/vec4.h> |
| #include <vector> |
| |
| using namespace android::surfaceflinger; |
| |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| class Client; |
| class Colorizer; |
| class DisplayDevice; |
| class GraphicBuffer; |
| class SurfaceFlinger; |
| class LayerDebugInfo; |
| class LayerBE; |
| |
| namespace impl { |
| class SurfaceInterceptor; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| struct CompositionInfo { |
| HWC2::Composition compositionType; |
| sp<GraphicBuffer> mBuffer = nullptr; |
| int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT; |
| struct { |
| HWComposer* hwc; |
| sp<Fence> fence; |
| HWC2::BlendMode blendMode; |
| Rect displayFrame; |
| float alpha; |
| FloatRect sourceCrop; |
| HWC2::Transform transform; |
| int z; |
| int type; |
| int appId; |
| Region visibleRegion; |
| Region surfaceDamage; |
| sp<NativeHandle> sidebandStream; |
| android_dataspace dataspace; |
| hwc_color_t color; |
| } hwc; |
| struct { |
| RE::RenderEngine* renderEngine; |
| Mesh* mesh; |
| } renderEngine; |
| }; |
| |
| class LayerBE { |
| public: |
| LayerBE(); |
| |
| // The mesh used to draw the layer in GLES composition mode |
| Mesh mMesh; |
| |
| // HWC items, accessed from the main thread |
| struct HWCInfo { |
| HWCInfo() |
| : hwc(nullptr), |
| layer(nullptr), |
| forceClientComposition(false), |
| compositionType(HWC2::Composition::Invalid), |
| clearClientTarget(false), |
| transform(HWC2::Transform::None) {} |
| |
| HWComposer* hwc; |
| HWC2::Layer* layer; |
| bool forceClientComposition; |
| HWC2::Composition compositionType; |
| bool clearClientTarget; |
| Rect displayFrame; |
| FloatRect sourceCrop; |
| HWComposerBufferCache bufferCache; |
| HWC2::Transform transform; |
| }; |
| |
| // A layer can be attached to multiple displays when operating in mirror mode |
| // (a.k.a: when several displays are attached with equal layerStack). In this |
| // case we need to keep track. In non-mirror mode, a layer will have only one |
| // HWCInfo. This map key is a display layerStack. |
| std::unordered_map<int32_t, HWCInfo> mHwcLayers; |
| |
| CompositionInfo compositionInfo; |
| }; |
| |
| class Layer : public virtual RefBase { |
| static int32_t sSequence; |
| |
| public: |
| LayerBE& getBE() { return mBE; } |
| LayerBE& getBE() const { return mBE; } |
| mutable bool contentDirty; |
| // regions below are in window-manager space |
| Region visibleRegion; |
| Region coveredRegion; |
| Region visibleNonTransparentRegion; |
| Region surfaceDamageRegion; |
| |
| // Layer serial number. This gives layers an explicit ordering, so we |
| // have a stable sort order when their layer stack and Z-order are |
| // the same. |
| int32_t sequence; |
| |
| enum { // flags for doTransaction() |
| eDontUpdateGeometryState = 0x00000001, |
| eVisibleRegion = 0x00000002, |
| }; |
| |
| struct Geometry { |
| uint32_t w; |
| uint32_t h; |
| Transform transform; |
| |
| inline bool operator==(const Geometry& rhs) const { |
| return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && |
| (transform.ty() == rhs.transform.ty()); |
| } |
| inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } |
| }; |
| |
| struct State { |
| Geometry active; |
| Geometry requested; |
| int32_t z; |
| |
| // The identifier of the layer stack this layer belongs to. A layer can |
| // only be associated to a single layer stack. A layer stack is a |
| // z-ordered group of layers which can be associated to one or more |
| // displays. Using the same layer stack on different displays is a way |
| // to achieve mirroring. |
| uint32_t layerStack; |
| |
| uint8_t flags; |
| uint8_t reserved[2]; |
| int32_t sequence; // changes when visible regions can change |
| bool modified; |
| |
| // Crop is expressed in layer space coordinate. |
| Rect crop; |
| Rect requestedCrop; |
| |
| // finalCrop is expressed in display space coordinate. |
| Rect finalCrop; |
| Rect requestedFinalCrop; |
| |
| // If set, defers this state update until the identified Layer |
| // receives a frame with the given frameNumber |
| wp<Layer> barrierLayer; |
| uint64_t frameNumber; |
| |
| // the transparentRegion hint is a bit special, it's latched only |
| // when we receive a buffer -- this is because it's "content" |
| // dependent. |
| Region activeTransparentRegion; |
| Region requestedTransparentRegion; |
| |
| int32_t appId; |
| int32_t type; |
| |
| // If non-null, a Surface this Surface's Z-order is interpreted relative to. |
| wp<Layer> zOrderRelativeOf; |
| |
| // A list of surfaces whose Z-order is interpreted relative to ours. |
| SortedVector<wp<Layer>> zOrderRelatives; |
| |
| half4 color; |
| }; |
| |
| Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w, |
| uint32_t h, uint32_t flags); |
| virtual ~Layer(); |
| |
| void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } |
| |
| // ------------------------------------------------------------------------ |
| // Geometry setting functions. |
| // |
| // The following group of functions are used to specify the layers |
| // bounds, and the mapping of the texture on to those bounds. According |
| // to various settings changes to them may apply immediately, or be delayed until |
| // a pending resize is completed by the producer submitting a buffer. For example |
| // if we were to change the buffer size, and update the matrix ahead of the |
| // new buffer arriving, then we would be stretching the buffer to a different |
| // aspect before and after the buffer arriving, which probably isn't what we wanted. |
| // |
| // The first set of geometry functions are controlled by the scaling mode, described |
| // in window.h. The scaling mode may be set by the client, as it submits buffers. |
| // This value may be overriden through SurfaceControl, with setOverrideScalingMode. |
| // |
| // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then |
| // matrix updates will not be applied while a resize is pending |
| // and the size and transform will remain in their previous state |
| // until a new buffer is submitted. If the scaling mode is another value |
| // then the old-buffer will immediately be scaled to the pending size |
| // and the new matrix will be immediately applied following this scaling |
| // transformation. |
| |
| // Set the default buffer size for the assosciated Producer, in pixels. This is |
| // also the rendered size of the layer prior to any transformations. Parent |
| // or local matrix transformations will not affect the size of the buffer, |
| // but may affect it's on-screen size or clipping. |
| bool setSize(uint32_t w, uint32_t h); |
| // Set a 2x2 transformation matrix on the layer. This transform |
| // will be applied after parent transforms, but before any final |
| // producer specified transform. |
| bool setMatrix(const layer_state_t::matrix22_t& matrix); |
| |
| // This second set of geometry attributes are controlled by |
| // setGeometryAppliesWithResize, and their default mode is to be |
| // immediate. If setGeometryAppliesWithResize is specified |
| // while a resize is pending, then update of these attributes will |
| // be delayed until the resize completes. |
| |
| // setPosition operates in parent buffer space (pre parent-transform) or display |
| // space for top-level layers. |
| bool setPosition(float x, float y, bool immediate); |
| // Buffer space |
| bool setCrop(const Rect& crop, bool immediate); |
| // Parent buffer space/display space |
| bool setFinalCrop(const Rect& crop, bool immediate); |
| |
| // TODO(b/38182121): Could we eliminate the various latching modes by |
| // using the layer hierarchy? |
| // ----------------------------------------------------------------------- |
| bool setLayer(int32_t z); |
| bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| bool setAlpha(float alpha); |
| bool setColor(const half3& color); |
| bool setTransparentRegionHint(const Region& transparent); |
| bool setFlags(uint8_t flags, uint8_t mask); |
| bool setLayerStack(uint32_t layerStack); |
| uint32_t getLayerStack() const; |
| void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber); |
| void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber); |
| bool setOverrideScalingMode(int32_t overrideScalingMode); |
| void setInfo(int32_t type, int32_t appId); |
| bool reparentChildren(const sp<IBinder>& layer); |
| void setChildrenDrawingParent(const sp<Layer>& layer); |
| bool reparent(const sp<IBinder>& newParentHandle); |
| bool detachChildren(); |
| |
| ui::Dataspace getDataSpace() const { return mCurrentDataSpace; } |
| |
| // Before color management is introduced, contents on Android have to be |
| // desaturated in order to match what they appears like visually. |
| // With color management, these contents will appear desaturated, thus |
| // needed to be saturated so that they match what they are designed for |
| // visually. |
| bool isLegacyDataSpace() const; |
| |
| // If we have received a new buffer this frame, we will pass its surface |
| // damage down to hardware composer. Otherwise, we must send a region with |
| // one empty rect. |
| virtual void useSurfaceDamage() {} |
| virtual void useEmptyDamage() {} |
| |
| uint32_t getTransactionFlags(uint32_t flags); |
| uint32_t setTransactionFlags(uint32_t flags); |
| |
| bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { |
| return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); |
| } |
| |
| void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const; |
| FloatRect computeBounds(const Region& activeTransparentRegion) const; |
| FloatRect computeBounds() const; |
| |
| int32_t getSequence() const { return sequence; } |
| |
| // ----------------------------------------------------------------------- |
| // Virtuals |
| virtual const char* getTypeId() const = 0; |
| |
| /* |
| * isOpaque - true if this surface is opaque |
| * |
| * This takes into account the buffer format (i.e. whether or not the |
| * pixel format includes an alpha channel) and the "opaque" flag set |
| * on the layer. It does not examine the current plane alpha value. |
| */ |
| virtual bool isOpaque(const Layer::State&) const { return false; } |
| |
| /* |
| * isSecure - true if this surface is secure, that is if it prevents |
| * screenshots or VNC servers. |
| */ |
| bool isSecure() const; |
| |
| /* |
| * isVisible - true if this layer is visible, false otherwise |
| */ |
| virtual bool isVisible() const = 0; |
| |
| /* |
| * isHiddenByPolicy - true if this layer has been forced invisible. |
| * just because this is false, doesn't mean isVisible() is true. |
| * For example if this layer has no active buffer, it may not be hidden by |
| * policy, but it still can not be visible. |
| */ |
| bool isHiddenByPolicy() const; |
| |
| /* |
| * isFixedSize - true if content has a fixed size |
| */ |
| virtual bool isFixedSize() const { return true; } |
| |
| |
| bool isPendingRemoval() const { return mPendingRemoval; } |
| |
| void writeToProto(LayerProto* layerInfo, |
| LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing); |
| |
| void writeToProto(LayerProto* layerInfo, int32_t hwcId); |
| |
| protected: |
| /* |
| * onDraw - draws the surface. |
| */ |
| virtual void onDraw(const RenderArea& renderArea, const Region& clip, |
| bool useIdentityTransform) const = 0; |
| |
| public: |
| virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} |
| |
| virtual bool isHdrY410() const { return false; } |
| |
| void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z); |
| void forceClientComposition(int32_t hwcId); |
| bool getForceClientComposition(int32_t hwcId); |
| virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0; |
| |
| // callIntoHwc exists so we can update our local state and call |
| // acceptDisplayChanges without unnecessarily updating the device's state |
| void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true); |
| HWC2::Composition getCompositionType(int32_t hwcId) const; |
| void setClearClientTarget(int32_t hwcId, bool clear); |
| bool getClearClientTarget(int32_t hwcId) const; |
| void updateCursorPosition(const sp<const DisplayDevice>& hw); |
| |
| /* |
| * called after page-flip |
| */ |
| virtual void onLayerDisplayed(const sp<Fence>& releaseFence); |
| |
| virtual void abandon() {} |
| |
| virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; } |
| virtual void setTransformHint(uint32_t /*orientation*/) const { } |
| |
| /* |
| * called before composition. |
| * returns true if the layer has pending updates. |
| */ |
| virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; } |
| |
| /* |
| * called after composition. |
| * returns true if the layer latched a new buffer this frame. |
| */ |
| virtual bool onPostComposition(const std::shared_ptr<FenceTime>& /*glDoneFence*/, |
| const std::shared_ptr<FenceTime>& /*presentFence*/, |
| const CompositorTiming& /*compositorTiming*/) { |
| return false; |
| } |
| |
| // If a buffer was replaced this frame, release the former buffer |
| virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } |
| |
| |
| /* |
| * draw - performs some global clipping optimizations |
| * and calls onDraw(). |
| */ |
| void draw(const RenderArea& renderArea, const Region& clip) const; |
| void draw(const RenderArea& renderArea, bool useIdentityTransform) const; |
| void draw(const RenderArea& renderArea) const; |
| |
| /* |
| * doTransaction - process the transaction. This is a good place to figure |
| * out which attributes of the surface have changed. |
| */ |
| uint32_t doTransaction(uint32_t transactionFlags); |
| |
| /* |
| * setVisibleRegion - called to set the new visible region. This gives |
| * a chance to update the new visible region or record the fact it changed. |
| */ |
| void setVisibleRegion(const Region& visibleRegion); |
| |
| /* |
| * setCoveredRegion - called when the covered region changes. The covered |
| * region corresponds to any area of the surface that is covered |
| * (transparently or not) by another surface. |
| */ |
| void setCoveredRegion(const Region& coveredRegion); |
| |
| /* |
| * setVisibleNonTransparentRegion - called when the visible and |
| * non-transparent region changes. |
| */ |
| void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion); |
| |
| /* |
| * Clear the visible, covered, and non-transparent regions. |
| */ |
| void clearVisibilityRegions(); |
| |
| /* |
| * latchBuffer - called each time the screen is redrawn and returns whether |
| * the visible regions need to be recomputed (this is a fairly heavy |
| * operation, so this should be set only if needed). Typically this is used |
| * to figure out if the content or size of a surface has changed. |
| */ |
| virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) { |
| return {}; |
| } |
| |
| virtual bool isBufferLatched() const { return false; } |
| |
| bool isPotentialCursor() const { return mPotentialCursor; } |
| /* |
| * called with the state lock from a binder thread when the layer is |
| * removed from the current list to the pending removal list |
| */ |
| void onRemovedFromCurrentState(); |
| |
| /* |
| * called with the state lock from the main thread when the layer is |
| * removed from the pending removal list |
| */ |
| void onRemoved(); |
| |
| // Updates the transform hint in our SurfaceFlingerConsumer to match |
| // the current orientation of the display device. |
| void updateTransformHint(const sp<const DisplayDevice>& hw) const; |
| |
| /* |
| * returns the rectangle that crops the content of the layer and scales it |
| * to the layer's size. |
| */ |
| Rect getContentCrop() const; |
| |
| /* |
| * Returns if a frame is queued. |
| */ |
| bool hasQueuedFrame() const { |
| return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; |
| } |
| |
| int32_t getQueuedFrameCount() const { return mQueuedFrames; } |
| |
| // ----------------------------------------------------------------------- |
| |
| bool createHwcLayer(HWComposer* hwc, int32_t hwcId); |
| bool destroyHwcLayer(int32_t hwcId); |
| void destroyAllHwcLayers(); |
| |
| bool hasHwcLayer(int32_t hwcId) { |
| return getBE().mHwcLayers.count(hwcId) > 0; |
| } |
| |
| HWC2::Layer* getHwcLayer(int32_t hwcId) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| return nullptr; |
| } |
| return getBE().mHwcLayers[hwcId].layer; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| void clearWithOpenGL(const RenderArea& renderArea) const; |
| void setFiltering(bool filtering); |
| bool getFiltering() const; |
| |
| |
| inline const State& getDrawingState() const { return mDrawingState; } |
| inline const State& getCurrentState() const { return mCurrentState; } |
| inline State& getCurrentState() { return mCurrentState; } |
| |
| LayerDebugInfo getLayerDebugInfo() const; |
| |
| /* always call base class first */ |
| static void miniDumpHeader(String8& result); |
| void miniDump(String8& result, int32_t hwcId) const; |
| void dumpFrameStats(String8& result) const; |
| void dumpFrameEvents(String8& result); |
| void clearFrameStats(); |
| void logFrameStats(); |
| void getFrameStats(FrameStats* outStats) const; |
| |
| virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { |
| return {}; |
| } |
| |
| void onDisconnect(); |
| void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, |
| FrameEventHistoryDelta* outDelta); |
| |
| virtual bool getTransformToDisplayInverse() const { return false; } |
| |
| Transform getTransform() const; |
| |
| // Returns the Alpha of the Surface, accounting for the Alpha |
| // of parent Surfaces in the hierarchy (alpha's will be multiplied |
| // down the hierarchy). |
| half getAlpha() const; |
| half4 getColor() const; |
| |
| void traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); |
| |
| /** |
| * Traverse only children in z order, ignoring relative layers that are not children of the |
| * parent. |
| */ |
| void traverseChildrenInZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| |
| size_t getChildrenCount() const; |
| void addChild(const sp<Layer>& layer); |
| // Returns index if removed, or negative value otherwise |
| // for symmetry with Vector::remove |
| ssize_t removeChild(const sp<Layer>& layer); |
| sp<Layer> getParent() const { return mCurrentParent.promote(); } |
| bool hasParent() const { return getParent() != nullptr; } |
| Rect computeScreenBounds(bool reduceTransparentRegion = true) const; |
| bool setChildLayer(const sp<Layer>& childLayer, int32_t z); |
| bool setChildRelativeLayer(const sp<Layer>& childLayer, |
| const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| // Copy the current list of children to the drawing state. Called by |
| // SurfaceFlinger to complete a transaction. |
| void commitChildList(); |
| int32_t getZ() const; |
| void pushPendingState(); |
| |
| protected: |
| // constant |
| sp<SurfaceFlinger> mFlinger; |
| /* |
| * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) |
| * is called. |
| */ |
| class LayerCleaner { |
| sp<SurfaceFlinger> mFlinger; |
| wp<Layer> mLayer; |
| |
| protected: |
| ~LayerCleaner() { |
| // destroy client resources |
| mFlinger->onLayerDestroyed(mLayer); |
| } |
| |
| public: |
| LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : mFlinger(flinger), mLayer(layer) {} |
| }; |
| |
| virtual void onFirstRef(); |
| |
| friend class impl::SurfaceInterceptor; |
| |
| void commitTransaction(const State& stateToCommit); |
| |
| uint32_t getEffectiveUsage(uint32_t usage) const; |
| |
| FloatRect computeCrop(const sp<const DisplayDevice>& hw) const; |
| // Compute the initial crop as specified by parent layers and the |
| // SurfaceControl for this layer. Does not include buffer crop from the |
| // IGraphicBufferProducer client, as that should not affect child clipping. |
| // Returns in screen space. |
| Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const; |
| |
| // drawing |
| void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b, |
| float alpha) const; |
| |
| void setParent(const sp<Layer>& layer); |
| |
| LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); |
| void addZOrderRelative(const wp<Layer>& relative); |
| void removeZOrderRelative(const wp<Layer>& relative); |
| |
| class SyncPoint { |
| public: |
| explicit SyncPoint(uint64_t frameNumber) |
| : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {} |
| |
| uint64_t getFrameNumber() const { return mFrameNumber; } |
| |
| bool frameIsAvailable() const { return mFrameIsAvailable; } |
| |
| void setFrameAvailable() { mFrameIsAvailable = true; } |
| |
| bool transactionIsApplied() const { return mTransactionIsApplied; } |
| |
| void setTransactionApplied() { mTransactionIsApplied = true; } |
| |
| private: |
| const uint64_t mFrameNumber; |
| std::atomic<bool> mFrameIsAvailable; |
| std::atomic<bool> mTransactionIsApplied; |
| }; |
| |
| // SyncPoints which will be signaled when the correct frame is at the head |
| // of the queue and dropped after the frame has been latched. Protected by |
| // mLocalSyncPointMutex. |
| Mutex mLocalSyncPointMutex; |
| std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; |
| |
| // SyncPoints which will be signaled and then dropped when the transaction |
| // is applied |
| std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; |
| |
| // Returns false if the relevant frame has already been latched |
| bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); |
| |
| void popPendingState(State* stateToCommit); |
| bool applyPendingStates(State* stateToCommit); |
| |
| void clearSyncPoints(); |
| |
| // Returns mCurrentScaling mode (originating from the |
| // Client) or mOverrideScalingMode mode (originating from |
| // the Surface Controller) if set. |
| virtual uint32_t getEffectiveScalingMode() const { return 0; } |
| |
| public: |
| /* |
| * The layer handle is just a BBinder object passed to the client |
| * (remote process) -- we don't keep any reference on our side such that |
| * the dtor is called when the remote side let go of its reference. |
| * |
| * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for |
| * this layer when the handle is destroyed. |
| */ |
| class Handle : public BBinder, public LayerCleaner { |
| public: |
| Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : LayerCleaner(flinger, layer), owner(layer) {} |
| |
| wp<Layer> owner; |
| }; |
| |
| sp<IBinder> getHandle(); |
| const String8& getName() const; |
| virtual void notifyAvailableFrames() {} |
| virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } |
| bool getPremultipledAlpha() const; |
| |
| protected: |
| // ----------------------------------------------------------------------- |
| bool usingRelativeZ(LayerVector::StateSet stateSet); |
| |
| bool mPremultipliedAlpha; |
| String8 mName; |
| String8 mTransactionName; // A cached version of "TX - " + mName for systraces |
| |
| bool mPrimaryDisplayOnly = false; |
| |
| // these are protected by an external lock |
| State mCurrentState; |
| State mDrawingState; |
| volatile int32_t mTransactionFlags; |
| |
| // Accessed from main thread and binder threads |
| Mutex mPendingStateMutex; |
| Vector<State> mPendingStates; |
| |
| // thread-safe |
| volatile int32_t mQueuedFrames; |
| volatile int32_t mSidebandStreamChanged; // used like an atomic boolean |
| |
| // Timestamp history for UIAutomation. Thread safe. |
| FrameTracker mFrameTracker; |
| |
| // Timestamp history for the consumer to query. |
| // Accessed by both consumer and producer on main and binder threads. |
| Mutex mFrameEventHistoryMutex; |
| ConsumerFrameEventHistory mFrameEventHistory; |
| FenceTimeline mAcquireTimeline; |
| FenceTimeline mReleaseTimeline; |
| |
| TimeStats& mTimeStats = TimeStats::getInstance(); |
| |
| // main thread |
| int mActiveBufferSlot; |
| sp<GraphicBuffer> mActiveBuffer; |
| sp<NativeHandle> mSidebandStream; |
| ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN; |
| Rect mCurrentCrop; |
| uint32_t mCurrentTransform; |
| // We encode unset as -1. |
| int32_t mOverrideScalingMode; |
| bool mCurrentOpacity; |
| std::atomic<uint64_t> mCurrentFrameNumber; |
| bool mFrameLatencyNeeded; |
| // Whether filtering is forced on or not |
| bool mFiltering; |
| // Whether filtering is needed b/c of the drawingstate |
| bool mNeedsFiltering; |
| |
| bool mPendingRemoval = false; |
| |
| // page-flip thread (currently main thread) |
| bool mProtectedByApp; // application requires protected path to external sink |
| |
| // protected by mLock |
| mutable Mutex mLock; |
| |
| const wp<Client> mClientRef; |
| |
| // This layer can be a cursor on some displays. |
| bool mPotentialCursor; |
| |
| // Local copy of the queued contents of the incoming BufferQueue |
| mutable Mutex mQueueItemLock; |
| Condition mQueueItemCondition; |
| Vector<BufferItem> mQueueItems; |
| std::atomic<uint64_t> mLastFrameNumberReceived; |
| bool mAutoRefresh; |
| bool mFreezeGeometryUpdates; |
| |
| // Child list about to be committed/used for editing. |
| LayerVector mCurrentChildren; |
| // Child list used for rendering. |
| LayerVector mDrawingChildren; |
| |
| wp<Layer> mCurrentParent; |
| wp<Layer> mDrawingParent; |
| |
| mutable LayerBE mBE; |
| |
| private: |
| /** |
| * Returns an unsorted vector of all layers that are part of this tree. |
| * That includes the current layer and all its descendants. |
| */ |
| std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); |
| /** |
| * Traverses layers that are part of this tree in the correct z order. |
| * layersInTree must be sorted before calling this method. |
| */ |
| void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, |
| LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, |
| const std::vector<Layer*>& layersInTree); |
| }; |
| |
| // --------------------------------------------------------------------------- |
| |
| }; // namespace android |
| |
| #endif // ANDROID_LAYER_H |