| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "Layer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <sys/types.h> |
| #include <algorithm> |
| |
| #include <cutils/compiler.h> |
| #include <cutils/native_handle.h> |
| #include <cutils/properties.h> |
| |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/NativeHandle.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include <ui/DebugUtils.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| |
| #include <gui/BufferItem.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| |
| #include "BufferLayer.h" |
| #include "Colorizer.h" |
| #include "DisplayDevice.h" |
| #include "Layer.h" |
| #include "LayerRejecter.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| #include "clz.h" |
| |
| #include "DisplayHardware/HWComposer.h" |
| |
| #include "RenderEngine/RenderEngine.h" |
| |
| #include <mutex> |
| #include "LayerProtoHelper.h" |
| |
| #define DEBUG_RESIZE 0 |
| |
| namespace android { |
| |
| LayerBE::LayerBE() |
| : mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2) { |
| } |
| |
| |
| int32_t Layer::sSequence = 1; |
| |
| Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w, |
| uint32_t h, uint32_t flags) |
| : contentDirty(false), |
| sequence(uint32_t(android_atomic_inc(&sSequence))), |
| mFlinger(flinger), |
| mPremultipliedAlpha(true), |
| mName(name), |
| mTransactionFlags(0), |
| mPendingStateMutex(), |
| mPendingStates(), |
| mQueuedFrames(0), |
| mSidebandStreamChanged(false), |
| mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT), |
| mCurrentTransform(0), |
| mOverrideScalingMode(-1), |
| mCurrentOpacity(true), |
| mCurrentFrameNumber(0), |
| mFrameLatencyNeeded(false), |
| mFiltering(false), |
| mNeedsFiltering(false), |
| mProtectedByApp(false), |
| mClientRef(client), |
| mPotentialCursor(false), |
| mQueueItemLock(), |
| mQueueItemCondition(), |
| mQueueItems(), |
| mLastFrameNumberReceived(0), |
| mAutoRefresh(false), |
| mFreezeGeometryUpdates(false), |
| mCurrentChildren(LayerVector::StateSet::Current), |
| mDrawingChildren(LayerVector::StateSet::Drawing) { |
| mCurrentCrop.makeInvalid(); |
| |
| uint32_t layerFlags = 0; |
| if (flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; |
| if (flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; |
| if (flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; |
| |
| mName = name; |
| mTransactionName = String8("TX - ") + mName; |
| |
| mCurrentState.active.w = w; |
| mCurrentState.active.h = h; |
| mCurrentState.flags = layerFlags; |
| mCurrentState.active.transform.set(0, 0); |
| mCurrentState.crop.makeInvalid(); |
| mCurrentState.finalCrop.makeInvalid(); |
| mCurrentState.requestedFinalCrop = mCurrentState.finalCrop; |
| mCurrentState.requestedCrop = mCurrentState.crop; |
| mCurrentState.z = 0; |
| mCurrentState.color.a = 1.0f; |
| mCurrentState.layerStack = 0; |
| mCurrentState.sequence = 0; |
| mCurrentState.requested = mCurrentState.active; |
| mCurrentState.appId = 0; |
| mCurrentState.type = 0; |
| |
| // drawing state & current state are identical |
| mDrawingState = mCurrentState; |
| |
| const auto& hwc = flinger->getHwComposer(); |
| const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY); |
| nsecs_t displayPeriod = activeConfig->getVsyncPeriod(); |
| mFrameTracker.setDisplayRefreshPeriod(displayPeriod); |
| |
| CompositorTiming compositorTiming; |
| flinger->getCompositorTiming(&compositorTiming); |
| mFrameEventHistory.initializeCompositorTiming(compositorTiming); |
| } |
| |
| void Layer::onFirstRef() {} |
| |
| Layer::~Layer() { |
| sp<Client> c(mClientRef.promote()); |
| if (c != 0) { |
| c->detachLayer(this); |
| } |
| |
| for (auto& point : mRemoteSyncPoints) { |
| point->setTransactionApplied(); |
| } |
| for (auto& point : mLocalSyncPoints) { |
| point->setFrameAvailable(); |
| } |
| mFrameTracker.logAndResetStats(mName); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // callbacks |
| // --------------------------------------------------------------------------- |
| |
| /* |
| * onLayerDisplayed is only meaningful for BufferLayer, but, is called through |
| * Layer. So, the implementation is done in BufferLayer. When called on a |
| * ColorLayer object, it's essentially a NOP. |
| */ |
| void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {} |
| |
| void Layer::onRemovedFromCurrentState() { |
| // the layer is removed from SF mCurrentState to mLayersPendingRemoval |
| |
| mPendingRemoval = true; |
| |
| if (mCurrentState.zOrderRelativeOf != nullptr) { |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative != nullptr) { |
| strongRelative->removeZOrderRelative(this); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| mCurrentState.zOrderRelativeOf = nullptr; |
| } |
| |
| for (const auto& child : mCurrentChildren) { |
| child->onRemovedFromCurrentState(); |
| } |
| } |
| |
| void Layer::onRemoved() { |
| // the layer is removed from SF mLayersPendingRemoval |
| abandon(); |
| |
| destroyAllHwcLayers(); |
| |
| for (const auto& child : mCurrentChildren) { |
| child->onRemoved(); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // set-up |
| // --------------------------------------------------------------------------- |
| |
| const String8& Layer::getName() const { |
| return mName; |
| } |
| |
| bool Layer::getPremultipledAlpha() const { |
| return mPremultipliedAlpha; |
| } |
| |
| sp<IBinder> Layer::getHandle() { |
| Mutex::Autolock _l(mLock); |
| return new Handle(mFlinger, this); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // h/w composer set-up |
| // --------------------------------------------------------------------------- |
| |
| bool Layer::createHwcLayer(HWComposer* hwc, int32_t hwcId) { |
| LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0, |
| "Already have a layer for hwcId %d", hwcId); |
| HWC2::Layer* layer = hwc->createLayer(hwcId); |
| if (!layer) { |
| return false; |
| } |
| LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers[hwcId]; |
| hwcInfo.hwc = hwc; |
| hwcInfo.layer = layer; |
| layer->setLayerDestroyedListener( |
| [this, hwcId](HWC2::Layer* /*layer*/) { getBE().mHwcLayers.erase(hwcId); }); |
| return true; |
| } |
| |
| bool Layer::destroyHwcLayer(int32_t hwcId) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| return false; |
| } |
| auto& hwcInfo = getBE().mHwcLayers[hwcId]; |
| LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr, "Attempt to destroy null layer"); |
| LOG_ALWAYS_FATAL_IF(hwcInfo.hwc == nullptr, "Missing HWComposer"); |
| hwcInfo.hwc->destroyLayer(hwcId, hwcInfo.layer); |
| // The layer destroyed listener should have cleared the entry from |
| // mHwcLayers. Verify that. |
| LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(hwcId) != 0, |
| "Stale layer entry in getBE().mHwcLayers"); |
| return true; |
| } |
| |
| void Layer::destroyAllHwcLayers() { |
| size_t numLayers = getBE().mHwcLayers.size(); |
| for (size_t i = 0; i < numLayers; ++i) { |
| LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.empty(), "destroyAllHwcLayers failed"); |
| destroyHwcLayer(getBE().mHwcLayers.begin()->first); |
| } |
| LOG_ALWAYS_FATAL_IF(!getBE().mHwcLayers.empty(), |
| "All hardware composer layers should have been destroyed"); |
| } |
| |
| Rect Layer::getContentCrop() const { |
| // this is the crop rectangle that applies to the buffer |
| // itself (as opposed to the window) |
| Rect crop; |
| if (!mCurrentCrop.isEmpty()) { |
| // if the buffer crop is defined, we use that |
| crop = mCurrentCrop; |
| } else if (getBE().compositionInfo.mBuffer != nullptr) { |
| // otherwise we use the whole buffer |
| crop = getBE().compositionInfo.mBuffer->getBounds(); |
| } else { |
| // if we don't have a buffer yet, we use an empty/invalid crop |
| crop.makeInvalid(); |
| } |
| return crop; |
| } |
| |
| static Rect reduce(const Rect& win, const Region& exclude) { |
| if (CC_LIKELY(exclude.isEmpty())) { |
| return win; |
| } |
| if (exclude.isRect()) { |
| return win.reduce(exclude.getBounds()); |
| } |
| return Region(win).subtract(exclude).getBounds(); |
| } |
| |
| static FloatRect reduce(const FloatRect& win, const Region& exclude) { |
| if (CC_LIKELY(exclude.isEmpty())) { |
| return win; |
| } |
| // Convert through Rect (by rounding) for lack of FloatRegion |
| return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); |
| } |
| |
| Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const { |
| const Layer::State& s(getDrawingState()); |
| Rect win(s.active.w, s.active.h); |
| |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| |
| Transform t = getTransform(); |
| win = t.transform(win); |
| |
| if (!s.finalCrop.isEmpty()) { |
| win.intersect(s.finalCrop, &win); |
| } |
| |
| const sp<Layer>& p = mDrawingParent.promote(); |
| // Now we need to calculate the parent bounds, so we can clip ourselves to those. |
| // When calculating the parent bounds for purposes of clipping, |
| // we don't need to constrain the parent to its transparent region. |
| // The transparent region is an optimization based on the |
| // buffer contents of the layer, but does not affect the space allocated to |
| // it by policy, and thus children should be allowed to extend into the |
| // parent's transparent region. In fact one of the main uses, is to reduce |
| // buffer allocation size in cases where a child window sits behind a main window |
| // (by marking the hole in the parent window as a transparent region) |
| if (p != nullptr) { |
| Rect bounds = p->computeScreenBounds(false); |
| bounds.intersect(win, &win); |
| } |
| |
| if (reduceTransparentRegion) { |
| auto const screenTransparentRegion = t.transform(s.activeTransparentRegion); |
| win = reduce(win, screenTransparentRegion); |
| } |
| |
| return win; |
| } |
| |
| FloatRect Layer::computeBounds() const { |
| const Layer::State& s(getDrawingState()); |
| return computeBounds(s.activeTransparentRegion); |
| } |
| |
| FloatRect Layer::computeBounds(const Region& activeTransparentRegion) const { |
| const Layer::State& s(getDrawingState()); |
| Rect win(s.active.w, s.active.h); |
| |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| |
| Rect bounds = win; |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| // Look in computeScreenBounds recursive call for explanation of |
| // why we pass false here. |
| bounds = p->computeScreenBounds(false /* reduceTransparentRegion */); |
| } |
| |
| Transform t = getTransform(); |
| |
| FloatRect floatWin = win.toFloatRect(); |
| if (p != nullptr) { |
| floatWin = t.transform(floatWin); |
| floatWin = floatWin.intersect(bounds.toFloatRect()); |
| floatWin = t.inverse().transform(floatWin); |
| } |
| |
| // subtract the transparent region and snap to the bounds |
| return reduce(floatWin, activeTransparentRegion); |
| } |
| |
| Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const { |
| // the crop is the area of the window that gets cropped, but not |
| // scaled in any ways. |
| const State& s(getDrawingState()); |
| |
| // apply the projection's clipping to the window crop in |
| // layerstack space, and convert-back to layer space. |
| // if there are no window scaling involved, this operation will map to full |
| // pixels in the buffer. |
| // FIXME: the 3 lines below can produce slightly incorrect clipping when we have |
| // a viewport clipping and a window transform. we should use floating point to fix this. |
| |
| Rect activeCrop(s.active.w, s.active.h); |
| if (!s.crop.isEmpty()) { |
| activeCrop.intersect(s.crop, &activeCrop); |
| } |
| |
| Transform t = getTransform(); |
| activeCrop = t.transform(activeCrop); |
| if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| if (!s.finalCrop.isEmpty()) { |
| if (!activeCrop.intersect(s.finalCrop, &activeCrop)) { |
| activeCrop.clear(); |
| } |
| } |
| |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| auto parentCrop = p->computeInitialCrop(hw); |
| activeCrop.intersect(parentCrop, &activeCrop); |
| } |
| |
| return activeCrop; |
| } |
| |
| FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { |
| // the content crop is the area of the content that gets scaled to the |
| // layer's size. This is in buffer space. |
| FloatRect crop = getContentCrop().toFloatRect(); |
| |
| // In addition there is a WM-specified crop we pull from our drawing state. |
| const State& s(getDrawingState()); |
| |
| // Screen space to make reduction to parent crop clearer. |
| Rect activeCrop = computeInitialCrop(hw); |
| Transform t = getTransform(); |
| // Back to layer space to work with the content crop. |
| activeCrop = t.inverse().transform(activeCrop); |
| |
| // This needs to be here as transform.transform(Rect) computes the |
| // transformed rect and then takes the bounding box of the result before |
| // returning. This means |
| // transform.inverse().transform(transform.transform(Rect)) != Rect |
| // in which case we need to make sure the final rect is clipped to the |
| // display bounds. |
| if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| |
| // subtract the transparent region and snap to the bounds |
| activeCrop = reduce(activeCrop, s.activeTransparentRegion); |
| |
| // Transform the window crop to match the buffer coordinate system, |
| // which means using the inverse of the current transform set on the |
| // SurfaceFlingerConsumer. |
| uint32_t invTransform = mCurrentTransform; |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to the |
| * buffer |
| */ |
| uint32_t invTransformOrient = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| // calculate the inverse transform |
| if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| // and apply to the current transform |
| invTransform = (Transform(invTransformOrient) * Transform(invTransform)).getOrientation(); |
| } |
| |
| int winWidth = s.active.w; |
| int winHeight = s.active.h; |
| if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| // If the activeCrop has been rotate the ends are rotated but not |
| // the space itself so when transforming ends back we can't rely on |
| // a modification of the axes of rotation. To account for this we |
| // need to reorient the inverse rotation in terms of the current |
| // axes of rotation. |
| bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0; |
| bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0; |
| if (is_h_flipped == is_v_flipped) { |
| invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| winWidth = s.active.h; |
| winHeight = s.active.w; |
| } |
| const Rect winCrop = activeCrop.transform(invTransform, s.active.w, s.active.h); |
| |
| // below, crop is intersected with winCrop expressed in crop's coordinate space |
| float xScale = crop.getWidth() / float(winWidth); |
| float yScale = crop.getHeight() / float(winHeight); |
| |
| float insetL = winCrop.left * xScale; |
| float insetT = winCrop.top * yScale; |
| float insetR = (winWidth - winCrop.right) * xScale; |
| float insetB = (winHeight - winCrop.bottom) * yScale; |
| |
| crop.left += insetL; |
| crop.top += insetT; |
| crop.right -= insetR; |
| crop.bottom -= insetB; |
| |
| return crop; |
| } |
| |
| void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z) |
| { |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| auto& hwcInfo = getBE().mHwcLayers[hwcId]; |
| |
| // enable this layer |
| hwcInfo.forceClientComposition = false; |
| |
| if (isSecure() && !displayDevice->isSecure()) { |
| hwcInfo.forceClientComposition = true; |
| } |
| |
| auto& hwcLayer = hwcInfo.layer; |
| |
| // this gives us only the "orientation" component of the transform |
| const State& s(getDrawingState()); |
| auto blendMode = HWC2::BlendMode::None; |
| if (!isOpaque(s) || getAlpha() != 1.0f) { |
| blendMode = |
| mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; |
| } |
| auto error = hwcLayer->setBlendMode(blendMode); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[%s] Failed to set blend mode %s:" |
| " %s (%d)", |
| mName.string(), to_string(blendMode).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| |
| // apply the layer's transform, followed by the display's global transform |
| // here we're guaranteed that the layer's transform preserves rects |
| Region activeTransparentRegion(s.activeTransparentRegion); |
| Transform t = getTransform(); |
| if (!s.crop.isEmpty()) { |
| Rect activeCrop(s.crop); |
| activeCrop = t.transform(activeCrop); |
| if (!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| activeCrop = t.inverse().transform(activeCrop, true); |
| // This needs to be here as transform.transform(Rect) computes the |
| // transformed rect and then takes the bounding box of the result before |
| // returning. This means |
| // transform.inverse().transform(transform.transform(Rect)) != Rect |
| // in which case we need to make sure the final rect is clipped to the |
| // display bounds. |
| if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { |
| activeCrop.clear(); |
| } |
| // mark regions outside the crop as transparent |
| activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top)); |
| activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, s.active.w, s.active.h)); |
| activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); |
| activeTransparentRegion.orSelf( |
| Rect(activeCrop.right, activeCrop.top, s.active.w, activeCrop.bottom)); |
| } |
| |
| // computeBounds returns a FloatRect to provide more accuracy during the |
| // transformation. We then round upon constructing 'frame'. |
| Rect frame{t.transform(computeBounds(activeTransparentRegion))}; |
| if (!s.finalCrop.isEmpty()) { |
| if (!frame.intersect(s.finalCrop, &frame)) { |
| frame.clear(); |
| } |
| } |
| if (!frame.intersect(displayDevice->getViewport(), &frame)) { |
| frame.clear(); |
| } |
| const Transform& tr(displayDevice->getTransform()); |
| Rect transformedFrame = tr.transform(frame); |
| error = hwcLayer->setDisplayFrame(transformedFrame); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", mName.string(), |
| transformedFrame.left, transformedFrame.top, transformedFrame.right, |
| transformedFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error)); |
| } else { |
| hwcInfo.displayFrame = transformedFrame; |
| } |
| |
| FloatRect sourceCrop = computeCrop(displayDevice); |
| error = hwcLayer->setSourceCrop(sourceCrop); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " |
| "%s (%d)", |
| mName.string(), sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } else { |
| hwcInfo.sourceCrop = sourceCrop; |
| } |
| |
| float alpha = static_cast<float>(getAlpha()); |
| error = hwcLayer->setPlaneAlpha(alpha); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[%s] Failed to set plane alpha %.3f: " |
| "%s (%d)", |
| mName.string(), alpha, to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = hwcLayer->setZOrder(z); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", mName.string(), z, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| int type = s.type; |
| int appId = s.appId; |
| sp<Layer> parent = mDrawingParent.promote(); |
| if (parent.get()) { |
| auto& parentState = parent->getDrawingState(); |
| if (parentState.type >= 0 || parentState.appId >= 0) { |
| type = parentState.type; |
| appId = parentState.appId; |
| } |
| } |
| |
| error = hwcLayer->setInfo(type, appId); |
| ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)", mName.string(), |
| static_cast<int32_t>(error)); |
| |
| /* |
| * Transformations are applied in this order: |
| * 1) buffer orientation/flip/mirror |
| * 2) state transformation (window manager) |
| * 3) layer orientation (screen orientation) |
| * (NOTE: the matrices are multiplied in reverse order) |
| */ |
| |
| const Transform bufferOrientation(mCurrentTransform); |
| Transform transform(tr * t * bufferOrientation); |
| |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to the |
| * buffer |
| */ |
| uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| // calculate the inverse transform |
| if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| } |
| |
| /* |
| * Here we cancel out the orientation component of the WM transform. |
| * The scaling and translate components are already included in our bounds |
| * computation so it's enough to just omit it in the composition. |
| * See comment in onDraw with ref to b/36727915 for why. |
| */ |
| transform = Transform(invTransform) * tr * bufferOrientation; |
| } |
| |
| // this gives us only the "orientation" component of the transform |
| const uint32_t orientation = transform.getOrientation(); |
| if (orientation & Transform::ROT_INVALID) { |
| // we can only handle simple transformation |
| hwcInfo.forceClientComposition = true; |
| } else { |
| auto transform = static_cast<HWC2::Transform>(orientation); |
| hwcInfo.transform = transform; |
| auto error = hwcLayer->setTransform(transform); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[%s] Failed to set transform %s: " |
| "%s (%d)", |
| mName.string(), to_string(transform).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| } |
| |
| void Layer::forceClientComposition(int32_t hwcId) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId); |
| return; |
| } |
| |
| getBE().mHwcLayers[hwcId].forceClientComposition = true; |
| } |
| |
| bool Layer::getForceClientComposition(int32_t hwcId) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("getForceClientComposition: no HWC layer found (%d)", hwcId); |
| return false; |
| } |
| |
| return getBE().mHwcLayers[hwcId].forceClientComposition; |
| } |
| |
| void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) { |
| auto hwcId = displayDevice->getHwcDisplayId(); |
| if (getBE().mHwcLayers.count(hwcId) == 0 || |
| getCompositionType(hwcId) != HWC2::Composition::Cursor) { |
| return; |
| } |
| |
| // This gives us only the "orientation" component of the transform |
| const State& s(getCurrentState()); |
| |
| // Apply the layer's transform, followed by the display's global transform |
| // Here we're guaranteed that the layer's transform preserves rects |
| Rect win(s.active.w, s.active.h); |
| if (!s.crop.isEmpty()) { |
| win.intersect(s.crop, &win); |
| } |
| // Subtract the transparent region and snap to the bounds |
| Rect bounds = reduce(win, s.activeTransparentRegion); |
| Rect frame(getTransform().transform(bounds)); |
| frame.intersect(displayDevice->getViewport(), &frame); |
| if (!s.finalCrop.isEmpty()) { |
| frame.intersect(s.finalCrop, &frame); |
| } |
| auto& displayTransform(displayDevice->getTransform()); |
| auto position = displayTransform.transform(frame); |
| |
| auto error = getBE().mHwcLayers[hwcId].layer->setCursorPosition(position.left, |
| position.top); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[%s] Failed to set cursor position " |
| "to (%d, %d): %s (%d)", |
| mName.string(), position.left, position.top, to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // drawing... |
| // --------------------------------------------------------------------------- |
| |
| void Layer::draw(const RenderArea& renderArea, const Region& clip) const { |
| onDraw(renderArea, clip, false); |
| } |
| |
| void Layer::draw(const RenderArea& renderArea, bool useIdentityTransform) const { |
| onDraw(renderArea, Region(renderArea.getBounds()), useIdentityTransform); |
| } |
| |
| void Layer::draw(const RenderArea& renderArea) const { |
| onDraw(renderArea, Region(renderArea.getBounds()), false); |
| } |
| |
| void Layer::clearWithOpenGL(const RenderArea& renderArea, float red, float green, float blue, |
| float alpha) const { |
| auto& engine(mFlinger->getRenderEngine()); |
| computeGeometry(renderArea, getBE().mMesh, false); |
| engine.setupFillWithColor(red, green, blue, alpha); |
| engine.drawMesh(getBE().mMesh); |
| } |
| |
| void Layer::clearWithOpenGL(const RenderArea& renderArea) const { |
| clearWithOpenGL(renderArea, 0, 0, 0, 0); |
| } |
| |
| void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("setCompositionType called without a valid HWC layer"); |
| return; |
| } |
| auto& hwcInfo = getBE().mHwcLayers[hwcId]; |
| auto& hwcLayer = hwcInfo.layer; |
| ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), to_string(type).c_str(), |
| static_cast<int>(callIntoHwc)); |
| if (hwcInfo.compositionType != type) { |
| ALOGV(" actually setting"); |
| hwcInfo.compositionType = type; |
| if (callIntoHwc) { |
| auto error = hwcLayer->setCompositionType(type); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[%s] Failed to set " |
| "composition type %s: %s (%d)", |
| mName.string(), to_string(type).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| } |
| } |
| |
| HWC2::Composition Layer::getCompositionType(int32_t hwcId) const { |
| if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { |
| // If we're querying the composition type for a display that does not |
| // have a HWC counterpart, then it will always be Client |
| return HWC2::Composition::Client; |
| } |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("getCompositionType called with an invalid HWC layer"); |
| return HWC2::Composition::Invalid; |
| } |
| return getBE().mHwcLayers.at(hwcId).compositionType; |
| } |
| |
| void Layer::setClearClientTarget(int32_t hwcId, bool clear) { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("setClearClientTarget called without a valid HWC layer"); |
| return; |
| } |
| getBE().mHwcLayers[hwcId].clearClientTarget = clear; |
| } |
| |
| bool Layer::getClearClientTarget(int32_t hwcId) const { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| ALOGE("getClearClientTarget called without a valid HWC layer"); |
| return false; |
| } |
| return getBE().mHwcLayers.at(hwcId).clearClientTarget; |
| } |
| |
| bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { |
| if (point->getFrameNumber() <= mCurrentFrameNumber) { |
| // Don't bother with a SyncPoint, since we've already latched the |
| // relevant frame |
| return false; |
| } |
| |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| mLocalSyncPoints.push_back(point); |
| return true; |
| } |
| |
| void Layer::setFiltering(bool filtering) { |
| mFiltering = filtering; |
| } |
| |
| bool Layer::getFiltering() const { |
| return mFiltering; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // local state |
| // ---------------------------------------------------------------------------- |
| |
| static void boundPoint(vec2* point, const Rect& crop) { |
| if (point->x < crop.left) { |
| point->x = crop.left; |
| } |
| if (point->x > crop.right) { |
| point->x = crop.right; |
| } |
| if (point->y < crop.top) { |
| point->y = crop.top; |
| } |
| if (point->y > crop.bottom) { |
| point->y = crop.bottom; |
| } |
| } |
| |
| void Layer::computeGeometry(const RenderArea& renderArea, Mesh& mesh, |
| bool useIdentityTransform) const { |
| const Layer::State& s(getDrawingState()); |
| const Transform renderAreaTransform(renderArea.getTransform()); |
| const uint32_t height = renderArea.getHeight(); |
| FloatRect win = computeBounds(); |
| |
| vec2 lt = vec2(win.left, win.top); |
| vec2 lb = vec2(win.left, win.bottom); |
| vec2 rb = vec2(win.right, win.bottom); |
| vec2 rt = vec2(win.right, win.top); |
| |
| Transform layerTransform = getTransform(); |
| if (!useIdentityTransform) { |
| lt = layerTransform.transform(lt); |
| lb = layerTransform.transform(lb); |
| rb = layerTransform.transform(rb); |
| rt = layerTransform.transform(rt); |
| } |
| |
| if (!s.finalCrop.isEmpty()) { |
| boundPoint(<, s.finalCrop); |
| boundPoint(&lb, s.finalCrop); |
| boundPoint(&rb, s.finalCrop); |
| boundPoint(&rt, s.finalCrop); |
| } |
| |
| Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); |
| position[0] = renderAreaTransform.transform(lt); |
| position[1] = renderAreaTransform.transform(lb); |
| position[2] = renderAreaTransform.transform(rb); |
| position[3] = renderAreaTransform.transform(rt); |
| for (size_t i = 0; i < 4; i++) { |
| position[i].y = height - position[i].y; |
| } |
| } |
| |
| bool Layer::isSecure() const { |
| const Layer::State& s(mDrawingState); |
| return (s.flags & layer_state_t::eLayerSecure); |
| } |
| |
| void Layer::setVisibleRegion(const Region& visibleRegion) { |
| // always called from main thread |
| this->visibleRegion = visibleRegion; |
| } |
| |
| void Layer::setCoveredRegion(const Region& coveredRegion) { |
| // always called from main thread |
| this->coveredRegion = coveredRegion; |
| } |
| |
| void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) { |
| // always called from main thread |
| this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; |
| } |
| |
| void Layer::clearVisibilityRegions() { |
| visibleRegion.clear(); |
| visibleNonTransparentRegion.clear(); |
| coveredRegion.clear(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // transaction |
| // ---------------------------------------------------------------------------- |
| |
| void Layer::pushPendingState() { |
| if (!mCurrentState.modified) { |
| return; |
| } |
| |
| // If this transaction is waiting on the receipt of a frame, generate a sync |
| // point and send it to the remote layer. |
| if (mCurrentState.barrierLayer != nullptr) { |
| sp<Layer> barrierLayer = mCurrentState.barrierLayer.promote(); |
| if (barrierLayer == nullptr) { |
| ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); |
| // If we can't promote the layer we are intended to wait on, |
| // then it is expired or otherwise invalid. Allow this transaction |
| // to be applied as per normal (no synchronization). |
| mCurrentState.barrierLayer = nullptr; |
| } else { |
| auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber); |
| if (barrierLayer->addSyncPoint(syncPoint)) { |
| mRemoteSyncPoints.push_back(std::move(syncPoint)); |
| } else { |
| // We already missed the frame we're supposed to synchronize |
| // on, so go ahead and apply the state update |
| mCurrentState.barrierLayer = nullptr; |
| } |
| } |
| |
| // Wake us up to check if the frame has been received |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| mPendingStates.push_back(mCurrentState); |
| ATRACE_INT(mTransactionName.string(), mPendingStates.size()); |
| } |
| |
| void Layer::popPendingState(State* stateToCommit) { |
| *stateToCommit = mPendingStates[0]; |
| |
| mPendingStates.removeAt(0); |
| ATRACE_INT(mTransactionName.string(), mPendingStates.size()); |
| } |
| |
| bool Layer::applyPendingStates(State* stateToCommit) { |
| bool stateUpdateAvailable = false; |
| while (!mPendingStates.empty()) { |
| if (mPendingStates[0].barrierLayer != nullptr) { |
| if (mRemoteSyncPoints.empty()) { |
| // If we don't have a sync point for this, apply it anyway. It |
| // will be visually wrong, but it should keep us from getting |
| // into too much trouble. |
| ALOGE("[%s] No local sync point found", mName.string()); |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->getFrameNumber() != mPendingStates[0].frameNumber) { |
| ALOGE("[%s] Unexpected sync point frame number found", mName.string()); |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| continue; |
| } |
| |
| if (mRemoteSyncPoints.front()->frameIsAvailable()) { |
| // Apply the state update |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| |
| // Signal our end of the sync point and then dispose of it |
| mRemoteSyncPoints.front()->setTransactionApplied(); |
| mRemoteSyncPoints.pop_front(); |
| } else { |
| break; |
| } |
| } else { |
| popPendingState(stateToCommit); |
| stateUpdateAvailable = true; |
| } |
| } |
| |
| // If we still have pending updates, wake SurfaceFlinger back up and point |
| // it at this layer so we can process them |
| if (!mPendingStates.empty()) { |
| setTransactionFlags(eTransactionNeeded); |
| mFlinger->setTransactionFlags(eTraversalNeeded); |
| } |
| |
| mCurrentState.modified = false; |
| return stateUpdateAvailable; |
| } |
| |
| uint32_t Layer::doTransaction(uint32_t flags) { |
| ATRACE_CALL(); |
| |
| pushPendingState(); |
| Layer::State c = getCurrentState(); |
| if (!applyPendingStates(&c)) { |
| return 0; |
| } |
| |
| const Layer::State& s(getDrawingState()); |
| |
| const bool sizeChanged = (c.requested.w != s.requested.w) || (c.requested.h != s.requested.h); |
| |
| if (sizeChanged) { |
| // the size changed, we need to ask our client to request a new buffer |
| ALOGD_IF(DEBUG_RESIZE, |
| "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" |
| " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n" |
| " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" |
| " requested={ wh={%4u,%4u} }}\n", |
| this, getName().string(), mCurrentTransform, |
| getEffectiveScalingMode(), c.active.w, c.active.h, c.crop.left, c.crop.top, |
| c.crop.right, c.crop.bottom, c.crop.getWidth(), c.crop.getHeight(), c.requested.w, |
| c.requested.h, s.active.w, s.active.h, s.crop.left, s.crop.top, s.crop.right, |
| s.crop.bottom, s.crop.getWidth(), s.crop.getHeight(), s.requested.w, |
| s.requested.h); |
| |
| // record the new size, form this point on, when the client request |
| // a buffer, it'll get the new size. |
| setDefaultBufferSize(c.requested.w, c.requested.h); |
| } |
| |
| // Don't let Layer::doTransaction update the drawing state |
| // if we have a pending resize, unless we are in fixed-size mode. |
| // the drawing state will be updated only once we receive a buffer |
| // with the correct size. |
| // |
| // In particular, we want to make sure the clip (which is part |
| // of the geometry state) is latched together with the size but is |
| // latched immediately when no resizing is involved. |
| // |
| // If a sideband stream is attached, however, we want to skip this |
| // optimization so that transactions aren't missed when a buffer |
| // never arrives |
| // |
| // In the case that we don't have a buffer we ignore other factors |
| // and avoid entering the resizePending state. At a high level the |
| // resizePending state is to avoid applying the state of the new buffer |
| // to the old buffer. However in the state where we don't have an old buffer |
| // there is no such concern but we may still be being used as a parent layer. |
| const bool resizePending = ((c.requested.w != c.active.w) || (c.requested.h != c.active.h)) && |
| (getBE().compositionInfo.mBuffer != nullptr); |
| if (!isFixedSize()) { |
| if (resizePending && getBE().compositionInfo.hwc.sidebandStream == nullptr) { |
| flags |= eDontUpdateGeometryState; |
| } |
| } |
| |
| // Here we apply various requested geometry states, depending on our |
| // latching configuration. See Layer.h for a detailed discussion of |
| // how geometry latching is controlled. |
| if (!(flags & eDontUpdateGeometryState)) { |
| Layer::State& editCurrentState(getCurrentState()); |
| |
| // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize |
| // mode, which causes attributes which normally latch regardless of scaling mode, |
| // to be delayed. We copy the requested state to the active state making sure |
| // to respect these rules (again see Layer.h for a detailed discussion). |
| // |
| // There is an awkward asymmetry in the handling of the crop states in the position |
| // states, as can be seen below. Largely this arises from position and transform |
| // being stored in the same data structure while having different latching rules. |
| // b/38182305 |
| // |
| // Careful that "c" and editCurrentState may not begin as equivalent due to |
| // applyPendingStates in the presence of deferred transactions. |
| if (mFreezeGeometryUpdates) { |
| float tx = c.active.transform.tx(); |
| float ty = c.active.transform.ty(); |
| c.active = c.requested; |
| c.active.transform.set(tx, ty); |
| editCurrentState.active = c.active; |
| } else { |
| editCurrentState.active = editCurrentState.requested; |
| c.active = c.requested; |
| } |
| } |
| |
| if (s.active != c.active) { |
| // invalidate and recompute the visible regions if needed |
| flags |= Layer::eVisibleRegion; |
| } |
| |
| if (c.sequence != s.sequence) { |
| // invalidate and recompute the visible regions if needed |
| flags |= eVisibleRegion; |
| this->contentDirty = true; |
| |
| // we may use linear filtering, if the matrix scales us |
| const uint8_t type = c.active.transform.getType(); |
| mNeedsFiltering = (!c.active.transform.preserveRects() || (type >= Transform::SCALE)); |
| } |
| |
| // If the layer is hidden, signal and clear out all local sync points so |
| // that transactions for layers depending on this layer's frames becoming |
| // visible are not blocked |
| if (c.flags & layer_state_t::eLayerHidden) { |
| clearSyncPoints(); |
| } |
| |
| // Commit the transaction |
| commitTransaction(c); |
| return flags; |
| } |
| |
| void Layer::commitTransaction(const State& stateToCommit) { |
| mDrawingState = stateToCommit; |
| } |
| |
| uint32_t Layer::getTransactionFlags(uint32_t flags) { |
| return android_atomic_and(~flags, &mTransactionFlags) & flags; |
| } |
| |
| uint32_t Layer::setTransactionFlags(uint32_t flags) { |
| return android_atomic_or(flags, &mTransactionFlags); |
| } |
| |
| bool Layer::setPosition(float x, float y, bool immediate) { |
| if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y) |
| return false; |
| mCurrentState.sequence++; |
| |
| // We update the requested and active position simultaneously because |
| // we want to apply the position portion of the transform matrix immediately, |
| // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. |
| mCurrentState.requested.transform.set(x, y); |
| if (immediate && !mFreezeGeometryUpdates) { |
| // Here we directly update the active state |
| // unlike other setters, because we store it within |
| // the transform, but use different latching rules. |
| // b/38182305 |
| mCurrentState.active.transform.set(x, y); |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { |
| ssize_t idx = mCurrentChildren.indexOf(childLayer); |
| if (idx < 0) { |
| return false; |
| } |
| if (childLayer->setLayer(z)) { |
| mCurrentChildren.removeAt(idx); |
| mCurrentChildren.add(childLayer); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer, |
| const sp<IBinder>& relativeToHandle, int32_t relativeZ) { |
| ssize_t idx = mCurrentChildren.indexOf(childLayer); |
| if (idx < 0) { |
| return false; |
| } |
| if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { |
| mCurrentChildren.removeAt(idx); |
| mCurrentChildren.add(childLayer); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Layer::setLayer(int32_t z) { |
| if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; |
| mCurrentState.sequence++; |
| mCurrentState.z = z; |
| mCurrentState.modified = true; |
| |
| // Discard all relative layering. |
| if (mCurrentState.zOrderRelativeOf != nullptr) { |
| sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); |
| if (strongRelative != nullptr) { |
| strongRelative->removeZOrderRelative(this); |
| } |
| mCurrentState.zOrderRelativeOf = nullptr; |
| } |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::removeZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.remove(relative); |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| void Layer::addZOrderRelative(const wp<Layer>& relative) { |
| mCurrentState.zOrderRelatives.add(relative); |
| mCurrentState.modified = true; |
| mCurrentState.sequence++; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) { |
| sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get()); |
| if (handle == nullptr) { |
| return false; |
| } |
| sp<Layer> relative = handle->owner.promote(); |
| if (relative == nullptr) { |
| return false; |
| } |
| |
| if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && |
| mCurrentState.zOrderRelativeOf == relative) { |
| return false; |
| } |
| |
| mCurrentState.sequence++; |
| mCurrentState.modified = true; |
| mCurrentState.z = relativeZ; |
| |
| auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote(); |
| if (oldZOrderRelativeOf != nullptr) { |
| oldZOrderRelativeOf->removeZOrderRelative(this); |
| } |
| mCurrentState.zOrderRelativeOf = relative; |
| relative->addZOrderRelative(this); |
| |
| setTransactionFlags(eTransactionNeeded); |
| |
| return true; |
| } |
| |
| bool Layer::setSize(uint32_t w, uint32_t h) { |
| if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) return false; |
| mCurrentState.requested.w = w; |
| mCurrentState.requested.h = h; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setAlpha(float alpha) { |
| if (mCurrentState.color.a == alpha) return false; |
| mCurrentState.sequence++; |
| mCurrentState.color.a = alpha; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setColor(const half3& color) { |
| if (color.r == mCurrentState.color.r && color.g == mCurrentState.color.g && |
| color.b == mCurrentState.color.b) |
| return false; |
| |
| mCurrentState.sequence++; |
| mCurrentState.color.r = color.r; |
| mCurrentState.color.g = color.g; |
| mCurrentState.color.b = color.b; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { |
| mCurrentState.sequence++; |
| mCurrentState.requested.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setTransparentRegionHint(const Region& transparent) { |
| mCurrentState.requestedTransparentRegion = transparent; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| bool Layer::setFlags(uint8_t flags, uint8_t mask) { |
| const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); |
| if (mCurrentState.flags == newFlags) return false; |
| mCurrentState.sequence++; |
| mCurrentState.flags = newFlags; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setCrop(const Rect& crop, bool immediate) { |
| if (mCurrentState.requestedCrop == crop) return false; |
| mCurrentState.sequence++; |
| mCurrentState.requestedCrop = crop; |
| if (immediate && !mFreezeGeometryUpdates) { |
| mCurrentState.crop = crop; |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setFinalCrop(const Rect& crop, bool immediate) { |
| if (mCurrentState.requestedFinalCrop == crop) return false; |
| mCurrentState.sequence++; |
| mCurrentState.requestedFinalCrop = crop; |
| if (immediate && !mFreezeGeometryUpdates) { |
| mCurrentState.finalCrop = crop; |
| } |
| mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; |
| |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| bool Layer::setOverrideScalingMode(int32_t scalingMode) { |
| if (scalingMode == mOverrideScalingMode) return false; |
| mOverrideScalingMode = scalingMode; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| void Layer::setInfo(int32_t type, int32_t appId) { |
| mCurrentState.appId = appId; |
| mCurrentState.type = type; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| bool Layer::setLayerStack(uint32_t layerStack) { |
| if (mCurrentState.layerStack == layerStack) return false; |
| mCurrentState.sequence++; |
| mCurrentState.layerStack = layerStack; |
| mCurrentState.modified = true; |
| setTransactionFlags(eTransactionNeeded); |
| return true; |
| } |
| |
| uint32_t Layer::getLayerStack() const { |
| auto p = mDrawingParent.promote(); |
| if (p == nullptr) { |
| return getDrawingState().layerStack; |
| } |
| return p->getLayerStack(); |
| } |
| |
| void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber) { |
| mCurrentState.barrierLayer = barrierLayer; |
| mCurrentState.frameNumber = frameNumber; |
| // We don't set eTransactionNeeded, because just receiving a deferral |
| // request without any other state updates shouldn't actually induce a delay |
| mCurrentState.modified = true; |
| pushPendingState(); |
| mCurrentState.barrierLayer = nullptr; |
| mCurrentState.frameNumber = 0; |
| mCurrentState.modified = false; |
| } |
| |
| void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber) { |
| sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); |
| deferTransactionUntil(handle->owner.promote(), frameNumber); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // pageflip handling... |
| // ---------------------------------------------------------------------------- |
| |
| bool Layer::isHiddenByPolicy() const { |
| const Layer::State& s(mDrawingState); |
| const auto& parent = mDrawingParent.promote(); |
| if (parent != nullptr && parent->isHiddenByPolicy()) { |
| return true; |
| } |
| return s.flags & layer_state_t::eLayerHidden; |
| } |
| |
| uint32_t Layer::getEffectiveUsage(uint32_t usage) const { |
| // TODO: should we do something special if mSecure is set? |
| if (mProtectedByApp) { |
| // need a hardware-protected path to external video sink |
| usage |= GraphicBuffer::USAGE_PROTECTED; |
| } |
| if (mPotentialCursor) { |
| usage |= GraphicBuffer::USAGE_CURSOR; |
| } |
| usage |= GraphicBuffer::USAGE_HW_COMPOSER; |
| return usage; |
| } |
| |
| void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { |
| uint32_t orientation = 0; |
| if (!mFlinger->mDebugDisableTransformHint) { |
| // The transform hint is used to improve performance, but we can |
| // only have a single transform hint, it cannot |
| // apply to all displays. |
| const Transform& planeTransform(hw->getTransform()); |
| orientation = planeTransform.getOrientation(); |
| if (orientation & Transform::ROT_INVALID) { |
| orientation = 0; |
| } |
| } |
| setTransformHint(orientation); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // debugging |
| // ---------------------------------------------------------------------------- |
| |
| LayerDebugInfo Layer::getLayerDebugInfo() const { |
| LayerDebugInfo info; |
| const Layer::State& ds = getDrawingState(); |
| info.mName = getName(); |
| sp<Layer> parent = getParent(); |
| info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string()); |
| info.mType = String8(getTypeId()); |
| info.mTransparentRegion = ds.activeTransparentRegion; |
| info.mVisibleRegion = visibleRegion; |
| info.mSurfaceDamageRegion = surfaceDamageRegion; |
| info.mLayerStack = getLayerStack(); |
| info.mX = ds.active.transform.tx(); |
| info.mY = ds.active.transform.ty(); |
| info.mZ = ds.z; |
| info.mWidth = ds.active.w; |
| info.mHeight = ds.active.h; |
| info.mCrop = ds.crop; |
| info.mFinalCrop = ds.finalCrop; |
| info.mColor = ds.color; |
| info.mFlags = ds.flags; |
| info.mPixelFormat = getPixelFormat(); |
| info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace); |
| info.mMatrix[0][0] = ds.active.transform[0][0]; |
| info.mMatrix[0][1] = ds.active.transform[0][1]; |
| info.mMatrix[1][0] = ds.active.transform[1][0]; |
| info.mMatrix[1][1] = ds.active.transform[1][1]; |
| { |
| sp<const GraphicBuffer> buffer = getBE().compositionInfo.mBuffer; |
| if (buffer != 0) { |
| info.mActiveBufferWidth = buffer->getWidth(); |
| info.mActiveBufferHeight = buffer->getHeight(); |
| info.mActiveBufferStride = buffer->getStride(); |
| info.mActiveBufferFormat = buffer->format; |
| } else { |
| info.mActiveBufferWidth = 0; |
| info.mActiveBufferHeight = 0; |
| info.mActiveBufferStride = 0; |
| info.mActiveBufferFormat = 0; |
| } |
| } |
| info.mNumQueuedFrames = getQueuedFrameCount(); |
| info.mRefreshPending = isBufferLatched(); |
| info.mIsOpaque = isOpaque(ds); |
| info.mContentDirty = contentDirty; |
| return info; |
| } |
| |
| void Layer::miniDumpHeader(String8& result) { |
| result.append("----------------------------------------"); |
| result.append("---------------------------------------\n"); |
| result.append(" Layer name\n"); |
| result.append(" Z | "); |
| result.append(" Comp Type | "); |
| result.append(" Disp Frame (LTRB) | "); |
| result.append(" Source Crop (LTRB)\n"); |
| result.append("----------------------------------------"); |
| result.append("---------------------------------------\n"); |
| } |
| |
| void Layer::miniDump(String8& result, int32_t hwcId) const { |
| if (getBE().mHwcLayers.count(hwcId) == 0) { |
| return; |
| } |
| |
| String8 name; |
| if (mName.length() > 77) { |
| std::string shortened; |
| shortened.append(mName.string(), 36); |
| shortened.append("[...]"); |
| shortened.append(mName.string() + (mName.length() - 36), 36); |
| name = shortened.c_str(); |
| } else { |
| name = mName; |
| } |
| |
| result.appendFormat(" %s\n", name.string()); |
| |
| const Layer::State& layerState(getDrawingState()); |
| const LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers.at(hwcId); |
| if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { |
| result.appendFormat(" rel %6d | ", layerState.z); |
| } else { |
| result.appendFormat(" %10d | ", layerState.z); |
| } |
| result.appendFormat("%10s | ", to_string(getCompositionType(hwcId)).c_str()); |
| const Rect& frame = hwcInfo.displayFrame; |
| result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); |
| const FloatRect& crop = hwcInfo.sourceCrop; |
| result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, crop.bottom); |
| |
| result.append("- - - - - - - - - - - - - - - - - - - - "); |
| result.append("- - - - - - - - - - - - - - - - - - - -\n"); |
| } |
| |
| void Layer::dumpFrameStats(String8& result) const { |
| mFrameTracker.dumpStats(result); |
| } |
| |
| void Layer::clearFrameStats() { |
| mFrameTracker.clearStats(); |
| } |
| |
| void Layer::logFrameStats() { |
| mFrameTracker.logAndResetStats(mName); |
| } |
| |
| void Layer::getFrameStats(FrameStats* outStats) const { |
| mFrameTracker.getStats(outStats); |
| } |
| |
| void Layer::dumpFrameEvents(String8& result) { |
| result.appendFormat("- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this); |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.checkFencesForCompletion(); |
| mFrameEventHistory.dump(result); |
| } |
| |
| void Layer::onDisconnect() { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.onDisconnect(); |
| mTimeStats.onDisconnect(getName().c_str()); |
| } |
| |
| void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, |
| FrameEventHistoryDelta* outDelta) { |
| if (newTimestamps) { |
| mTimeStats.setPostTime(getName().c_str(), newTimestamps->frameNumber, |
| newTimestamps->postedTime); |
| } |
| |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| if (newTimestamps) { |
| // If there are any unsignaled fences in the aquire timeline at this |
| // point, the previously queued frame hasn't been latched yet. Go ahead |
| // and try to get the signal time here so the syscall is taken out of |
| // the main thread's critical path. |
| mAcquireTimeline.updateSignalTimes(); |
| // Push the new fence after updating since it's likely still pending. |
| mAcquireTimeline.push(newTimestamps->acquireFence); |
| mFrameEventHistory.addQueue(*newTimestamps); |
| } |
| |
| if (outDelta) { |
| mFrameEventHistory.getAndResetDelta(outDelta); |
| } |
| } |
| |
| size_t Layer::getChildrenCount() const { |
| size_t count = 0; |
| for (const sp<Layer>& child : mCurrentChildren) { |
| count += 1 + child->getChildrenCount(); |
| } |
| return count; |
| } |
| |
| void Layer::addChild(const sp<Layer>& layer) { |
| mCurrentChildren.add(layer); |
| layer->setParent(this); |
| } |
| |
| ssize_t Layer::removeChild(const sp<Layer>& layer) { |
| layer->setParent(nullptr); |
| return mCurrentChildren.remove(layer); |
| } |
| |
| bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { |
| sp<Handle> handle = nullptr; |
| sp<Layer> newParent = nullptr; |
| if (newParentHandle == nullptr) { |
| return false; |
| } |
| handle = static_cast<Handle*>(newParentHandle.get()); |
| newParent = handle->owner.promote(); |
| if (newParent == nullptr) { |
| ALOGE("Unable to promote Layer handle"); |
| return false; |
| } |
| |
| for (const sp<Layer>& child : mCurrentChildren) { |
| newParent->addChild(child); |
| |
| sp<Client> client(child->mClientRef.promote()); |
| if (client != nullptr) { |
| client->updateParent(newParent); |
| } |
| } |
| mCurrentChildren.clear(); |
| |
| return true; |
| } |
| |
| void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) { |
| for (const sp<Layer>& child : mDrawingChildren) { |
| child->mDrawingParent = newParent; |
| } |
| } |
| |
| bool Layer::reparent(const sp<IBinder>& newParentHandle) { |
| if (newParentHandle == nullptr) { |
| return false; |
| } |
| |
| auto handle = static_cast<Handle*>(newParentHandle.get()); |
| sp<Layer> newParent = handle->owner.promote(); |
| if (newParent == nullptr) { |
| ALOGE("Unable to promote Layer handle"); |
| return false; |
| } |
| |
| sp<Layer> parent = getParent(); |
| if (parent != nullptr) { |
| parent->removeChild(this); |
| } |
| newParent->addChild(this); |
| |
| sp<Client> client(mClientRef.promote()); |
| sp<Client> newParentClient(newParent->mClientRef.promote()); |
| |
| if (client != newParentClient) { |
| client->updateParent(newParent); |
| } |
| |
| return true; |
| } |
| |
| bool Layer::detachChildren() { |
| for (const sp<Layer>& child : mCurrentChildren) { |
| sp<Client> parentClient = mClientRef.promote(); |
| sp<Client> client(child->mClientRef.promote()); |
| if (client != nullptr && parentClient != client) { |
| client->detachLayer(child.get()); |
| child->detachChildren(); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Layer::isLegacyDataSpace() const { |
| // return true when no higher bits are set |
| return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK | |
| ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK)); |
| } |
| |
| void Layer::setParent(const sp<Layer>& layer) { |
| mCurrentParent = layer; |
| } |
| |
| void Layer::clearSyncPoints() { |
| for (const auto& child : mCurrentChildren) { |
| child->clearSyncPoints(); |
| } |
| |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| point->setFrameAvailable(); |
| } |
| mLocalSyncPoints.clear(); |
| } |
| |
| int32_t Layer::getZ() const { |
| return mDrawingState.z; |
| } |
| |
| bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| return state.zOrderRelativeOf != nullptr; |
| } |
| |
| __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( |
| LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { |
| LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, |
| "makeTraversalList received invalid stateSet"); |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| if (state.zOrderRelatives.size() == 0) { |
| *outSkipRelativeZUsers = true; |
| return children; |
| } |
| |
| LayerVector traverse(stateSet); |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| if (strongRelative != nullptr) { |
| traverse.add(strongRelative); |
| } |
| } |
| |
| for (const sp<Layer>& child : children) { |
| const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; |
| if (childState.zOrderRelativeOf != nullptr) { |
| continue; |
| } |
| traverse.add(child); |
| } |
| |
| return traverse; |
| } |
| |
| /** |
| * Negatively signed relatives are before 'this' in Z-order. |
| */ |
| void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { |
| // In the case we have other layers who are using a relative Z to us, makeTraversalList will |
| // produce a new list for traversing, including our relatives, and not including our children |
| // who are relatives of another surface. In the case that there are no relative Z, |
| // makeTraversalList returns our children directly to avoid significant overhead. |
| // However in this case we need to take the responsibility for filtering children which |
| // are relatives of another surface here. |
| bool skipRelativeZUsers = false; |
| const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); |
| |
| size_t i = 0; |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| if (relative->getZ() >= 0) { |
| break; |
| } |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| |
| visitor(this); |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| relative->traverseInZOrder(stateSet, visitor); |
| } |
| } |
| |
| /** |
| * Positively signed relatives are before 'this' in reverse Z-order. |
| */ |
| void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| // See traverseInZOrder for documentation. |
| bool skipRelativeZUsers = false; |
| LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); |
| |
| int32_t i = 0; |
| for (i = int32_t(list.size()) - 1; i >= 0; i--) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| if (relative->getZ() < 0) { |
| break; |
| } |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| visitor(this); |
| for (; i >= 0; i--) { |
| const auto& relative = list[i]; |
| |
| if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { |
| continue; |
| } |
| |
| relative->traverseInReverseZOrder(stateSet, visitor); |
| } |
| } |
| |
| LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, |
| const std::vector<Layer*>& layersInTree) { |
| LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, |
| "makeTraversalList received invalid stateSet"); |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| LayerVector traverse(stateSet); |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| // Only add relative layers that are also descendents of the top most parent of the tree. |
| // If a relative layer is not a descendent, then it should be ignored. |
| if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { |
| traverse.add(strongRelative); |
| } |
| } |
| |
| for (const sp<Layer>& child : children) { |
| const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; |
| // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a |
| // descendent of the top most parent of the tree. If it's not a descendent, then just add |
| // the child here since it won't be added later as a relative. |
| if (std::binary_search(layersInTree.begin(), layersInTree.end(), |
| childState.zOrderRelativeOf.promote().get())) { |
| continue; |
| } |
| traverse.add(child); |
| } |
| |
| return traverse; |
| } |
| |
| void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, |
| LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); |
| |
| size_t i = 0; |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| if (relative->getZ() >= 0) { |
| break; |
| } |
| relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| |
| visitor(this); |
| for (; i < list.size(); i++) { |
| const auto& relative = list[i]; |
| relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| } |
| |
| std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| |
| std::vector<Layer*> layersInTree = {this}; |
| for (size_t i = 0; i < children.size(); i++) { |
| const auto& child = children[i]; |
| std::vector<Layer*> childLayers = child->getLayersInTree(stateSet); |
| layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); |
| } |
| |
| return layersInTree; |
| } |
| |
| void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor) { |
| std::vector<Layer*> layersInTree = getLayersInTree(stateSet); |
| std::sort(layersInTree.begin(), layersInTree.end()); |
| traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); |
| } |
| |
| Transform Layer::getTransform() const { |
| Transform t; |
| const auto& p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| t = p->getTransform(); |
| |
| // If the parent is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. |
| // it isFixedSize) then there may be additional scaling not accounted |
| // for in the transform. We need to mirror this scaling in child surfaces |
| // or we will break the contract where WM can treat child surfaces as |
| // pixels in the parent surface. |
| if (p->isFixedSize() && p->getBE().compositionInfo.mBuffer != nullptr) { |
| int bufferWidth; |
| int bufferHeight; |
| if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) { |
| bufferWidth = p->getBE().compositionInfo.mBuffer->getWidth(); |
| bufferHeight = p->getBE().compositionInfo.mBuffer->getHeight(); |
| } else { |
| bufferHeight = p->getBE().compositionInfo.mBuffer->getWidth(); |
| bufferWidth = p->getBE().compositionInfo.mBuffer->getHeight(); |
| } |
| float sx = p->getDrawingState().active.w / static_cast<float>(bufferWidth); |
| float sy = p->getDrawingState().active.h / static_cast<float>(bufferHeight); |
| Transform extraParentScaling; |
| extraParentScaling.set(sx, 0, 0, sy); |
| t = t * extraParentScaling; |
| } |
| } |
| return t * getDrawingState().active.transform; |
| } |
| |
| half Layer::getAlpha() const { |
| const auto& p = mDrawingParent.promote(); |
| |
| half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; |
| return parentAlpha * getDrawingState().color.a; |
| } |
| |
| half4 Layer::getColor() const { |
| const half4 color(getDrawingState().color); |
| return half4(color.r, color.g, color.b, getAlpha()); |
| } |
| |
| void Layer::commitChildList() { |
| for (size_t i = 0; i < mCurrentChildren.size(); i++) { |
| const auto& child = mCurrentChildren[i]; |
| child->commitChildList(); |
| } |
| mDrawingChildren = mCurrentChildren; |
| mDrawingParent = mCurrentParent; |
| } |
| |
| void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet) { |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| |
| Transform requestedTransform = state.active.transform; |
| Transform transform = getTransform(); |
| |
| layerInfo->set_id(sequence); |
| layerInfo->set_name(getName().c_str()); |
| layerInfo->set_type(String8(getTypeId())); |
| |
| for (const auto& child : children) { |
| layerInfo->add_children(child->sequence); |
| } |
| |
| for (const wp<Layer>& weakRelative : state.zOrderRelatives) { |
| sp<Layer> strongRelative = weakRelative.promote(); |
| if (strongRelative != nullptr) { |
| layerInfo->add_relatives(strongRelative->sequence); |
| } |
| } |
| |
| LayerProtoHelper::writeToProto(state.activeTransparentRegion, |
| layerInfo->mutable_transparent_region()); |
| LayerProtoHelper::writeToProto(visibleRegion, layerInfo->mutable_visible_region()); |
| LayerProtoHelper::writeToProto(surfaceDamageRegion, layerInfo->mutable_damage_region()); |
| |
| layerInfo->set_layer_stack(getLayerStack()); |
| layerInfo->set_z(state.z); |
| |
| PositionProto* position = layerInfo->mutable_position(); |
| position->set_x(transform.tx()); |
| position->set_y(transform.ty()); |
| |
| PositionProto* requestedPosition = layerInfo->mutable_requested_position(); |
| requestedPosition->set_x(requestedTransform.tx()); |
| requestedPosition->set_y(requestedTransform.ty()); |
| |
| SizeProto* size = layerInfo->mutable_size(); |
| size->set_w(state.active.w); |
| size->set_h(state.active.h); |
| |
| LayerProtoHelper::writeToProto(state.crop, layerInfo->mutable_crop()); |
| LayerProtoHelper::writeToProto(state.finalCrop, layerInfo->mutable_final_crop()); |
| |
| layerInfo->set_is_opaque(isOpaque(state)); |
| layerInfo->set_invalidate(contentDirty); |
| |
| // XXX (b/79210409) mCurrentDataSpace is not protected |
| layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace))); |
| |
| layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); |
| LayerProtoHelper::writeToProto(getColor(), layerInfo->mutable_color()); |
| LayerProtoHelper::writeToProto(state.color, layerInfo->mutable_requested_color()); |
| layerInfo->set_flags(state.flags); |
| |
| LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); |
| LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform()); |
| |
| auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); |
| if (parent != nullptr) { |
| layerInfo->set_parent(parent->sequence); |
| } |
| |
| auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); |
| if (zOrderRelativeOf != nullptr) { |
| layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); |
| } |
| |
| // XXX getBE().compositionInfo.mBuffer is not protected |
| auto buffer = getBE().compositionInfo.mBuffer; |
| if (buffer != nullptr) { |
| LayerProtoHelper::writeToProto(buffer, layerInfo->mutable_active_buffer()); |
| } |
| |
| layerInfo->set_queued_frames(getQueuedFrameCount()); |
| layerInfo->set_refresh_pending(isBufferLatched()); |
| layerInfo->set_window_type(state.type); |
| layerInfo->set_app_id(state.appId); |
| } |
| |
| void Layer::writeToProto(LayerProto* layerInfo, int32_t hwcId) { |
| writeToProto(layerInfo, LayerVector::StateSet::Drawing); |
| |
| const auto& hwcInfo = getBE().mHwcLayers.at(hwcId); |
| |
| const Rect& frame = hwcInfo.displayFrame; |
| LayerProtoHelper::writeToProto(frame, layerInfo->mutable_hwc_frame()); |
| |
| const FloatRect& crop = hwcInfo.sourceCrop; |
| LayerProtoHelper::writeToProto(crop, layerInfo->mutable_hwc_crop()); |
| |
| const int32_t transform = static_cast<int32_t>(hwcInfo.transform); |
| layerInfo->set_hwc_transform(transform); |
| |
| const int32_t compositionType = static_cast<int32_t>(hwcInfo.compositionType); |
| layerInfo->set_hwc_composition_type(compositionType); |
| |
| if (std::strcmp(getTypeId(), "BufferLayer") == 0 && |
| static_cast<BufferLayer*>(this)->isProtected()) { |
| layerInfo->set_is_protected(true); |
| } else { |
| layerInfo->set_is_protected(false); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| }; // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |