blob: c3d837e86c365c7508ec791e3e35e0e51b58a228 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <sys/types.h>
/*
* NOTE: Make sure this file doesn't include anything from <gl/ > or <gl2/ >
*/
#include <android-base/thread_annotations.h>
#include <compositionengine/OutputColorSetting.h>
#include <cutils/atomic.h>
#include <cutils/compiler.h>
#include <gui/BufferQueue.h>
#include <gui/FrameTimestamps.h>
#include <gui/ISurfaceComposer.h>
#include <gui/ISurfaceComposerClient.h>
#include <gui/ITransactionCompletedListener.h>
#include <gui/LayerState.h>
#include <gui/OccupancyTracker.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/mat4.h>
#include <renderengine/LayerSettings.h>
#include <serviceutils/PriorityDumper.h>
#include <system/graphics.h>
#include <ui/FenceTime.h>
#include <ui/PixelFormat.h>
#include <ui/Size.h>
#include <utils/Errors.h>
#include <utils/KeyedVector.h>
#include <utils/RefBase.h>
#include <utils/SortedVector.h>
#include <utils/Trace.h>
#include <utils/threads.h>
#include "ClientCache.h"
#include "DisplayDevice.h"
#include "DisplayHardware/HWC2.h"
#include "DisplayHardware/PowerAdvisor.h"
#include "DisplayIdGenerator.h"
#include "Effects/Daltonizer.h"
#include "Fps.h"
#include "FrameTracker.h"
#include "LayerVector.h"
#include "Scheduler/RefreshRateConfigs.h"
#include "Scheduler/RefreshRateStats.h"
#include "Scheduler/Scheduler.h"
#include "Scheduler/VsyncModulator.h"
#include "SurfaceFlingerFactory.h"
#include "SurfaceTracing.h"
#include "TracedOrdinal.h"
#include "TransactionCallbackInvoker.h"
#include <atomic>
#include <cstdint>
#include <functional>
#include <future>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <queue>
#include <set>
#include <string>
#include <thread>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
using namespace android::surfaceflinger;
namespace android {
class Client;
class EventThread;
class FpsReporter;
class TunnelModeEnabledReporter;
class HdrLayerInfoReporter;
class HWComposer;
struct SetInputWindowsListener;
class IGraphicBufferProducer;
class Layer;
class MessageBase;
class RefreshRateOverlay;
class RegionSamplingThread;
class RenderArea;
class TimeStats;
class FrameTracer;
using gui::ScreenCaptureResults;
namespace frametimeline {
class FrameTimeline;
}
namespace os {
class IInputFlinger;
}
namespace compositionengine {
class DisplaySurface;
class OutputLayer;
struct CompositionRefreshArgs;
} // namespace compositionengine
namespace renderengine {
class RenderEngine;
} // namespace renderengine
enum {
eTransactionNeeded = 0x01,
eTraversalNeeded = 0x02,
eDisplayTransactionNeeded = 0x04,
eTransformHintUpdateNeeded = 0x08,
eTransactionFlushNeeded = 0x10,
eTransactionMask = 0x1f,
};
using DisplayColorSetting = compositionengine::OutputColorSetting;
struct SurfaceFlingerBE {
FenceTimeline mGlCompositionDoneTimeline;
FenceTimeline mDisplayTimeline;
// protected by mCompositorTimingLock;
mutable std::mutex mCompositorTimingLock;
CompositorTiming mCompositorTiming;
// Only accessed from the main thread.
struct CompositePresentTime {
nsecs_t composite = -1;
std::shared_ptr<FenceTime> display = FenceTime::NO_FENCE;
};
std::queue<CompositePresentTime> mCompositePresentTimes;
static const size_t NUM_BUCKETS = 8; // < 1-7, 7+
nsecs_t mFrameBuckets[NUM_BUCKETS] = {};
nsecs_t mTotalTime = 0;
std::atomic<nsecs_t> mLastSwapTime = 0;
// Double- vs. triple-buffering stats
struct BufferingStats {
size_t numSegments = 0;
nsecs_t totalTime = 0;
// "Two buffer" means that a third buffer was never used, whereas
// "double-buffered" means that on average the segment only used two
// buffers (though it may have used a third for some part of the
// segment)
nsecs_t twoBufferTime = 0;
nsecs_t doubleBufferedTime = 0;
nsecs_t tripleBufferedTime = 0;
};
mutable Mutex mBufferingStatsMutex;
std::unordered_map<std::string, BufferingStats> mBufferingStats;
};
class SurfaceFlinger : public BnSurfaceComposer,
public PriorityDumper,
private IBinder::DeathRecipient,
private HWC2::ComposerCallback,
private ISchedulerCallback {
public:
struct SkipInitializationTag {};
SurfaceFlinger(surfaceflinger::Factory&, SkipInitializationTag) ANDROID_API;
explicit SurfaceFlinger(surfaceflinger::Factory&) ANDROID_API;
// set main thread scheduling policy
static status_t setSchedFifo(bool enabled) ANDROID_API;
// set main thread scheduling attributes
static status_t setSchedAttr(bool enabled);
static char const* getServiceName() ANDROID_API { return "SurfaceFlinger"; }
// This is the phase offset in nanoseconds of the software vsync event
// relative to the vsync event reported by HWComposer. The software vsync
// event is when SurfaceFlinger and Choreographer-based applications run each
// frame.
//
// This phase offset allows adjustment of the minimum latency from application
// wake-up time (by Choreographer) to the time at which the resulting window
// image is displayed. This value may be either positive (after the HW vsync)
// or negative (before the HW vsync). Setting it to 0 will result in a lower
// latency bound of two vsync periods because the app and SurfaceFlinger
// will run just after the HW vsync. Setting it to a positive number will
// result in the minimum latency being:
//
// (2 * VSYNC_PERIOD - (vsyncPhaseOffsetNs % VSYNC_PERIOD))
//
// Note that reducing this latency makes it more likely for the applications
// to not have their window content image ready in time. When this happens
// the latency will end up being an additional vsync period, and animations
// will hiccup. Therefore, this latency should be tuned somewhat
// conservatively (or at least with awareness of the trade-off being made).
static int64_t vsyncPhaseOffsetNs;
static int64_t sfVsyncPhaseOffsetNs;
// If fences from sync Framework are supported.
static bool hasSyncFramework;
// The offset in nanoseconds to use when VsyncController timestamps present fence
// signaling time.
static int64_t dispSyncPresentTimeOffset;
// Some hardware can do RGB->YUV conversion more efficiently in hardware
// controlled by HWC than in hardware controlled by the video encoder.
// This instruct VirtualDisplaySurface to use HWC for such conversion on
// GL composition.
static bool useHwcForRgbToYuv;
// Controls the number of buffers SurfaceFlinger will allocate for use in
// FramebufferSurface
static int64_t maxFrameBufferAcquiredBuffers;
// Controls the maximum width and height in pixels that the graphics pipeline can support for
// GPU fallback composition. For example, 8k devices with 4k GPUs, or 4k devices with 2k GPUs.
static uint32_t maxGraphicsWidth;
static uint32_t maxGraphicsHeight;
// Indicate if a device has wide color gamut display. This is typically
// found on devices with wide color gamut (e.g. Display-P3) display.
static bool hasWideColorDisplay;
static ui::Rotation internalDisplayOrientation;
// Indicate if device wants color management on its display.
static bool useColorManagement;
static bool useContextPriority;
// The data space and pixel format that SurfaceFlinger expects hardware composer
// to composite efficiently. Meaning under most scenarios, hardware composer
// will accept layers with the data space and pixel format.
static ui::Dataspace defaultCompositionDataspace;
static ui::PixelFormat defaultCompositionPixelFormat;
// The data space and pixel format that SurfaceFlinger expects hardware composer
// to composite efficiently for wide color gamut surfaces. Meaning under most scenarios,
// hardware composer will accept layers with the data space and pixel format.
static ui::Dataspace wideColorGamutCompositionDataspace;
static ui::PixelFormat wideColorGamutCompositionPixelFormat;
// Whether to use frame rate API when deciding about the refresh rate of the display. This
// variable is caches in SF, so that we can check it with each layer creation, and a void the
// overhead that is caused by reading from sysprop.
static bool useFrameRateApi;
static constexpr SkipInitializationTag SkipInitialization;
// Whether or not SDR layers should be dimmed to the desired SDR white point instead of
// being treated as native display brightness
static bool enableSdrDimming;
static bool enableLatchUnsignaled;
// must be called before clients can connect
void init() ANDROID_API;
// starts SurfaceFlinger main loop in the current thread
void run() ANDROID_API;
SurfaceFlingerBE& getBE() { return mBE; }
const SurfaceFlingerBE& getBE() const { return mBE; }
// Schedule an asynchronous or synchronous task on the main thread.
template <typename F, typename T = std::invoke_result_t<F>>
[[nodiscard]] std::future<T> schedule(F&&);
// force full composition on all displays
void repaintEverything();
surfaceflinger::Factory& getFactory() { return mFactory; }
// The CompositionEngine encapsulates all composition related interfaces and actions.
compositionengine::CompositionEngine& getCompositionEngine() const;
// Obtains a name from the texture pool, or, if the pool is empty, posts a
// synchronous message to the main thread to obtain one on the fly
uint32_t getNewTexture();
// utility function to delete a texture on the main thread
void deleteTextureAsync(uint32_t texture);
// called on the main thread by MessageQueue when an internal message
// is received
// TODO: this should be made accessible only to MessageQueue
void onMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime);
renderengine::RenderEngine& getRenderEngine() const;
bool authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const;
void onLayerFirstRef(Layer*);
void onLayerDestroyed(Layer*);
void removeHierarchyFromOffscreenLayers(Layer* layer);
void removeFromOffscreenLayers(Layer* layer);
// TODO: Remove atomic if move dtor to main thread CL lands
std::atomic<uint32_t> mNumClones;
TransactionCallbackInvoker& getTransactionCallbackInvoker() {
return mTransactionCallbackInvoker;
}
// Converts from a binder handle to a Layer
// Returns nullptr if the handle does not point to an existing layer.
// Otherwise, returns a weak reference so that callers off the main-thread
// won't accidentally hold onto the last strong reference.
wp<Layer> fromHandle(const sp<IBinder>& handle) const;
// If set, disables reusing client composition buffers. This can be set by
// debug.sf.disable_client_composition_cache
bool mDisableClientCompositionCache = false;
void setInputWindowsFinished();
// Disables expensive rendering for all displays
// This is scheduled on the main thread
void disableExpensiveRendering();
protected:
// We're reference counted, never destroy SurfaceFlinger directly
virtual ~SurfaceFlinger();
virtual uint32_t setClientStateLocked(
const FrameTimelineInfo& info, const ComposerState& composerState,
int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime,
uint32_t permissions,
std::unordered_set<ListenerCallbacks, ListenerCallbacksHash>& listenerCallbacks)
REQUIRES(mStateLock);
virtual void commitTransactionLocked();
// Used internally by computeLayerBounds() to gets the clip rectangle to use for the
// root layers on a particular display in layer-coordinate space. The
// layers (and effectively their children) will be clipped against this
// rectangle. The base behavior is to clip to the visible region of the
// display.
virtual FloatRect getLayerClipBoundsForDisplay(const DisplayDevice&) const;
private:
friend class BufferLayer;
friend class BufferQueueLayer;
friend class BufferStateLayer;
friend class Client;
friend class FpsReporter;
friend class TunnelModeEnabledReporter;
friend class Layer;
friend class MonitoredProducer;
friend class RefreshRateOverlay;
friend class RegionSamplingThread;
friend class SurfaceTracing;
// For unit tests
friend class TestableSurfaceFlinger;
friend class TransactionApplicationTest;
friend class TunnelModeEnabledReporterTest;
using RefreshRate = scheduler::RefreshRateConfigs::RefreshRate;
using VsyncModulator = scheduler::VsyncModulator;
using TransactionSchedule = scheduler::TransactionSchedule;
using TraverseLayersFunction = std::function<void(const LayerVector::Visitor&)>;
using RenderAreaFuture = std::future<std::unique_ptr<RenderArea>>;
using DumpArgs = Vector<String16>;
using Dumper = std::function<void(const DumpArgs&, bool asProto, std::string&)>;
// This value is specified in number of frames. Log frame stats at most
// every half hour.
enum { LOG_FRAME_STATS_PERIOD = 30*60*60 };
class State {
public:
explicit State(LayerVector::StateSet set) : stateSet(set), layersSortedByZ(set) {}
State& operator=(const State& other) {
// We explicitly don't copy stateSet so that, e.g., mDrawingState
// always uses the Drawing StateSet.
layersSortedByZ = other.layersSortedByZ;
displays = other.displays;
colorMatrixChanged = other.colorMatrixChanged;
if (colorMatrixChanged) {
colorMatrix = other.colorMatrix;
}
globalShadowSettings = other.globalShadowSettings;
return *this;
}
const LayerVector::StateSet stateSet = LayerVector::StateSet::Invalid;
LayerVector layersSortedByZ;
DefaultKeyedVector< wp<IBinder>, DisplayDeviceState> displays;
bool colorMatrixChanged = true;
mat4 colorMatrix;
renderengine::ShadowSettings globalShadowSettings;
void traverse(const LayerVector::Visitor& visitor) const;
void traverseInZOrder(const LayerVector::Visitor& visitor) const;
void traverseInReverseZOrder(const LayerVector::Visitor& visitor) const;
};
// Keeps track of pending buffers per layer handle in the transaction queue or current/drawing
// state before the buffers are latched. The layer owns the atomic counters and decrements the
// count in the main thread when dropping or latching a buffer.
//
// The binder threads increment the same counter when a new transaction containing a buffer is
// added to the transaction queue. The map is updated with the layer handle lifecycle updates.
// This is done to avoid lock contention with the main thread.
class BufferCountTracker {
public:
void increment(BBinder* layerHandle) {
std::lock_guard<std::mutex> lock(mLock);
auto it = mCounterByLayerHandle.find(layerHandle);
if (it != mCounterByLayerHandle.end()) {
auto [name, pendingBuffers] = it->second;
int32_t count = ++(*pendingBuffers);
ATRACE_INT(name.c_str(), count);
} else {
ALOGW("Handle not found! %p", layerHandle);
}
}
void add(BBinder* layerHandle, const std::string& name, std::atomic<int32_t>* counter) {
std::lock_guard<std::mutex> lock(mLock);
mCounterByLayerHandle[layerHandle] = std::make_pair(name, counter);
}
void remove(BBinder* layerHandle) {
std::lock_guard<std::mutex> lock(mLock);
mCounterByLayerHandle.erase(layerHandle);
}
private:
std::mutex mLock;
std::unordered_map<BBinder*, std::pair<std::string, std::atomic<int32_t>*>>
mCounterByLayerHandle GUARDED_BY(mLock);
};
struct ActiveModeInfo {
DisplayModeId modeId;
Scheduler::ModeEvent event = Scheduler::ModeEvent::None;
bool operator!=(const ActiveModeInfo& other) const {
return modeId != other.modeId || event != other.event;
}
};
enum class BootStage {
BOOTLOADER,
BOOTANIMATION,
FINISHED,
};
struct HotplugEvent {
hal::HWDisplayId hwcDisplayId;
hal::Connection connection = hal::Connection::INVALID;
};
class CountDownLatch {
public:
enum {
eSyncTransaction = 1 << 0,
eSyncInputWindows = 1 << 1,
};
explicit CountDownLatch(uint32_t flags) : mFlags(flags) {}
// True if there is no waiting condition after count down.
bool countDown(uint32_t flag) {
std::unique_lock<std::mutex> lock(mMutex);
if (mFlags == 0) {
return true;
}
mFlags &= ~flag;
if (mFlags == 0) {
mCountDownComplete.notify_all();
return true;
}
return false;
}
// Return true if triggered.
bool wait_until(const std::chrono::seconds& timeout) const {
std::unique_lock<std::mutex> lock(mMutex);
const auto untilTime = std::chrono::system_clock::now() + timeout;
while (mFlags != 0) {
// Conditional variables can be woken up sporadically, so we check count
// to verify the wakeup was triggered by |countDown|.
if (std::cv_status::timeout == mCountDownComplete.wait_until(lock, untilTime)) {
return false;
}
}
return true;
}
private:
uint32_t mFlags;
mutable std::condition_variable mCountDownComplete;
mutable std::mutex mMutex;
};
struct TransactionState {
TransactionState(const FrameTimelineInfo& frameTimelineInfo,
const Vector<ComposerState>& composerStates,
const Vector<DisplayState>& displayStates, uint32_t transactionFlags,
const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands, int64_t desiredPresentTime,
bool isAutoTimestamp, const client_cache_t& uncacheBuffer,
int64_t postTime, uint32_t permissions, bool hasListenerCallbacks,
std::vector<ListenerCallbacks> listenerCallbacks, int originPid,
int originUid, uint64_t transactionId)
: frameTimelineInfo(frameTimelineInfo),
states(composerStates),
displays(displayStates),
flags(transactionFlags),
applyToken(applyToken),
inputWindowCommands(inputWindowCommands),
desiredPresentTime(desiredPresentTime),
isAutoTimestamp(isAutoTimestamp),
buffer(uncacheBuffer),
postTime(postTime),
permissions(permissions),
hasListenerCallbacks(hasListenerCallbacks),
listenerCallbacks(listenerCallbacks),
originPid(originPid),
originUid(originUid),
id(transactionId) {}
void traverseStatesWithBuffers(std::function<void(const layer_state_t&)> visitor);
FrameTimelineInfo frameTimelineInfo;
Vector<ComposerState> states;
Vector<DisplayState> displays;
uint32_t flags;
sp<IBinder> applyToken;
InputWindowCommands inputWindowCommands;
const int64_t desiredPresentTime;
const bool isAutoTimestamp;
client_cache_t buffer;
const int64_t postTime;
uint32_t permissions;
bool hasListenerCallbacks;
std::vector<ListenerCallbacks> listenerCallbacks;
int originPid;
int originUid;
uint64_t id;
std::shared_ptr<CountDownLatch> transactionCommittedSignal;
};
template <typename F, std::enable_if_t<!std::is_member_function_pointer_v<F>>* = nullptr>
static Dumper dumper(F&& dump) {
using namespace std::placeholders;
return std::bind(std::forward<F>(dump), _3);
}
template <typename F, std::enable_if_t<std::is_member_function_pointer_v<F>>* = nullptr>
Dumper dumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _3);
}
template <typename F>
Dumper argsDumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _1, _3);
}
template <typename F>
Dumper protoDumper(F dump) {
using namespace std::placeholders;
return std::bind(dump, this, _1, _2, _3);
}
template <typename... Args,
typename Handler = VsyncModulator::VsyncConfigOpt (VsyncModulator::*)(Args...)>
void modulateVsync(Handler handler, Args... args) {
if (const auto config = (*mVsyncModulator.*handler)(args...)) {
const auto vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
setVsyncConfig(*config, vsyncPeriod);
}
}
static const int MAX_TRACING_MEMORY = 100 * 1024 * 1024; // 100MB
// Maximum allowed number of display frames that can be set through backdoor
static const int MAX_ALLOWED_DISPLAY_FRAMES = 2048;
// Implements IBinder.
status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) override;
status_t dump(int fd, const Vector<String16>& args) override { return priorityDump(fd, args); }
bool callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache = true)
EXCLUDES(mStateLock);
// Implements ISurfaceComposer
sp<ISurfaceComposerClient> createConnection() override;
sp<IBinder> createDisplay(const String8& displayName, bool secure) override;
void destroyDisplay(const sp<IBinder>& displayToken) override;
std::vector<PhysicalDisplayId> getPhysicalDisplayIds() const override;
sp<IBinder> getPhysicalDisplayToken(PhysicalDisplayId displayId) const override;
status_t setTransactionState(const FrameTimelineInfo& frameTimelineInfo,
const Vector<ComposerState>& state,
const Vector<DisplayState>& displays, uint32_t flags,
const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands,
int64_t desiredPresentTime, bool isAutoTimestamp,
const client_cache_t& uncacheBuffer, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks,
uint64_t transactionId) override;
void bootFinished() override;
bool authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const override;
status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported) const override;
sp<IDisplayEventConnection> createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource = eVsyncSourceApp,
ISurfaceComposer::EventRegistrationFlags eventRegistration = {}) override;
status_t captureDisplay(const DisplayCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) override;
status_t captureDisplay(uint64_t displayOrLayerStack,
const sp<IScreenCaptureListener>& captureListener) override;
status_t captureLayers(const LayerCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) override;
status_t getDisplayStats(const sp<IBinder>& displayToken, DisplayStatInfo* stats) override;
status_t getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState*)
EXCLUDES(mStateLock) override;
status_t getStaticDisplayInfo(const sp<IBinder>& displayToken, ui::StaticDisplayInfo*)
EXCLUDES(mStateLock) override;
status_t getDynamicDisplayInfo(const sp<IBinder>& displayToken, ui::DynamicDisplayInfo*)
EXCLUDES(mStateLock) override;
status_t getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries&) override;
status_t setActiveColorMode(const sp<IBinder>& displayToken, ui::ColorMode colorMode) override;
void setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) override;
void setGameContentType(const sp<IBinder>& displayToken, bool on) override;
void setPowerMode(const sp<IBinder>& displayToken, int mode) override;
status_t clearAnimationFrameStats() override;
status_t getAnimationFrameStats(FrameStats* outStats) const override;
status_t overrideHdrTypes(const sp<IBinder>& displayToken,
const std::vector<ui::Hdr>& hdrTypes) override;
status_t onPullAtom(const int32_t atomId, std::string* pulledData, bool* success) override;
status_t enableVSyncInjections(bool enable) override;
status_t injectVSync(nsecs_t when) override;
status_t getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) override;
status_t getColorManagement(bool* outGetColorManagement) const override;
status_t getCompositionPreference(ui::Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
ui::Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const override;
status_t getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const override;
status_t setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken, bool enable,
uint8_t componentMask, uint64_t maxFrames) override;
status_t getDisplayedContentSample(const sp<IBinder>& displayToken, uint64_t maxFrames,
uint64_t timestamp,
DisplayedFrameStats* outStats) const override;
status_t getProtectedContentSupport(bool* outSupported) const override;
status_t isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const override;
status_t addRegionSamplingListener(const Rect& samplingArea, const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) override;
status_t removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) override;
status_t addFpsListener(int32_t taskId, const sp<gui::IFpsListener>& listener) override;
status_t removeFpsListener(const sp<gui::IFpsListener>& listener) override;
status_t addTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) override;
status_t removeTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) override;
status_t setDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
ui::DisplayModeId displayModeId, bool allowGroupSwitching,
float primaryRefreshRateMin, float primaryRefreshRateMax,
float appRequestRefreshRateMin,
float appRequestRefreshRateMax) override;
status_t getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
ui::DisplayModeId* outDefaultMode,
bool* outAllowGroupSwitching,
float* outPrimaryRefreshRateMin,
float* outPrimaryRefreshRateMax,
float* outAppRequestRefreshRateMin,
float* outAppRequestRefreshRateMax) override;
status_t getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const override;
status_t setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) override;
status_t addHdrLayerInfoListener(const sp<IBinder>& displayToken,
const sp<gui::IHdrLayerInfoListener>& listener) override;
status_t removeHdrLayerInfoListener(const sp<IBinder>& displayToken,
const sp<gui::IHdrLayerInfoListener>& listener) override;
status_t notifyPowerBoost(int32_t boostId) override;
status_t setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
float lightPosY, float lightPosZ, float lightRadius) override;
status_t setFrameRate(const sp<IGraphicBufferProducer>& surface, float frameRate,
int8_t compatibility, int8_t changeFrameRateStrategy) override;
status_t acquireFrameRateFlexibilityToken(sp<IBinder>* outToken) override;
status_t setFrameTimelineInfo(const sp<IGraphicBufferProducer>& surface,
const FrameTimelineInfo& frameTimelineInfo) override;
status_t addTransactionTraceListener(
const sp<gui::ITransactionTraceListener>& listener) override;
int getGPUContextPriority() override;
status_t getMaxAcquiredBufferCount(int* buffers) const override;
// Implements IBinder::DeathRecipient.
void binderDied(const wp<IBinder>& who) override;
// Implements RefBase.
void onFirstRef() override;
// HWC2::ComposerCallback overrides:
void onComposerHalVsync(hal::HWDisplayId, int64_t timestamp,
std::optional<hal::VsyncPeriodNanos>) override;
void onComposerHalHotplug(hal::HWDisplayId, hal::Connection) override;
void onComposerHalRefresh(hal::HWDisplayId) override;
void onComposerHalVsyncPeriodTimingChanged(hal::HWDisplayId,
const hal::VsyncPeriodChangeTimeline&) override;
void onComposerHalSeamlessPossible(hal::HWDisplayId) override;
/*
* ISchedulerCallback
*/
// Toggles hardware VSYNC by calling into HWC.
void setVsyncEnabled(bool) override;
// Initiates a refresh rate change to be applied on invalidate.
void changeRefreshRate(const Scheduler::RefreshRate&, Scheduler::ModeEvent) override;
// Forces full composition on all displays without resetting the scheduler idle timer.
void repaintEverythingForHWC() override;
// Called when kernel idle timer has expired. Used to update the refresh rate overlay.
void kernelTimerChanged(bool expired) override;
// Called when the frame rate override list changed to trigger an event.
void triggerOnFrameRateOverridesChanged() override;
// Toggles the kernel idle timer on or off depending the policy decisions around refresh rates.
void toggleKernelIdleTimer();
// Keeps track of whether the kernel idle timer is currently enabled, so we don't have to
// make calls to sys prop each time.
bool mKernelIdleTimerEnabled = false;
// Keeps track of whether the kernel timer is supported on the SF side.
bool mSupportKernelIdleTimer = false;
// Show spinner with refresh rate overlay
bool mRefreshRateOverlaySpinner = false;
/*
* Message handling
*/
// Can only be called from the main thread or with mStateLock held
void signalTransaction();
// Can only be called from the main thread or with mStateLock held
void signalLayerUpdate();
void signalRefresh();
// Called on the main thread in response to initializeDisplays()
void onInitializeDisplays() REQUIRES(mStateLock);
// Sets the desired active mode bit. It obtains the lock, and sets mDesiredActiveMode.
void setDesiredActiveMode(const ActiveModeInfo& info) REQUIRES(mStateLock);
status_t setActiveMode(const sp<IBinder>& displayToken, int id);
// Once HWC has returned the present fence, this sets the active mode and a new refresh
// rate in SF.
void setActiveModeInternal() REQUIRES(mStateLock);
// Calls to setActiveMode on the main thread if there is a pending mode change
// that needs to be applied.
void performSetActiveMode() REQUIRES(mStateLock);
void clearDesiredActiveModeState() REQUIRES(mStateLock) EXCLUDES(mActiveModeLock);
// Called when active mode is no longer is progress
void desiredActiveModeChangeDone() REQUIRES(mStateLock);
// Called on the main thread in response to setPowerMode()
void setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode)
REQUIRES(mStateLock);
// Sets the desired display mode specs.
status_t setDesiredDisplayModeSpecsInternal(
const sp<DisplayDevice>& display,
const std::optional<scheduler::RefreshRateConfigs::Policy>& policy, bool overridePolicy)
EXCLUDES(mStateLock);
// Handle the INVALIDATE message queue event, latching new buffers and applying
// incoming transactions
void onMessageInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTime);
// Returns whether the transaction actually modified any state
bool handleMessageTransaction();
// Handle the REFRESH message queue event, sending the current frame down to RenderEngine and
// the Composer HAL for presentation
void onMessageRefresh();
// Returns whether a new buffer has been latched (see handlePageFlip())
bool handleMessageInvalidate();
void handleTransaction(uint32_t transactionFlags);
void handleTransactionLocked(uint32_t transactionFlags) REQUIRES(mStateLock);
void updateInputFlinger();
void updateInputWindowInfo();
void commitInputWindowCommands() REQUIRES(mStateLock);
void updateCursorAsync();
void initScheduler(const DisplayDeviceState&) REQUIRES(mStateLock);
void updatePhaseConfiguration(const Fps&) REQUIRES(mStateLock);
void setVsyncConfig(const VsyncModulator::VsyncConfig&, nsecs_t vsyncPeriod);
/* handlePageFlip - latch a new buffer if available and compute the dirty
* region. Returns whether a new buffer has been latched, i.e., whether it
* is necessary to perform a refresh during this vsync.
*/
bool handlePageFlip();
/*
* Transactions
*/
void applyTransactionState(const FrameTimelineInfo& info, const Vector<ComposerState>& state,
const Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime, bool isAutoTimestamp,
const client_cache_t& uncacheBuffer, const int64_t postTime,
uint32_t permissions, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks,
int originPid, int originUid, uint64_t transactionId)
REQUIRES(mStateLock);
// flush pending transaction that was presented after desiredPresentTime.
void flushTransactionQueues();
// Returns true if there is at least one transaction that needs to be flushed
bool transactionFlushNeeded();
uint32_t getTransactionFlags(uint32_t flags);
uint32_t peekTransactionFlags();
// Can only be called from the main thread or with mStateLock held
uint32_t setTransactionFlags(uint32_t flags);
// Indicate SF should call doTraversal on layers, but don't trigger a wakeup! We use this cases
// where there are still pending transactions but we know they won't be ready until a frame
// arrives from a different layer. So we need to ensure we performTransaction from invalidate
// but there is no need to try and wake up immediately to do it. Rather we rely on
// onFrameAvailable or another layer update to wake us up.
void setTraversalNeeded();
uint32_t setTransactionFlags(uint32_t flags, TransactionSchedule, const sp<IBinder>& = {});
void commitTransaction() REQUIRES(mStateLock);
void commitOffscreenLayers();
bool transactionIsReadyToBeApplied(
const FrameTimelineInfo& info, bool isAutoTimestamp, int64_t desiredPresentTime,
uid_t originUid, const Vector<ComposerState>& states,
const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>&
bufferLayersReadyToPresent) const REQUIRES(mStateLock);
uint32_t setDisplayStateLocked(const DisplayState& s) REQUIRES(mStateLock);
uint32_t addInputWindowCommands(const InputWindowCommands& inputWindowCommands)
REQUIRES(mStateLock);
bool frameIsEarly(nsecs_t expectedPresentTime, int64_t vsyncId) const;
/*
* Layer management
*/
status_t createLayer(const String8& name, const sp<Client>& client, uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, int32_t* outLayerId,
const sp<Layer>& parentLayer = nullptr,
uint32_t* outTransformHint = nullptr);
status_t createBufferQueueLayer(const sp<Client>& client, std::string name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
PixelFormat& format, sp<IBinder>* outHandle,
sp<IGraphicBufferProducer>* outGbp, sp<Layer>* outLayer);
status_t createBufferStateLayer(const sp<Client>& client, std::string name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* outHandle, sp<Layer>* outLayer);
status_t createEffectLayer(const sp<Client>& client, std::string name, uint32_t w, uint32_t h,
uint32_t flags, LayerMetadata metadata, sp<IBinder>* outHandle,
sp<Layer>* outLayer);
status_t createContainerLayer(const sp<Client>& client, std::string name, uint32_t w,
uint32_t h, uint32_t flags, LayerMetadata metadata,
sp<IBinder>* outHandle, sp<Layer>* outLayer);
status_t mirrorLayer(const sp<Client>& client, const sp<IBinder>& mirrorFromHandle,
sp<IBinder>* outHandle, int32_t* outLayerId);
std::string getUniqueLayerName(const char* name);
// called when all clients have released all their references to
// this layer meaning it is entirely safe to destroy all
// resources associated to this layer.
void onHandleDestroyed(BBinder* handle, sp<Layer>& layer);
void markLayerPendingRemovalLocked(const sp<Layer>& layer);
// add a layer to SurfaceFlinger
status_t addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
bool addToRoot, uint32_t* outTransformHint);
// Traverse through all the layers and compute and cache its bounds.
void computeLayerBounds();
// Boot animation, on/off animations and screen capture
void startBootAnim();
status_t captureScreenCommon(RenderAreaFuture, TraverseLayersFunction, ui::Size bufferSize,
ui::PixelFormat, bool allowProtected, bool grayscale,
const sp<IScreenCaptureListener>&);
status_t captureScreenCommon(RenderAreaFuture, TraverseLayersFunction,
const std::shared_ptr<renderengine::ExternalTexture>&,
bool regionSampling, bool grayscale,
const sp<IScreenCaptureListener>&);
status_t renderScreenImplLocked(const RenderArea&, TraverseLayersFunction,
const std::shared_ptr<renderengine::ExternalTexture>&,
bool canCaptureBlackoutContent, bool regionSampling,
bool grayscale, ScreenCaptureResults&);
// If the uid provided is not UNSET_UID, the traverse will skip any layers that don't have a
// matching ownerUid
void traverseLayersInLayerStack(ui::LayerStack, const int32_t uid, const LayerVector::Visitor&);
void readPersistentProperties();
size_t getMaxTextureSize() const;
size_t getMaxViewportDims() const;
int getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const;
/*
* Display and layer stack management
*/
// called when starting, or restarting after system_server death
void initializeDisplays();
sp<const DisplayDevice> getDisplayDeviceLocked(const wp<IBinder>& displayToken) const
REQUIRES(mStateLock) {
return const_cast<SurfaceFlinger*>(this)->getDisplayDeviceLocked(displayToken);
}
sp<DisplayDevice> getDisplayDeviceLocked(const wp<IBinder>& displayToken) REQUIRES(mStateLock) {
const auto it = mDisplays.find(displayToken);
return it == mDisplays.end() ? nullptr : it->second;
}
sp<const DisplayDevice> getDisplayDeviceLocked(PhysicalDisplayId id) const
REQUIRES(mStateLock) {
if (const auto token = getPhysicalDisplayTokenLocked(id)) {
return getDisplayDeviceLocked(token);
}
return nullptr;
}
sp<const DisplayDevice> getDefaultDisplayDeviceLocked() const REQUIRES(mStateLock) {
return const_cast<SurfaceFlinger*>(this)->getDefaultDisplayDeviceLocked();
}
sp<DisplayDevice> getDefaultDisplayDeviceLocked() REQUIRES(mStateLock) {
if (const auto token = getInternalDisplayTokenLocked()) {
return getDisplayDeviceLocked(token);
}
return nullptr;
}
sp<const DisplayDevice> getDefaultDisplayDevice() EXCLUDES(mStateLock) {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked();
}
// Returns the first display that matches a `bool(const DisplayDevice&)` predicate.
template <typename Predicate>
sp<DisplayDevice> findDisplay(Predicate p) const REQUIRES(mStateLock) {
const auto it = std::find_if(mDisplays.begin(), mDisplays.end(),
[&](const auto& pair) { return p(*pair.second); });
return it == mDisplays.end() ? nullptr : it->second;
}
sp<const DisplayDevice> getDisplayDeviceLocked(DisplayId id) const REQUIRES(mStateLock) {
// TODO(b/182939859): Replace tokens with IDs for display lookup.
return findDisplay([id](const auto& display) { return display.getId() == id; });
}
// mark a region of a layer stack dirty. this updates the dirty
// region of all screens presenting this layer stack.
void invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty);
/*
* H/W composer
*/
// The following thread safety rules apply when accessing HWComposer:
// 1. When reading display state from HWComposer on the main thread, it's not necessary to
// acquire mStateLock.
// 2. When accessing HWComposer on a thread other than the main thread, we always
// need to acquire mStateLock. This is because the main thread could be
// in the process of writing display state, e.g. creating or destroying a display.
HWComposer& getHwComposer() const;
/*
* Compositing
*/
void invalidateHwcGeometry();
void postComposition();
void getCompositorTiming(CompositorTiming* compositorTiming);
void updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime);
void setCompositorTimingSnapped(const DisplayStatInfo& stats,
nsecs_t compositeToPresentLatency);
void postFrame();
/*
* Display management
*/
void loadDisplayModes(PhysicalDisplayId displayId, DisplayModes& outModes,
DisplayModePtr& outActiveMode) const REQUIRES(mStateLock);
sp<DisplayDevice> setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken,
std::shared_ptr<compositionengine::Display> compositionDisplay,
const DisplayDeviceState& state,
const sp<compositionengine::DisplaySurface>& displaySurface,
const sp<IGraphicBufferProducer>& producer) REQUIRES(mStateLock);
void processDisplayChangesLocked() REQUIRES(mStateLock);
void processDisplayAdded(const wp<IBinder>& displayToken, const DisplayDeviceState&)
REQUIRES(mStateLock);
void processDisplayRemoved(const wp<IBinder>& displayToken) REQUIRES(mStateLock);
void processDisplayChanged(const wp<IBinder>& displayToken,
const DisplayDeviceState& currentState,
const DisplayDeviceState& drawingState) REQUIRES(mStateLock);
void processDisplayHotplugEventsLocked() REQUIRES(mStateLock);
void dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected);
/*
* VSYNC
*/
nsecs_t getVsyncPeriodFromHWC() const REQUIRES(mStateLock);
// Sets the refresh rate by switching active configs, if they are available for
// the desired refresh rate.
void changeRefreshRateLocked(const RefreshRate&, Scheduler::ModeEvent) REQUIRES(mStateLock);
bool isDisplayModeAllowed(DisplayModeId) const REQUIRES(mStateLock);
struct FenceWithFenceTime {
sp<Fence> fence = Fence::NO_FENCE;
std::shared_ptr<FenceTime> fenceTime = FenceTime::NO_FENCE;
};
// Gets the fence for the previous frame.
// Must be called on the main thread.
FenceWithFenceTime previousFrameFence();
// Whether the previous frame has not yet been presented to the display.
// If graceTimeMs is positive, this method waits for at most the provided
// grace period before reporting if the frame missed.
// Must be called on the main thread.
bool previousFramePending(int graceTimeMs = 0);
// Returns the previous time that the frame was presented. If the frame has
// not been presented yet, then returns Fence::SIGNAL_TIME_PENDING. If there
// is no pending frame, then returns Fence::SIGNAL_TIME_INVALID.
// Must be called on the main thread.
nsecs_t previousFramePresentTime();
// Calculates the expected present time for this frame. For negative offsets, performs a
// correction using the predicted vsync for the next frame instead.
nsecs_t calculateExpectedPresentTime(DisplayStatInfo) const;
/*
* Display identification
*/
sp<IBinder> getPhysicalDisplayTokenLocked(PhysicalDisplayId displayId) const
REQUIRES(mStateLock) {
const auto it = mPhysicalDisplayTokens.find(displayId);
return it != mPhysicalDisplayTokens.end() ? it->second : nullptr;
}
std::optional<PhysicalDisplayId> getPhysicalDisplayIdLocked(
const sp<IBinder>& displayToken) const REQUIRES(mStateLock) {
for (const auto& [id, token] : mPhysicalDisplayTokens) {
if (token == displayToken) {
return id;
}
}
return {};
}
// TODO(b/74619554): Remove special cases for primary display.
sp<IBinder> getInternalDisplayTokenLocked() const REQUIRES(mStateLock) {
const auto displayId = getInternalDisplayIdLocked();
return displayId ? getPhysicalDisplayTokenLocked(*displayId) : nullptr;
}
std::optional<PhysicalDisplayId> getInternalDisplayIdLocked() const REQUIRES(mStateLock) {
const auto hwcDisplayId = getHwComposer().getInternalHwcDisplayId();
return hwcDisplayId ? getHwComposer().toPhysicalDisplayId(*hwcDisplayId) : std::nullopt;
}
// Toggles use of HAL/GPU virtual displays.
void enableHalVirtualDisplays(bool);
// Virtual display lifecycle for ID generation and HAL allocation.
VirtualDisplayId acquireVirtualDisplay(ui::Size, ui::PixelFormat, ui::LayerStack)
REQUIRES(mStateLock);
void releaseVirtualDisplay(VirtualDisplayId);
/*
* Debugging & dumpsys
*/
void dumpAllLocked(const DumpArgs& args, std::string& result) const REQUIRES(mStateLock);
void appendSfConfigString(std::string& result) const;
void listLayersLocked(std::string& result) const;
void dumpStatsLocked(const DumpArgs& args, std::string& result) const REQUIRES(mStateLock);
void clearStatsLocked(const DumpArgs& args, std::string& result);
void dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const;
void dumpFrameTimeline(const DumpArgs& args, std::string& result) const;
void logFrameStats();
void dumpVSync(std::string& result) const REQUIRES(mStateLock);
void dumpStaticScreenStats(std::string& result) const;
// Not const because each Layer needs to query Fences and cache timestamps.
void dumpFrameEventsLocked(std::string& result);
void recordBufferingStats(const std::string& layerName,
std::vector<OccupancyTracker::Segment>&& history);
void dumpBufferingStats(std::string& result) const;
void dumpDisplayIdentificationData(std::string& result) const REQUIRES(mStateLock);
void dumpRawDisplayIdentificationData(const DumpArgs&, std::string& result) const;
void dumpWideColorInfo(std::string& result) const REQUIRES(mStateLock);
LayersProto dumpDrawingStateProto(uint32_t traceFlags) const;
void dumpOffscreenLayersProto(LayersProto& layersProto,
uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const;
// Dumps state from HW Composer
void dumpHwc(std::string& result) const;
LayersProto dumpProtoFromMainThread(uint32_t traceFlags = SurfaceTracing::TRACE_ALL)
EXCLUDES(mStateLock);
void dumpOffscreenLayers(std::string& result) EXCLUDES(mStateLock);
void dumpPlannerInfo(const DumpArgs& args, std::string& result) const REQUIRES(mStateLock);
status_t doDump(int fd, const DumpArgs& args, bool asProto);
status_t dumpCritical(int fd, const DumpArgs&, bool asProto);
status_t dumpAll(int fd, const DumpArgs& args, bool asProto) override {
return doDump(fd, args, asProto);
}
void onFrameRateFlexibilityTokenReleased();
static mat4 calculateColorMatrix(float saturation);
void updateColorMatrixLocked();
// Verify that transaction is being called by an approved process:
// either AID_GRAPHICS or AID_SYSTEM.
status_t CheckTransactCodeCredentials(uint32_t code);
// Add transaction to the Transaction Queue
void queueTransaction(TransactionState& state) EXCLUDES(mQueueLock);
void waitForSynchronousTransaction(const CountDownLatch& transactionCommittedSignal);
void signalSynchronousTransactions(const uint32_t flag);
/*
* Generic Layer Metadata
*/
const std::unordered_map<std::string, uint32_t>& getGenericLayerMetadataKeyMap() const;
/*
* Misc
*/
std::optional<ActiveModeInfo> getDesiredActiveMode() EXCLUDES(mActiveModeLock) {
std::lock_guard<std::mutex> lock(mActiveModeLock);
if (mDesiredActiveModeChanged) return mDesiredActiveMode;
return std::nullopt;
}
std::vector<ui::ColorMode> getDisplayColorModes(PhysicalDisplayId displayId)
REQUIRES(mStateLock);
static int calculateMaxAcquiredBufferCount(Fps refreshRate,
std::chrono::nanoseconds presentLatency);
int getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const;
sp<StartPropertySetThread> mStartPropertySetThread;
surfaceflinger::Factory& mFactory;
std::future<void> mRenderEnginePrimeCacheFuture;
// access must be protected by mStateLock
mutable Mutex mStateLock;
State mCurrentState{LayerVector::StateSet::Current};
std::atomic<int32_t> mTransactionFlags = 0;
std::vector<std::shared_ptr<CountDownLatch>> mTransactionCommittedSignals;
bool mAnimTransactionPending = false;
SortedVector<sp<Layer>> mLayersPendingRemoval;
bool mForceTraversal = false;
// global color transform states
Daltonizer mDaltonizer;
float mGlobalSaturationFactor = 1.0f;
mat4 mClientColorMatrix;
// Can't be unordered_set because wp<> isn't hashable
std::set<wp<IBinder>> mGraphicBufferProducerList;
size_t mMaxGraphicBufferProducerListSize = ISurfaceComposer::MAX_LAYERS;
// If there are more GraphicBufferProducers tracked by SurfaceFlinger than
// this threshold, then begin logging.
size_t mGraphicBufferProducerListSizeLogThreshold =
static_cast<size_t>(0.95 * static_cast<double>(MAX_LAYERS));
void removeGraphicBufferProducerAsync(const wp<IBinder>&);
// protected by mStateLock (but we could use another lock)
bool mLayersRemoved = false;
bool mLayersAdded = false;
std::atomic<bool> mRepaintEverything = false;
// constant members (no synchronization needed for access)
const nsecs_t mBootTime = systemTime();
bool mGpuToCpuSupported = false;
bool mIsUserBuild = true;
// Can only accessed from the main thread, these members
// don't need synchronization
State mDrawingState{LayerVector::StateSet::Drawing};
bool mVisibleRegionsDirty = false;
// VisibleRegions dirty is already cleared by postComp, but we need to track it to prevent
// extra work in the HDR layer info listener.
bool mVisibleRegionsWereDirtyThisFrame = false;
// Used to ensure we omit a callback when HDR layer info listener is newly added but the
// scene hasn't changed
bool mAddingHDRLayerInfoListener = false;
// Set during transaction application stage to track if the input info or children
// for a layer has changed.
// TODO: Also move visibleRegions over to a boolean system.
bool mInputInfoChanged = false;
bool mSomeChildrenChanged;
bool mSomeDataspaceChanged = false;
bool mForceTransactionDisplayChange = false;
bool mGeometryInvalid = false;
bool mAnimCompositionPending = false;
// Tracks layers that have pending frames which are candidates for being
// latched.
std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> mLayersWithQueuedFrames;
// Tracks layers that need to update a display's dirty region.
std::vector<sp<Layer>> mLayersPendingRefresh;
std::array<FenceWithFenceTime, 2> mPreviousPresentFences;
// True if in the previous frame at least one layer was composed via the GPU.
bool mHadClientComposition = false;
// True if in the previous frame at least one layer was composed via HW Composer.
// Note that it is possible for a frame to be composed via both client and device
// composition, for example in the case of overlays.
bool mHadDeviceComposition = false;
// True if in the previous frame, the client composition was skipped by reusing the buffer
// used in a previous composition. This can happed if the client composition requests
// did not change.
bool mReusedClientComposition = false;
BootStage mBootStage = BootStage::BOOTLOADER;
std::vector<HotplugEvent> mPendingHotplugEvents GUARDED_BY(mStateLock);
// this may only be written from the main thread with mStateLock held
// it may be read from other threads with mStateLock held
std::map<wp<IBinder>, sp<DisplayDevice>> mDisplays GUARDED_BY(mStateLock);
std::unordered_map<PhysicalDisplayId, sp<IBinder>> mPhysicalDisplayTokens
GUARDED_BY(mStateLock);
struct {
DisplayIdGenerator<GpuVirtualDisplayId> gpu;
std::optional<DisplayIdGenerator<HalVirtualDisplayId>> hal;
} mVirtualDisplayIdGenerators;
// don't use a lock for these, we don't care
int mDebugRegion = 0;
bool mDebugDisableHWC = false;
bool mDebugDisableTransformHint = false;
bool mLayerCachingEnabled = false;
volatile nsecs_t mDebugInTransaction = 0;
bool mForceFullDamage = false;
bool mPropagateBackpressureClientComposition = false;
sp<SurfaceInterceptor> mInterceptor;
SurfaceTracing mTracing{*this};
std::mutex mTracingLock;
bool mTracingEnabled = false;
bool mTracePostComposition = false;
std::atomic<bool> mTracingEnabledChanged = false;
const std::shared_ptr<TimeStats> mTimeStats;
const std::unique_ptr<FrameTracer> mFrameTracer;
const std::unique_ptr<frametimeline::FrameTimeline> mFrameTimeline;
// If blurs should be enabled on this device.
bool mSupportsBlur = false;
// If blurs are considered expensive and should require high GPU frequency.
bool mBlursAreExpensive = false;
std::atomic<uint32_t> mFrameMissedCount = 0;
std::atomic<uint32_t> mHwcFrameMissedCount = 0;
std::atomic<uint32_t> mGpuFrameMissedCount = 0;
TransactionCallbackInvoker mTransactionCallbackInvoker;
// these are thread safe
std::unique_ptr<MessageQueue> mEventQueue;
FrameTracker mAnimFrameTracker;
// protected by mDestroyedLayerLock;
mutable Mutex mDestroyedLayerLock;
Vector<Layer const *> mDestroyedLayers;
nsecs_t mRefreshStartTime = 0;
std::atomic<bool> mRefreshPending = false;
// We maintain a pool of pre-generated texture names to hand out to avoid
// layer creation needing to run on the main thread (which it would
// otherwise need to do to access RenderEngine).
std::mutex mTexturePoolMutex;
uint32_t mTexturePoolSize = 0;
std::vector<uint32_t> mTexturePool;
mutable Mutex mQueueLock;
Condition mTransactionQueueCV;
std::unordered_map<sp<IBinder>, std::queue<TransactionState>, IListenerHash>
mPendingTransactionQueues GUARDED_BY(mQueueLock);
std::queue<TransactionState> mTransactionQueue GUARDED_BY(mQueueLock);
/*
* Feature prototyping
*/
// Static screen stats
bool mHasPoweredOff = false;
std::atomic<size_t> mNumLayers = 0;
// to linkToDeath
sp<IBinder> mWindowManager;
// We want to avoid multiple calls to BOOT_FINISHED as they come in on
// different threads without a lock and could trigger unsynchronized writes to
// to mWindowManager or mInputFlinger
std::atomic<bool> mBootFinished = false;
std::thread::id mMainThreadId = std::this_thread::get_id();
DisplayColorSetting mDisplayColorSetting = DisplayColorSetting::kEnhanced;
// Color mode forced by setting persist.sys.sf.color_mode, it must:
// 1. not be NATIVE color mode, NATIVE color mode means no forced color mode;
// 2. be one of the supported color modes returned by hardware composer, otherwise
// it will not be respected.
// persist.sys.sf.color_mode will only take effect when persist.sys.sf.native_mode
// is not set to 1.
// This property can be used to force SurfaceFlinger to always pick a certain color mode.
ui::ColorMode mForceColorMode = ui::ColorMode::NATIVE;
ui::Dataspace mDefaultCompositionDataspace;
ui::Dataspace mWideColorGamutCompositionDataspace;
ui::Dataspace mColorSpaceAgnosticDataspace;
SurfaceFlingerBE mBE;
std::unique_ptr<compositionengine::CompositionEngine> mCompositionEngine;
const std::string mHwcServiceName;
bool hasMockHwc() const { return mHwcServiceName == "mock"; }
/*
* Scheduler
*/
std::unique_ptr<Scheduler> mScheduler;
scheduler::ConnectionHandle mAppConnectionHandle;
scheduler::ConnectionHandle mSfConnectionHandle;
// Stores phase offsets configured per refresh rate.
std::unique_ptr<scheduler::VsyncConfiguration> mVsyncConfiguration;
// Optional to defer construction until PhaseConfiguration is created.
sp<VsyncModulator> mVsyncModulator;
std::unique_ptr<scheduler::RefreshRateConfigs> mRefreshRateConfigs;
std::unique_ptr<scheduler::RefreshRateStats> mRefreshRateStats;
std::atomic<nsecs_t> mExpectedPresentTime = 0;
nsecs_t mScheduledPresentTime = 0;
hal::Vsync mHWCVsyncPendingState = hal::Vsync::DISABLE;
std::mutex mActiveModeLock;
// This bit is set once we start setting the mode. We read from this bit during the
// process. If at the end, this bit is different than mDesiredActiveMode, we restart
// the process.
ActiveModeInfo mUpcomingActiveMode; // Always read and written on the main thread.
// This bit can be set at any point in time when the system wants the new mode.
ActiveModeInfo mDesiredActiveMode GUARDED_BY(mActiveModeLock);
// below flags are set by main thread only
TracedOrdinal<bool> mDesiredActiveModeChanged
GUARDED_BY(mActiveModeLock) = {"DesiredActiveModeChanged", false};
bool mSetActiveModePending = false;
bool mLumaSampling = true;
sp<RegionSamplingThread> mRegionSamplingThread;
sp<FpsReporter> mFpsReporter;
sp<TunnelModeEnabledReporter> mTunnelModeEnabledReporter;
ui::DisplayPrimaries mInternalDisplayPrimaries;
const float mInternalDisplayDensity;
const float mEmulatedDisplayDensity;
sp<os::IInputFlinger> mInputFlinger;
// Should only be accessed by the main thread.
InputWindowCommands mInputWindowCommands;
sp<SetInputWindowsListener> mSetInputWindowsListener;
Hwc2::impl::PowerAdvisor mPowerAdvisor;
// This should only be accessed on the main thread.
nsecs_t mFrameStartTime = 0;
void enableRefreshRateOverlay(bool enable);
std::unique_ptr<RefreshRateOverlay> mRefreshRateOverlay GUARDED_BY(mStateLock);
// Flag used to set override desired display mode from backdoor
bool mDebugDisplayModeSetByBackdoor = false;
// A set of layers that have no parent so they are not drawn on screen.
// Should only be accessed by the main thread.
// The Layer pointer is removed from the set when the destructor is called so there shouldn't
// be any issues with a raw pointer referencing an invalid object.
std::unordered_set<Layer*> mOffscreenLayers;
int mFrameRateFlexibilityTokenCount = 0;
sp<IBinder> mDebugFrameRateFlexibilityToken;
BufferCountTracker mBufferCountTracker;
std::unordered_map<DisplayId, sp<HdrLayerInfoReporter>> mHdrLayerInfoListeners
GUARDED_BY(mStateLock);
mutable Mutex mCreatedLayersLock;
struct LayerCreatedState {
LayerCreatedState(const wp<Layer>& layer, const wp<IBinder>& parent,
const wp<Layer> parentLayer, const wp<IBinder>& producer, bool addToRoot)
: layer(layer),
initialParent(parent),
initialParentLayer(parentLayer),
initialProducer(producer),
addToRoot(addToRoot) {}
wp<Layer> layer;
// Indicates the initial parent of the created layer, only used for creating layer in
// SurfaceFlinger. If nullptr, it may add the created layer into the current root layers.
wp<IBinder> initialParent;
wp<Layer> initialParentLayer;
// Indicates the initial graphic buffer producer of the created layer, only used for
// creating layer in SurfaceFlinger.
wp<IBinder> initialProducer;
// Indicates whether the layer getting created should be added at root if there's no parent
// and has permission ACCESS_SURFACE_FLINGER. If set to false and no parent, the layer will
// be added offscreen.
bool addToRoot;
};
// A temporay pool that store the created layers and will be added to current state in main
// thread.
std::unordered_map<BBinder*, std::unique_ptr<LayerCreatedState>> mCreatedLayers;
void setLayerCreatedState(const sp<IBinder>& handle, const wp<Layer>& layer,
const wp<IBinder>& parent, const wp<Layer> parentLayer,
const wp<IBinder>& producer, bool addToRoot);
auto getLayerCreatedState(const sp<IBinder>& handle);
sp<Layer> handleLayerCreatedLocked(const sp<IBinder>& handle) REQUIRES(mStateLock);
std::atomic<ui::Transform::RotationFlags> mDefaultDisplayTransformHint;
void scheduleRegionSamplingThread();
void notifyRegionSamplingThread();
};
} // namespace android