blob: 77f06bbbe7069b54643a5d844fc5f1fad3a1fc25 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hwc2on1adapter/HWC2On1Adapter.h"
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "HWC2On1Adapter"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <inttypes.h>
#include <chrono>
#include <cstdlib>
#include <sstream>
#include <hardware/hwcomposer.h>
#include <log/log.h>
#include <utils/Trace.h>
using namespace std::chrono_literals;
static uint8_t getMinorVersion(struct hwc_composer_device_1* device)
{
auto version = device->common.version & HARDWARE_API_VERSION_2_MAJ_MIN_MASK;
return (version >> 16) & 0xF;
}
template <typename PFN, typename T>
static hwc2_function_pointer_t asFP(T function)
{
static_assert(std::is_same<PFN, T>::value, "Incompatible function pointer");
return reinterpret_cast<hwc2_function_pointer_t>(function);
}
using namespace HWC2;
static constexpr Attribute ColorMode = static_cast<Attribute>(6);
namespace android {
class HWC2On1Adapter::Callbacks : public hwc_procs_t {
public:
explicit Callbacks(HWC2On1Adapter& adapter) : mAdapter(adapter) {
invalidate = &invalidateHook;
vsync = &vsyncHook;
hotplug = &hotplugHook;
}
static void invalidateHook(const hwc_procs_t* procs) {
auto callbacks = static_cast<const Callbacks*>(procs);
callbacks->mAdapter.hwc1Invalidate();
}
static void vsyncHook(const hwc_procs_t* procs, int display,
int64_t timestamp) {
auto callbacks = static_cast<const Callbacks*>(procs);
callbacks->mAdapter.hwc1Vsync(display, timestamp);
}
static void hotplugHook(const hwc_procs_t* procs, int display,
int connected) {
auto callbacks = static_cast<const Callbacks*>(procs);
callbacks->mAdapter.hwc1Hotplug(display, connected);
}
private:
HWC2On1Adapter& mAdapter;
};
static int closeHook(hw_device_t* /*device*/)
{
// Do nothing, since the real work is done in the class destructor, but we
// need to provide a valid function pointer for hwc2_close to call
return 0;
}
HWC2On1Adapter::HWC2On1Adapter(hwc_composer_device_1_t* hwc1Device)
: mDumpString(),
mHwc1Device(hwc1Device),
mHwc1MinorVersion(getMinorVersion(hwc1Device)),
mHwc1SupportsVirtualDisplays(false),
mHwc1SupportsBackgroundColor(false),
mHwc1Callbacks(std::make_unique<Callbacks>(*this)),
mCapabilities(),
mLayers(),
mHwc1VirtualDisplay(),
mStateMutex(),
mCallbacks(),
mHasPendingInvalidate(false),
mPendingVsyncs(),
mPendingHotplugs(),
mDisplays(),
mHwc1DisplayMap()
{
common.close = closeHook;
getCapabilities = getCapabilitiesHook;
getFunction = getFunctionHook;
populateCapabilities();
populatePrimary();
mHwc1Device->registerProcs(mHwc1Device,
static_cast<const hwc_procs_t*>(mHwc1Callbacks.get()));
}
HWC2On1Adapter::~HWC2On1Adapter() {
hwc_close_1(mHwc1Device);
}
void HWC2On1Adapter::doGetCapabilities(uint32_t* outCount,
int32_t* outCapabilities) {
if (outCapabilities == nullptr) {
*outCount = mCapabilities.size();
return;
}
auto capabilityIter = mCapabilities.cbegin();
for (size_t written = 0; written < *outCount; ++written) {
if (capabilityIter == mCapabilities.cend()) {
return;
}
outCapabilities[written] = static_cast<int32_t>(*capabilityIter);
++capabilityIter;
}
}
hwc2_function_pointer_t HWC2On1Adapter::doGetFunction(
FunctionDescriptor descriptor) {
switch (descriptor) {
// Device functions
case FunctionDescriptor::CreateVirtualDisplay:
return asFP<HWC2_PFN_CREATE_VIRTUAL_DISPLAY>(
createVirtualDisplayHook);
case FunctionDescriptor::DestroyVirtualDisplay:
return asFP<HWC2_PFN_DESTROY_VIRTUAL_DISPLAY>(
destroyVirtualDisplayHook);
case FunctionDescriptor::Dump:
return asFP<HWC2_PFN_DUMP>(dumpHook);
case FunctionDescriptor::GetMaxVirtualDisplayCount:
return asFP<HWC2_PFN_GET_MAX_VIRTUAL_DISPLAY_COUNT>(
getMaxVirtualDisplayCountHook);
case FunctionDescriptor::RegisterCallback:
return asFP<HWC2_PFN_REGISTER_CALLBACK>(registerCallbackHook);
// Display functions
case FunctionDescriptor::AcceptDisplayChanges:
return asFP<HWC2_PFN_ACCEPT_DISPLAY_CHANGES>(
displayHook<decltype(&Display::acceptChanges),
&Display::acceptChanges>);
case FunctionDescriptor::CreateLayer:
return asFP<HWC2_PFN_CREATE_LAYER>(
displayHook<decltype(&Display::createLayer),
&Display::createLayer, hwc2_layer_t*>);
case FunctionDescriptor::DestroyLayer:
return asFP<HWC2_PFN_DESTROY_LAYER>(
displayHook<decltype(&Display::destroyLayer),
&Display::destroyLayer, hwc2_layer_t>);
case FunctionDescriptor::GetActiveConfig:
return asFP<HWC2_PFN_GET_ACTIVE_CONFIG>(
displayHook<decltype(&Display::getActiveConfig),
&Display::getActiveConfig, hwc2_config_t*>);
case FunctionDescriptor::GetChangedCompositionTypes:
return asFP<HWC2_PFN_GET_CHANGED_COMPOSITION_TYPES>(
displayHook<decltype(&Display::getChangedCompositionTypes),
&Display::getChangedCompositionTypes, uint32_t*,
hwc2_layer_t*, int32_t*>);
case FunctionDescriptor::GetColorModes:
return asFP<HWC2_PFN_GET_COLOR_MODES>(
displayHook<decltype(&Display::getColorModes),
&Display::getColorModes, uint32_t*, int32_t*>);
case FunctionDescriptor::GetDisplayAttribute:
return asFP<HWC2_PFN_GET_DISPLAY_ATTRIBUTE>(
getDisplayAttributeHook);
case FunctionDescriptor::GetDisplayConfigs:
return asFP<HWC2_PFN_GET_DISPLAY_CONFIGS>(
displayHook<decltype(&Display::getConfigs),
&Display::getConfigs, uint32_t*, hwc2_config_t*>);
case FunctionDescriptor::GetDisplayName:
return asFP<HWC2_PFN_GET_DISPLAY_NAME>(
displayHook<decltype(&Display::getName),
&Display::getName, uint32_t*, char*>);
case FunctionDescriptor::GetDisplayRequests:
return asFP<HWC2_PFN_GET_DISPLAY_REQUESTS>(
displayHook<decltype(&Display::getRequests),
&Display::getRequests, int32_t*, uint32_t*, hwc2_layer_t*,
int32_t*>);
case FunctionDescriptor::GetDisplayType:
return asFP<HWC2_PFN_GET_DISPLAY_TYPE>(
displayHook<decltype(&Display::getType),
&Display::getType, int32_t*>);
case FunctionDescriptor::GetDozeSupport:
return asFP<HWC2_PFN_GET_DOZE_SUPPORT>(
displayHook<decltype(&Display::getDozeSupport),
&Display::getDozeSupport, int32_t*>);
case FunctionDescriptor::GetHdrCapabilities:
return asFP<HWC2_PFN_GET_HDR_CAPABILITIES>(
displayHook<decltype(&Display::getHdrCapabilities),
&Display::getHdrCapabilities, uint32_t*, int32_t*, float*,
float*, float*>);
case FunctionDescriptor::GetReleaseFences:
return asFP<HWC2_PFN_GET_RELEASE_FENCES>(
displayHook<decltype(&Display::getReleaseFences),
&Display::getReleaseFences, uint32_t*, hwc2_layer_t*,
int32_t*>);
case FunctionDescriptor::PresentDisplay:
return asFP<HWC2_PFN_PRESENT_DISPLAY>(
displayHook<decltype(&Display::present),
&Display::present, int32_t*>);
case FunctionDescriptor::SetActiveConfig:
return asFP<HWC2_PFN_SET_ACTIVE_CONFIG>(
displayHook<decltype(&Display::setActiveConfig),
&Display::setActiveConfig, hwc2_config_t>);
case FunctionDescriptor::SetClientTarget:
return asFP<HWC2_PFN_SET_CLIENT_TARGET>(
displayHook<decltype(&Display::setClientTarget),
&Display::setClientTarget, buffer_handle_t, int32_t,
int32_t, hwc_region_t>);
case FunctionDescriptor::SetColorMode:
return asFP<HWC2_PFN_SET_COLOR_MODE>(setColorModeHook);
case FunctionDescriptor::SetColorTransform:
return asFP<HWC2_PFN_SET_COLOR_TRANSFORM>(setColorTransformHook);
case FunctionDescriptor::SetOutputBuffer:
return asFP<HWC2_PFN_SET_OUTPUT_BUFFER>(
displayHook<decltype(&Display::setOutputBuffer),
&Display::setOutputBuffer, buffer_handle_t, int32_t>);
case FunctionDescriptor::SetPowerMode:
return asFP<HWC2_PFN_SET_POWER_MODE>(setPowerModeHook);
case FunctionDescriptor::SetVsyncEnabled:
return asFP<HWC2_PFN_SET_VSYNC_ENABLED>(setVsyncEnabledHook);
case FunctionDescriptor::ValidateDisplay:
return asFP<HWC2_PFN_VALIDATE_DISPLAY>(
displayHook<decltype(&Display::validate),
&Display::validate, uint32_t*, uint32_t*>);
case FunctionDescriptor::GetClientTargetSupport:
return asFP<HWC2_PFN_GET_CLIENT_TARGET_SUPPORT>(
displayHook<decltype(&Display::getClientTargetSupport),
&Display::getClientTargetSupport, uint32_t, uint32_t,
int32_t, int32_t>);
// Layer functions
case FunctionDescriptor::SetCursorPosition:
return asFP<HWC2_PFN_SET_CURSOR_POSITION>(
layerHook<decltype(&Layer::setCursorPosition),
&Layer::setCursorPosition, int32_t, int32_t>);
case FunctionDescriptor::SetLayerBuffer:
return asFP<HWC2_PFN_SET_LAYER_BUFFER>(
layerHook<decltype(&Layer::setBuffer), &Layer::setBuffer,
buffer_handle_t, int32_t>);
case FunctionDescriptor::SetLayerSurfaceDamage:
return asFP<HWC2_PFN_SET_LAYER_SURFACE_DAMAGE>(
layerHook<decltype(&Layer::setSurfaceDamage),
&Layer::setSurfaceDamage, hwc_region_t>);
// Layer state functions
case FunctionDescriptor::SetLayerBlendMode:
return asFP<HWC2_PFN_SET_LAYER_BLEND_MODE>(
setLayerBlendModeHook);
case FunctionDescriptor::SetLayerColor:
return asFP<HWC2_PFN_SET_LAYER_COLOR>(
layerHook<decltype(&Layer::setColor), &Layer::setColor,
hwc_color_t>);
case FunctionDescriptor::SetLayerCompositionType:
return asFP<HWC2_PFN_SET_LAYER_COMPOSITION_TYPE>(
setLayerCompositionTypeHook);
case FunctionDescriptor::SetLayerDataspace:
return asFP<HWC2_PFN_SET_LAYER_DATASPACE>(setLayerDataspaceHook);
case FunctionDescriptor::SetLayerDisplayFrame:
return asFP<HWC2_PFN_SET_LAYER_DISPLAY_FRAME>(
layerHook<decltype(&Layer::setDisplayFrame),
&Layer::setDisplayFrame, hwc_rect_t>);
case FunctionDescriptor::SetLayerPlaneAlpha:
return asFP<HWC2_PFN_SET_LAYER_PLANE_ALPHA>(
layerHook<decltype(&Layer::setPlaneAlpha),
&Layer::setPlaneAlpha, float>);
case FunctionDescriptor::SetLayerSidebandStream:
return asFP<HWC2_PFN_SET_LAYER_SIDEBAND_STREAM>(
layerHook<decltype(&Layer::setSidebandStream),
&Layer::setSidebandStream, const native_handle_t*>);
case FunctionDescriptor::SetLayerSourceCrop:
return asFP<HWC2_PFN_SET_LAYER_SOURCE_CROP>(
layerHook<decltype(&Layer::setSourceCrop),
&Layer::setSourceCrop, hwc_frect_t>);
case FunctionDescriptor::SetLayerTransform:
return asFP<HWC2_PFN_SET_LAYER_TRANSFORM>(setLayerTransformHook);
case FunctionDescriptor::SetLayerVisibleRegion:
return asFP<HWC2_PFN_SET_LAYER_VISIBLE_REGION>(
layerHook<decltype(&Layer::setVisibleRegion),
&Layer::setVisibleRegion, hwc_region_t>);
case FunctionDescriptor::SetLayerZOrder:
return asFP<HWC2_PFN_SET_LAYER_Z_ORDER>(setLayerZOrderHook);
default:
ALOGE("doGetFunction: Unknown function descriptor: %d (%s)",
static_cast<int32_t>(descriptor),
to_string(descriptor).c_str());
return nullptr;
}
}
// Device functions
Error HWC2On1Adapter::createVirtualDisplay(uint32_t width,
uint32_t height, hwc2_display_t* outDisplay) {
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
if (mHwc1VirtualDisplay) {
// We have already allocated our only HWC1 virtual display
ALOGE("createVirtualDisplay: HWC1 virtual display already allocated");
return Error::NoResources;
}
mHwc1VirtualDisplay = std::make_shared<HWC2On1Adapter::Display>(*this,
HWC2::DisplayType::Virtual);
mHwc1VirtualDisplay->populateConfigs(width, height);
const auto displayId = mHwc1VirtualDisplay->getId();
mHwc1DisplayMap[HWC_DISPLAY_VIRTUAL] = displayId;
mHwc1VirtualDisplay->setHwc1Id(HWC_DISPLAY_VIRTUAL);
mDisplays.emplace(displayId, mHwc1VirtualDisplay);
*outDisplay = displayId;
return Error::None;
}
Error HWC2On1Adapter::destroyVirtualDisplay(hwc2_display_t displayId) {
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
if (!mHwc1VirtualDisplay || (mHwc1VirtualDisplay->getId() != displayId)) {
return Error::BadDisplay;
}
mHwc1VirtualDisplay.reset();
mHwc1DisplayMap.erase(HWC_DISPLAY_VIRTUAL);
mDisplays.erase(displayId);
return Error::None;
}
void HWC2On1Adapter::dump(uint32_t* outSize, char* outBuffer) {
if (outBuffer != nullptr) {
auto copiedBytes = mDumpString.copy(outBuffer, *outSize);
*outSize = static_cast<uint32_t>(copiedBytes);
return;
}
std::stringstream output;
output << "-- HWC2On1Adapter --\n";
output << "Adapting to a HWC 1." << static_cast<int>(mHwc1MinorVersion) <<
" device\n";
// Attempt to acquire the lock for 1 second, but proceed without the lock
// after that, so we can still get some information if we're deadlocked
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex,
std::defer_lock);
lock.try_lock_for(1s);
if (mCapabilities.empty()) {
output << "Capabilities: None\n";
} else {
output << "Capabilities:\n";
for (auto capability : mCapabilities) {
output << " " << to_string(capability) << '\n';
}
}
output << "Displays:\n";
for (const auto& element : mDisplays) {
const auto& display = element.second;
output << display->dump();
}
output << '\n';
// Release the lock before calling into HWC1, and since we no longer require
// mutual exclusion to access mCapabilities or mDisplays
lock.unlock();
if (mHwc1Device->dump) {
output << "HWC1 dump:\n";
std::vector<char> hwc1Dump(4096);
// Call with size - 1 to preserve a null character at the end
mHwc1Device->dump(mHwc1Device, hwc1Dump.data(),
static_cast<int>(hwc1Dump.size() - 1));
output << hwc1Dump.data();
}
mDumpString = output.str();
*outSize = static_cast<uint32_t>(mDumpString.size());
}
uint32_t HWC2On1Adapter::getMaxVirtualDisplayCount() {
return mHwc1SupportsVirtualDisplays ? 1 : 0;
}
static bool isValid(Callback descriptor) {
switch (descriptor) {
case Callback::Hotplug: // Fall-through
case Callback::Refresh: // Fall-through
case Callback::Vsync: return true;
default: return false;
}
}
Error HWC2On1Adapter::registerCallback(Callback descriptor,
hwc2_callback_data_t callbackData, hwc2_function_pointer_t pointer) {
if (!isValid(descriptor)) {
return Error::BadParameter;
}
ALOGV("registerCallback(%s, %p, %p)", to_string(descriptor).c_str(),
callbackData, pointer);
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
if (pointer != nullptr) {
mCallbacks[descriptor] = {callbackData, pointer};
} else {
ALOGI("unregisterCallback(%s)", to_string(descriptor).c_str());
mCallbacks.erase(descriptor);
return Error::None;
}
bool hasPendingInvalidate = false;
std::vector<hwc2_display_t> displayIds;
std::vector<std::pair<hwc2_display_t, int64_t>> pendingVsyncs;
std::vector<std::pair<hwc2_display_t, int>> pendingHotplugs;
if (descriptor == Callback::Refresh) {
hasPendingInvalidate = mHasPendingInvalidate;
if (hasPendingInvalidate) {
for (auto& displayPair : mDisplays) {
displayIds.emplace_back(displayPair.first);
}
}
mHasPendingInvalidate = false;
} else if (descriptor == Callback::Vsync) {
for (auto pending : mPendingVsyncs) {
auto hwc1DisplayId = pending.first;
if (mHwc1DisplayMap.count(hwc1DisplayId) == 0) {
ALOGE("hwc1Vsync: Couldn't find display for HWC1 id %d",
hwc1DisplayId);
continue;
}
auto displayId = mHwc1DisplayMap[hwc1DisplayId];
auto timestamp = pending.second;
pendingVsyncs.emplace_back(displayId, timestamp);
}
mPendingVsyncs.clear();
} else if (descriptor == Callback::Hotplug) {
// Hotplug the primary display
pendingHotplugs.emplace_back(mHwc1DisplayMap[HWC_DISPLAY_PRIMARY],
static_cast<int32_t>(Connection::Connected));
for (auto pending : mPendingHotplugs) {
auto hwc1DisplayId = pending.first;
if (mHwc1DisplayMap.count(hwc1DisplayId) == 0) {
ALOGE("hwc1Hotplug: Couldn't find display for HWC1 id %d",
hwc1DisplayId);
continue;
}
auto displayId = mHwc1DisplayMap[hwc1DisplayId];
auto connected = pending.second;
pendingHotplugs.emplace_back(displayId, connected);
}
}
// Call pending callbacks without the state lock held
lock.unlock();
if (hasPendingInvalidate) {
auto refresh = reinterpret_cast<HWC2_PFN_REFRESH>(pointer);
for (auto displayId : displayIds) {
refresh(callbackData, displayId);
}
}
if (!pendingVsyncs.empty()) {
auto vsync = reinterpret_cast<HWC2_PFN_VSYNC>(pointer);
for (auto& pendingVsync : pendingVsyncs) {
vsync(callbackData, pendingVsync.first, pendingVsync.second);
}
}
if (!pendingHotplugs.empty()) {
auto hotplug = reinterpret_cast<HWC2_PFN_HOTPLUG>(pointer);
for (auto& pendingHotplug : pendingHotplugs) {
hotplug(callbackData, pendingHotplug.first, pendingHotplug.second);
}
}
return Error::None;
}
// Display functions
std::atomic<hwc2_display_t> HWC2On1Adapter::Display::sNextId(1);
HWC2On1Adapter::Display::Display(HWC2On1Adapter& device, HWC2::DisplayType type)
: mId(sNextId++),
mDevice(device),
mStateMutex(),
mHwc1RequestedContents(nullptr),
mRetireFence(),
mChanges(),
mHwc1Id(-1),
mConfigs(),
mActiveConfig(nullptr),
mActiveColorMode(static_cast<android_color_mode_t>(-1)),
mName(),
mType(type),
mPowerMode(PowerMode::Off),
mVsyncEnabled(Vsync::Invalid),
mClientTarget(),
mOutputBuffer(),
mHasColorTransform(false),
mLayers(),
mHwc1LayerMap(),
mNumAvailableRects(0),
mNextAvailableRect(nullptr),
mGeometryChanged(false)
{}
Error HWC2On1Adapter::Display::acceptChanges() {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mChanges) {
ALOGV("[%" PRIu64 "] acceptChanges failed, not validated", mId);
return Error::NotValidated;
}
ALOGV("[%" PRIu64 "] acceptChanges", mId);
for (auto& change : mChanges->getTypeChanges()) {
auto layerId = change.first;
auto type = change.second;
if (mDevice.mLayers.count(layerId) == 0) {
// This should never happen but somehow does.
ALOGW("Cannot accept change for unknown layer (%" PRIu64 ")",
layerId);
continue;
}
auto layer = mDevice.mLayers[layerId];
layer->setCompositionType(type);
}
mChanges->clearTypeChanges();
return Error::None;
}
Error HWC2On1Adapter::Display::createLayer(hwc2_layer_t* outLayerId) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
auto layer = *mLayers.emplace(std::make_shared<Layer>(*this));
mDevice.mLayers.emplace(std::make_pair(layer->getId(), layer));
*outLayerId = layer->getId();
ALOGV("[%" PRIu64 "] created layer %" PRIu64, mId, *outLayerId);
markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Display::destroyLayer(hwc2_layer_t layerId) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
const auto mapLayer = mDevice.mLayers.find(layerId);
if (mapLayer == mDevice.mLayers.end()) {
ALOGV("[%" PRIu64 "] destroyLayer(%" PRIu64 ") failed: no such layer",
mId, layerId);
return Error::BadLayer;
}
const auto layer = mapLayer->second;
mDevice.mLayers.erase(mapLayer);
const auto zRange = mLayers.equal_range(layer);
for (auto current = zRange.first; current != zRange.second; ++current) {
if (**current == *layer) {
current = mLayers.erase(current);
break;
}
}
ALOGV("[%" PRIu64 "] destroyed layer %" PRIu64, mId, layerId);
markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Display::getActiveConfig(hwc2_config_t* outConfig) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mActiveConfig) {
ALOGV("[%" PRIu64 "] getActiveConfig --> %s", mId,
to_string(Error::BadConfig).c_str());
return Error::BadConfig;
}
auto configId = mActiveConfig->getId();
ALOGV("[%" PRIu64 "] getActiveConfig --> %u", mId, configId);
*outConfig = configId;
return Error::None;
}
Error HWC2On1Adapter::Display::getAttribute(hwc2_config_t configId,
Attribute attribute, int32_t* outValue) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (configId > mConfigs.size() || !mConfigs[configId]->isOnDisplay(*this)) {
ALOGV("[%" PRIu64 "] getAttribute failed: bad config (%u)", mId,
configId);
return Error::BadConfig;
}
*outValue = mConfigs[configId]->getAttribute(attribute);
ALOGV("[%" PRIu64 "] getAttribute(%u, %s) --> %d", mId, configId,
to_string(attribute).c_str(), *outValue);
return Error::None;
}
Error HWC2On1Adapter::Display::getChangedCompositionTypes(
uint32_t* outNumElements, hwc2_layer_t* outLayers, int32_t* outTypes) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mChanges) {
ALOGE("[%" PRIu64 "] getChangedCompositionTypes failed: not validated",
mId);
return Error::NotValidated;
}
if ((outLayers == nullptr) || (outTypes == nullptr)) {
*outNumElements = mChanges->getTypeChanges().size();
return Error::None;
}
uint32_t numWritten = 0;
for (const auto& element : mChanges->getTypeChanges()) {
if (numWritten == *outNumElements) {
break;
}
auto layerId = element.first;
auto intType = static_cast<int32_t>(element.second);
ALOGV("Adding %" PRIu64 " %s", layerId,
to_string(element.second).c_str());
outLayers[numWritten] = layerId;
outTypes[numWritten] = intType;
++numWritten;
}
*outNumElements = numWritten;
return Error::None;
}
Error HWC2On1Adapter::Display::getColorModes(uint32_t* outNumModes,
int32_t* outModes) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!outModes) {
*outNumModes = mColorModes.size();
return Error::None;
}
uint32_t numModes = std::min(*outNumModes,
static_cast<uint32_t>(mColorModes.size()));
std::copy_n(mColorModes.cbegin(), numModes, outModes);
*outNumModes = numModes;
return Error::None;
}
Error HWC2On1Adapter::Display::getConfigs(uint32_t* outNumConfigs,
hwc2_config_t* outConfigs) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!outConfigs) {
*outNumConfigs = mConfigs.size();
return Error::None;
}
uint32_t numWritten = 0;
for (const auto& config : mConfigs) {
if (numWritten == *outNumConfigs) {
break;
}
outConfigs[numWritten] = config->getId();
++numWritten;
}
*outNumConfigs = numWritten;
return Error::None;
}
Error HWC2On1Adapter::Display::getDozeSupport(int32_t* outSupport) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (mDevice.mHwc1MinorVersion < 4 || mHwc1Id != 0) {
*outSupport = 0;
} else {
*outSupport = 1;
}
return Error::None;
}
Error HWC2On1Adapter::Display::getHdrCapabilities(uint32_t* outNumTypes,
int32_t* /*outTypes*/, float* /*outMaxLuminance*/,
float* /*outMaxAverageLuminance*/, float* /*outMinLuminance*/) {
// This isn't supported on HWC1, so per the HWC2 header, return numTypes = 0
*outNumTypes = 0;
return Error::None;
}
Error HWC2On1Adapter::Display::getName(uint32_t* outSize, char* outName) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!outName) {
*outSize = mName.size();
return Error::None;
}
auto numCopied = mName.copy(outName, *outSize);
*outSize = numCopied;
return Error::None;
}
Error HWC2On1Adapter::Display::getReleaseFences(uint32_t* outNumElements,
hwc2_layer_t* outLayers, int32_t* outFences) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
uint32_t numWritten = 0;
bool outputsNonNull = (outLayers != nullptr) && (outFences != nullptr);
for (const auto& layer : mLayers) {
if (outputsNonNull && (numWritten == *outNumElements)) {
break;
}
auto releaseFence = layer->getReleaseFence();
if (releaseFence != MiniFence::NO_FENCE) {
if (outputsNonNull) {
outLayers[numWritten] = layer->getId();
outFences[numWritten] = releaseFence->dup();
}
++numWritten;
}
}
*outNumElements = numWritten;
return Error::None;
}
Error HWC2On1Adapter::Display::getRequests(int32_t* outDisplayRequests,
uint32_t* outNumElements, hwc2_layer_t* outLayers,
int32_t* outLayerRequests) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mChanges) {
return Error::NotValidated;
}
if (outLayers == nullptr || outLayerRequests == nullptr) {
*outNumElements = mChanges->getNumLayerRequests();
return Error::None;
}
// Display requests (HWC2::DisplayRequest) are not supported by hwc1:
// A hwc1 has always zero requests for the client.
*outDisplayRequests = 0;
uint32_t numWritten = 0;
for (const auto& request : mChanges->getLayerRequests()) {
if (numWritten == *outNumElements) {
break;
}
outLayers[numWritten] = request.first;
outLayerRequests[numWritten] = static_cast<int32_t>(request.second);
++numWritten;
}
return Error::None;
}
Error HWC2On1Adapter::Display::getType(int32_t* outType) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
*outType = static_cast<int32_t>(mType);
return Error::None;
}
Error HWC2On1Adapter::Display::present(int32_t* outRetireFence) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (mChanges) {
Error error = mDevice.setAllDisplays();
if (error != Error::None) {
ALOGE("[%" PRIu64 "] present: setAllDisplaysFailed (%s)", mId,
to_string(error).c_str());
return error;
}
}
*outRetireFence = mRetireFence.get()->dup();
ALOGV("[%" PRIu64 "] present returning retire fence %d", mId,
*outRetireFence);
return Error::None;
}
Error HWC2On1Adapter::Display::setActiveConfig(hwc2_config_t configId) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
auto config = getConfig(configId);
if (!config) {
return Error::BadConfig;
}
if (config == mActiveConfig) {
return Error::None;
}
if (mDevice.mHwc1MinorVersion >= 4) {
uint32_t hwc1Id = 0;
auto error = config->getHwc1IdForColorMode(mActiveColorMode, &hwc1Id);
if (error != Error::None) {
return error;
}
int intError = mDevice.mHwc1Device->setActiveConfig(mDevice.mHwc1Device,
mHwc1Id, static_cast<int>(hwc1Id));
if (intError != 0) {
ALOGE("setActiveConfig: Failed to set active config on HWC1 (%d)",
intError);
return Error::BadConfig;
}
mActiveConfig = config;
}
return Error::None;
}
Error HWC2On1Adapter::Display::setClientTarget(buffer_handle_t target,
int32_t acquireFence, int32_t /*dataspace*/, hwc_region_t /*damage*/) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
ALOGV("[%" PRIu64 "] setClientTarget(%p, %d)", mId, target, acquireFence);
mClientTarget.setBuffer(target);
mClientTarget.setFence(acquireFence);
// dataspace and damage can't be used by HWC1, so ignore them
return Error::None;
}
Error HWC2On1Adapter::Display::setColorMode(android_color_mode_t mode) {
std::unique_lock<std::recursive_mutex> lock (mStateMutex);
ALOGV("[%" PRIu64 "] setColorMode(%d)", mId, mode);
if (mode == mActiveColorMode) {
return Error::None;
}
if (mColorModes.count(mode) == 0) {
ALOGE("[%" PRIu64 "] Mode %d not found in mColorModes", mId, mode);
return Error::Unsupported;
}
uint32_t hwc1Config = 0;
auto error = mActiveConfig->getHwc1IdForColorMode(mode, &hwc1Config);
if (error != Error::None) {
return error;
}
ALOGV("[%" PRIu64 "] Setting HWC1 config %u", mId, hwc1Config);
int intError = mDevice.mHwc1Device->setActiveConfig(mDevice.mHwc1Device,
mHwc1Id, hwc1Config);
if (intError != 0) {
ALOGE("[%" PRIu64 "] Failed to set HWC1 config (%d)", mId, intError);
return Error::Unsupported;
}
mActiveColorMode = mode;
return Error::None;
}
Error HWC2On1Adapter::Display::setColorTransform(android_color_transform_t hint) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
ALOGV("%" PRIu64 "] setColorTransform(%d)", mId,
static_cast<int32_t>(hint));
mHasColorTransform = (hint != HAL_COLOR_TRANSFORM_IDENTITY);
return Error::None;
}
Error HWC2On1Adapter::Display::setOutputBuffer(buffer_handle_t buffer,
int32_t releaseFence) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
ALOGV("[%" PRIu64 "] setOutputBuffer(%p, %d)", mId, buffer, releaseFence);
mOutputBuffer.setBuffer(buffer);
mOutputBuffer.setFence(releaseFence);
return Error::None;
}
static bool isValid(PowerMode mode) {
switch (mode) {
case PowerMode::Off: // Fall-through
case PowerMode::DozeSuspend: // Fall-through
case PowerMode::Doze: // Fall-through
case PowerMode::On: return true;
}
}
static int getHwc1PowerMode(PowerMode mode) {
switch (mode) {
case PowerMode::Off: return HWC_POWER_MODE_OFF;
case PowerMode::DozeSuspend: return HWC_POWER_MODE_DOZE_SUSPEND;
case PowerMode::Doze: return HWC_POWER_MODE_DOZE;
case PowerMode::On: return HWC_POWER_MODE_NORMAL;
}
}
Error HWC2On1Adapter::Display::setPowerMode(PowerMode mode) {
if (!isValid(mode)) {
return Error::BadParameter;
}
if (mode == mPowerMode) {
return Error::None;
}
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
int error = 0;
if (mDevice.mHwc1MinorVersion < 4) {
error = mDevice.mHwc1Device->blank(mDevice.mHwc1Device, mHwc1Id,
mode == PowerMode::Off);
} else {
error = mDevice.mHwc1Device->setPowerMode(mDevice.mHwc1Device,
mHwc1Id, getHwc1PowerMode(mode));
}
ALOGE_IF(error != 0, "setPowerMode: Failed to set power mode on HWC1 (%d)",
error);
ALOGV("[%" PRIu64 "] setPowerMode(%s)", mId, to_string(mode).c_str());
mPowerMode = mode;
return Error::None;
}
static bool isValid(Vsync enable) {
switch (enable) {
case Vsync::Enable: // Fall-through
case Vsync::Disable: return true;
case Vsync::Invalid: return false;
}
}
Error HWC2On1Adapter::Display::setVsyncEnabled(Vsync enable) {
if (!isValid(enable)) {
return Error::BadParameter;
}
if (enable == mVsyncEnabled) {
return Error::None;
}
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
int error = mDevice.mHwc1Device->eventControl(mDevice.mHwc1Device,
mHwc1Id, HWC_EVENT_VSYNC, enable == Vsync::Enable);
ALOGE_IF(error != 0, "setVsyncEnabled: Failed to set vsync on HWC1 (%d)",
error);
mVsyncEnabled = enable;
return Error::None;
}
Error HWC2On1Adapter::Display::validate(uint32_t* outNumTypes,
uint32_t* outNumRequests) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mChanges) {
if (!mDevice.prepareAllDisplays()) {
return Error::BadDisplay;
}
} else {
ALOGE("Validate was called more than once!");
}
*outNumTypes = mChanges->getNumTypes();
*outNumRequests = mChanges->getNumLayerRequests();
ALOGV("[%" PRIu64 "] validate --> %u types, %u requests", mId, *outNumTypes,
*outNumRequests);
for (auto request : mChanges->getTypeChanges()) {
ALOGV("Layer %" PRIu64 " --> %s", request.first,
to_string(request.second).c_str());
}
return *outNumTypes > 0 ? Error::HasChanges : Error::None;
}
Error HWC2On1Adapter::Display::updateLayerZ(hwc2_layer_t layerId, uint32_t z) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
const auto mapLayer = mDevice.mLayers.find(layerId);
if (mapLayer == mDevice.mLayers.end()) {
ALOGE("[%" PRIu64 "] updateLayerZ failed to find layer", mId);
return Error::BadLayer;
}
const auto layer = mapLayer->second;
const auto zRange = mLayers.equal_range(layer);
bool layerOnDisplay = false;
for (auto current = zRange.first; current != zRange.second; ++current) {
if (**current == *layer) {
if ((*current)->getZ() == z) {
// Don't change anything if the Z hasn't changed
return Error::None;
}
current = mLayers.erase(current);
layerOnDisplay = true;
break;
}
}
if (!layerOnDisplay) {
ALOGE("[%" PRIu64 "] updateLayerZ failed to find layer on display",
mId);
return Error::BadLayer;
}
layer->setZ(z);
mLayers.emplace(std::move(layer));
markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Display::getClientTargetSupport(uint32_t width, uint32_t height,
int32_t format, int32_t dataspace){
if (mActiveConfig == nullptr) {
return Error::Unsupported;
}
if (width == mActiveConfig->getAttribute(Attribute::Width) &&
height == mActiveConfig->getAttribute(Attribute::Height) &&
format == HAL_PIXEL_FORMAT_RGBA_8888 &&
dataspace == HAL_DATASPACE_UNKNOWN) {
return Error::None;
}
return Error::Unsupported;
}
static constexpr uint32_t ATTRIBUTES_WITH_COLOR[] = {
HWC_DISPLAY_VSYNC_PERIOD,
HWC_DISPLAY_WIDTH,
HWC_DISPLAY_HEIGHT,
HWC_DISPLAY_DPI_X,
HWC_DISPLAY_DPI_Y,
HWC_DISPLAY_COLOR_TRANSFORM,
HWC_DISPLAY_NO_ATTRIBUTE,
};
static constexpr uint32_t ATTRIBUTES_WITHOUT_COLOR[] = {
HWC_DISPLAY_VSYNC_PERIOD,
HWC_DISPLAY_WIDTH,
HWC_DISPLAY_HEIGHT,
HWC_DISPLAY_DPI_X,
HWC_DISPLAY_DPI_Y,
HWC_DISPLAY_NO_ATTRIBUTE,
};
static constexpr size_t NUM_ATTRIBUTES_WITH_COLOR =
sizeof(ATTRIBUTES_WITH_COLOR) / sizeof(uint32_t);
static_assert(sizeof(ATTRIBUTES_WITH_COLOR) > sizeof(ATTRIBUTES_WITHOUT_COLOR),
"Attribute tables have unexpected sizes");
static constexpr uint32_t ATTRIBUTE_MAP_WITH_COLOR[] = {
6, // HWC_DISPLAY_NO_ATTRIBUTE = 0
0, // HWC_DISPLAY_VSYNC_PERIOD = 1,
1, // HWC_DISPLAY_WIDTH = 2,
2, // HWC_DISPLAY_HEIGHT = 3,
3, // HWC_DISPLAY_DPI_X = 4,
4, // HWC_DISPLAY_DPI_Y = 5,
5, // HWC_DISPLAY_COLOR_TRANSFORM = 6,
};
static constexpr uint32_t ATTRIBUTE_MAP_WITHOUT_COLOR[] = {
5, // HWC_DISPLAY_NO_ATTRIBUTE = 0
0, // HWC_DISPLAY_VSYNC_PERIOD = 1,
1, // HWC_DISPLAY_WIDTH = 2,
2, // HWC_DISPLAY_HEIGHT = 3,
3, // HWC_DISPLAY_DPI_X = 4,
4, // HWC_DISPLAY_DPI_Y = 5,
};
template <uint32_t attribute>
static constexpr bool attributesMatch()
{
bool match = (attribute ==
ATTRIBUTES_WITH_COLOR[ATTRIBUTE_MAP_WITH_COLOR[attribute]]);
if (attribute == HWC_DISPLAY_COLOR_TRANSFORM) {
return match;
}
return match && (attribute ==
ATTRIBUTES_WITHOUT_COLOR[ATTRIBUTE_MAP_WITHOUT_COLOR[attribute]]);
}
static_assert(attributesMatch<HWC_DISPLAY_VSYNC_PERIOD>(),
"Tables out of sync");
static_assert(attributesMatch<HWC_DISPLAY_WIDTH>(), "Tables out of sync");
static_assert(attributesMatch<HWC_DISPLAY_HEIGHT>(), "Tables out of sync");
static_assert(attributesMatch<HWC_DISPLAY_DPI_X>(), "Tables out of sync");
static_assert(attributesMatch<HWC_DISPLAY_DPI_Y>(), "Tables out of sync");
static_assert(attributesMatch<HWC_DISPLAY_COLOR_TRANSFORM>(),
"Tables out of sync");
void HWC2On1Adapter::Display::populateConfigs() {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
ALOGV("[%" PRIu64 "] populateConfigs", mId);
if (mHwc1Id == -1) {
ALOGE("populateConfigs: HWC1 ID not set");
return;
}
const size_t MAX_NUM_CONFIGS = 128;
uint32_t configs[MAX_NUM_CONFIGS] = {};
size_t numConfigs = MAX_NUM_CONFIGS;
mDevice.mHwc1Device->getDisplayConfigs(mDevice.mHwc1Device, mHwc1Id,
configs, &numConfigs);
for (size_t c = 0; c < numConfigs; ++c) {
uint32_t hwc1ConfigId = configs[c];
auto newConfig = std::make_shared<Config>(*this);
int32_t values[NUM_ATTRIBUTES_WITH_COLOR] = {};
bool hasColor = true;
auto result = mDevice.mHwc1Device->getDisplayAttributes(
mDevice.mHwc1Device, mHwc1Id, hwc1ConfigId,
ATTRIBUTES_WITH_COLOR, values);
if (result != 0) {
mDevice.mHwc1Device->getDisplayAttributes(mDevice.mHwc1Device,
mHwc1Id, hwc1ConfigId, ATTRIBUTES_WITHOUT_COLOR, values);
hasColor = false;
}
auto attributeMap = hasColor ?
ATTRIBUTE_MAP_WITH_COLOR : ATTRIBUTE_MAP_WITHOUT_COLOR;
newConfig->setAttribute(Attribute::VsyncPeriod,
values[attributeMap[HWC_DISPLAY_VSYNC_PERIOD]]);
newConfig->setAttribute(Attribute::Width,
values[attributeMap[HWC_DISPLAY_WIDTH]]);
newConfig->setAttribute(Attribute::Height,
values[attributeMap[HWC_DISPLAY_HEIGHT]]);
newConfig->setAttribute(Attribute::DpiX,
values[attributeMap[HWC_DISPLAY_DPI_X]]);
newConfig->setAttribute(Attribute::DpiY,
values[attributeMap[HWC_DISPLAY_DPI_Y]]);
if (hasColor) {
// In HWC1, color modes are referred to as color transforms. To avoid confusion with
// the HWC2 concept of color transforms, we internally refer to them as color modes for
// both HWC1 and 2.
newConfig->setAttribute(ColorMode,
values[attributeMap[HWC_DISPLAY_COLOR_TRANSFORM]]);
}
// We can only do this after attempting to read the color mode
newConfig->setHwc1Id(hwc1ConfigId);
for (auto& existingConfig : mConfigs) {
if (existingConfig->merge(*newConfig)) {
ALOGV("Merged config %d with existing config %u: %s",
hwc1ConfigId, existingConfig->getId(),
existingConfig->toString().c_str());
newConfig.reset();
break;
}
}
// If it wasn't merged with any existing config, add it to the end
if (newConfig) {
newConfig->setId(static_cast<hwc2_config_t>(mConfigs.size()));
ALOGV("Found new config %u: %s", newConfig->getId(),
newConfig->toString().c_str());
mConfigs.emplace_back(std::move(newConfig));
}
}
initializeActiveConfig();
populateColorModes();
}
void HWC2On1Adapter::Display::populateConfigs(uint32_t width, uint32_t height) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
mConfigs.emplace_back(std::make_shared<Config>(*this));
auto& config = mConfigs[0];
config->setAttribute(Attribute::Width, static_cast<int32_t>(width));
config->setAttribute(Attribute::Height, static_cast<int32_t>(height));
config->setHwc1Id(0);
config->setId(0);
mActiveConfig = config;
}
bool HWC2On1Adapter::Display::prepare() {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
// Only prepare display contents for displays HWC1 knows about
if (mHwc1Id == -1) {
return true;
}
// It doesn't make sense to prepare a display for which there is no active
// config, so return early
if (!mActiveConfig) {
ALOGE("[%" PRIu64 "] Attempted to prepare, but no config active", mId);
return false;
}
allocateRequestedContents();
assignHwc1LayerIds();
mHwc1RequestedContents->retireFenceFd = -1;
mHwc1RequestedContents->flags = 0;
if (mGeometryChanged) {
mHwc1RequestedContents->flags |= HWC_GEOMETRY_CHANGED;
}
mHwc1RequestedContents->outbuf = mOutputBuffer.getBuffer();
mHwc1RequestedContents->outbufAcquireFenceFd = mOutputBuffer.getFence();
// +1 is for framebuffer target layer.
mHwc1RequestedContents->numHwLayers = mLayers.size() + 1;
for (auto& layer : mLayers) {
auto& hwc1Layer = mHwc1RequestedContents->hwLayers[layer->getHwc1Id()];
hwc1Layer.releaseFenceFd = -1;
hwc1Layer.acquireFenceFd = -1;
ALOGV("Applying states for layer %" PRIu64 " ", layer->getId());
layer->applyState(hwc1Layer);
}
prepareFramebufferTarget();
resetGeometryMarker();
return true;
}
void HWC2On1Adapter::Display::generateChanges() {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
mChanges.reset(new Changes);
size_t numLayers = mHwc1RequestedContents->numHwLayers;
for (size_t hwc1Id = 0; hwc1Id < numLayers; ++hwc1Id) {
const auto& receivedLayer = mHwc1RequestedContents->hwLayers[hwc1Id];
if (mHwc1LayerMap.count(hwc1Id) == 0) {
ALOGE_IF(receivedLayer.compositionType != HWC_FRAMEBUFFER_TARGET,
"generateChanges: HWC1 layer %zd doesn't have a"
" matching HWC2 layer, and isn't the framebuffer target",
hwc1Id);
continue;
}
Layer& layer = *mHwc1LayerMap[hwc1Id];
updateTypeChanges(receivedLayer, layer);
updateLayerRequests(receivedLayer, layer);
}
}
bool HWC2On1Adapter::Display::hasChanges() const {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
return mChanges != nullptr;
}
Error HWC2On1Adapter::Display::set(hwc_display_contents_1& hwcContents) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
if (!mChanges || (mChanges->getNumTypes() > 0)) {
ALOGE("[%" PRIu64 "] set failed: not validated", mId);
return Error::NotValidated;
}
// Set up the client/framebuffer target
auto numLayers = hwcContents.numHwLayers;
// Close acquire fences on FRAMEBUFFER layers, since they will not be used
// by HWC
for (size_t l = 0; l < numLayers - 1; ++l) {
auto& layer = hwcContents.hwLayers[l];
if (layer.compositionType == HWC_FRAMEBUFFER) {
ALOGV("Closing fence %d for layer %zd", layer.acquireFenceFd, l);
close(layer.acquireFenceFd);
layer.acquireFenceFd = -1;
}
}
auto& clientTargetLayer = hwcContents.hwLayers[numLayers - 1];
if (clientTargetLayer.compositionType == HWC_FRAMEBUFFER_TARGET) {
clientTargetLayer.handle = mClientTarget.getBuffer();
clientTargetLayer.acquireFenceFd = mClientTarget.getFence();
} else {
ALOGE("[%" PRIu64 "] set: last HWC layer wasn't FRAMEBUFFER_TARGET",
mId);
}
mChanges.reset();
return Error::None;
}
void HWC2On1Adapter::Display::addRetireFence(int fenceFd) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
mRetireFence.add(fenceFd);
}
void HWC2On1Adapter::Display::addReleaseFences(
const hwc_display_contents_1_t& hwcContents) {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
size_t numLayers = hwcContents.numHwLayers;
for (size_t hwc1Id = 0; hwc1Id < numLayers; ++hwc1Id) {
const auto& receivedLayer = hwcContents.hwLayers[hwc1Id];
if (mHwc1LayerMap.count(hwc1Id) == 0) {
if (receivedLayer.compositionType != HWC_FRAMEBUFFER_TARGET) {
ALOGE("addReleaseFences: HWC1 layer %zd doesn't have a"
" matching HWC2 layer, and isn't the framebuffer"
" target", hwc1Id);
}
// Close the framebuffer target release fence since we will use the
// display retire fence instead
if (receivedLayer.releaseFenceFd != -1) {
close(receivedLayer.releaseFenceFd);
}
continue;
}
Layer& layer = *mHwc1LayerMap[hwc1Id];
ALOGV("Adding release fence %d to layer %" PRIu64,
receivedLayer.releaseFenceFd, layer.getId());
layer.addReleaseFence(receivedLayer.releaseFenceFd);
}
}
bool HWC2On1Adapter::Display::hasColorTransform() const {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
return mHasColorTransform;
}
static std::string hwc1CompositionString(int32_t type) {
switch (type) {
case HWC_FRAMEBUFFER: return "Framebuffer";
case HWC_OVERLAY: return "Overlay";
case HWC_BACKGROUND: return "Background";
case HWC_FRAMEBUFFER_TARGET: return "FramebufferTarget";
case HWC_SIDEBAND: return "Sideband";
case HWC_CURSOR_OVERLAY: return "CursorOverlay";
default:
return std::string("Unknown (") + std::to_string(type) + ")";
}
}
static std::string hwc1TransformString(int32_t transform) {
switch (transform) {
case 0: return "None";
case HWC_TRANSFORM_FLIP_H: return "FlipH";
case HWC_TRANSFORM_FLIP_V: return "FlipV";
case HWC_TRANSFORM_ROT_90: return "Rotate90";
case HWC_TRANSFORM_ROT_180: return "Rotate180";
case HWC_TRANSFORM_ROT_270: return "Rotate270";
case HWC_TRANSFORM_FLIP_H_ROT_90: return "FlipHRotate90";
case HWC_TRANSFORM_FLIP_V_ROT_90: return "FlipVRotate90";
default:
return std::string("Unknown (") + std::to_string(transform) + ")";
}
}
static std::string hwc1BlendModeString(int32_t mode) {
switch (mode) {
case HWC_BLENDING_NONE: return "None";
case HWC_BLENDING_PREMULT: return "Premultiplied";
case HWC_BLENDING_COVERAGE: return "Coverage";
default:
return std::string("Unknown (") + std::to_string(mode) + ")";
}
}
static std::string rectString(hwc_rect_t rect) {
std::stringstream output;
output << "[" << rect.left << ", " << rect.top << ", ";
output << rect.right << ", " << rect.bottom << "]";
return output.str();
}
static std::string approximateFloatString(float f) {
if (static_cast<int32_t>(f) == f) {
return std::to_string(static_cast<int32_t>(f));
}
int32_t truncated = static_cast<int32_t>(f * 10);
bool approximate = (static_cast<float>(truncated) != f * 10);
const size_t BUFFER_SIZE = 32;
char buffer[BUFFER_SIZE] = {};
auto bytesWritten = snprintf(buffer, BUFFER_SIZE,
"%s%.1f", approximate ? "~" : "", f);
return std::string(buffer, bytesWritten);
}
static std::string frectString(hwc_frect_t frect) {
std::stringstream output;
output << "[" << approximateFloatString(frect.left) << ", ";
output << approximateFloatString(frect.top) << ", ";
output << approximateFloatString(frect.right) << ", ";
output << approximateFloatString(frect.bottom) << "]";
return output.str();
}
static std::string colorString(hwc_color_t color) {
std::stringstream output;
output << "RGBA [";
output << static_cast<int32_t>(color.r) << ", ";
output << static_cast<int32_t>(color.g) << ", ";
output << static_cast<int32_t>(color.b) << ", ";
output << static_cast<int32_t>(color.a) << "]";
return output.str();
}
static std::string alphaString(float f) {
const size_t BUFFER_SIZE = 8;
char buffer[BUFFER_SIZE] = {};
auto bytesWritten = snprintf(buffer, BUFFER_SIZE, "%.3f", f);
return std::string(buffer, bytesWritten);
}
static std::string to_string(const hwc_layer_1_t& hwcLayer,
int32_t hwc1MinorVersion) {
const char* fill = " ";
std::stringstream output;
output << " Composition: " <<
hwc1CompositionString(hwcLayer.compositionType);
if (hwcLayer.compositionType == HWC_BACKGROUND) {
output << " Color: " << colorString(hwcLayer.backgroundColor) << '\n';
} else if (hwcLayer.compositionType == HWC_SIDEBAND) {
output << " Stream: " << hwcLayer.sidebandStream << '\n';
} else {
output << " Buffer: " << hwcLayer.handle << "/" <<
hwcLayer.acquireFenceFd << '\n';
}
output << fill << "Display frame: " << rectString(hwcLayer.displayFrame) <<
'\n';
output << fill << "Source crop: ";
if (hwc1MinorVersion >= 3) {
output << frectString(hwcLayer.sourceCropf) << '\n';
} else {
output << rectString(hwcLayer.sourceCropi) << '\n';
}
output << fill << "Transform: " << hwc1TransformString(hwcLayer.transform);
output << " Blend mode: " << hwc1BlendModeString(hwcLayer.blending);
if (hwcLayer.planeAlpha != 0xFF) {
output << " Alpha: " << alphaString(hwcLayer.planeAlpha / 255.0f);
}
output << '\n';
if (hwcLayer.hints != 0) {
output << fill << "Hints:";
if ((hwcLayer.hints & HWC_HINT_TRIPLE_BUFFER) != 0) {
output << " TripleBuffer";
}
if ((hwcLayer.hints & HWC_HINT_CLEAR_FB) != 0) {
output << " ClearFB";
}
output << '\n';
}
if (hwcLayer.flags != 0) {
output << fill << "Flags:";
if ((hwcLayer.flags & HWC_SKIP_LAYER) != 0) {
output << " SkipLayer";
}
if ((hwcLayer.flags & HWC_IS_CURSOR_LAYER) != 0) {
output << " IsCursorLayer";
}
output << '\n';
}
return output.str();
}
static std::string to_string(const hwc_display_contents_1_t& hwcContents,
int32_t hwc1MinorVersion) {
const char* fill = " ";
std::stringstream output;
output << fill << "Geometry changed: " <<
((hwcContents.flags & HWC_GEOMETRY_CHANGED) != 0 ? "Y\n" : "N\n");
output << fill << hwcContents.numHwLayers << " Layer" <<
((hwcContents.numHwLayers == 1) ? "\n" : "s\n");
for (size_t layer = 0; layer < hwcContents.numHwLayers; ++layer) {
output << fill << " Layer " << layer;
output << to_string(hwcContents.hwLayers[layer], hwc1MinorVersion);
}
if (hwcContents.outbuf != nullptr) {
output << fill << "Output buffer: " << hwcContents.outbuf << "/" <<
hwcContents.outbufAcquireFenceFd << '\n';
}
return output.str();
}
std::string HWC2On1Adapter::Display::dump() const {
std::unique_lock<std::recursive_mutex> lock(mStateMutex);
std::stringstream output;
output << " Display " << mId << ": ";
output << to_string(mType) << " ";
output << "HWC1 ID: " << mHwc1Id << " ";
output << "Power mode: " << to_string(mPowerMode) << " ";
output << "Vsync: " << to_string(mVsyncEnabled) << '\n';
output << " Color modes [active]:";
for (const auto& mode : mColorModes) {
if (mode == mActiveColorMode) {
output << " [" << mode << ']';
} else {
output << " " << mode;
}
}
output << '\n';
output << " " << mConfigs.size() << " Config" <<
(mConfigs.size() == 1 ? "" : "s") << " (* active)\n";
for (const auto& config : mConfigs) {
output << (config == mActiveConfig ? " * " : " ");
output << config->toString(true) << '\n';
}
output << " " << mLayers.size() << " Layer" <<
(mLayers.size() == 1 ? "" : "s") << '\n';
for (const auto& layer : mLayers) {
output << layer->dump();
}
output << " Client target: " << mClientTarget.getBuffer() << '\n';
if (mOutputBuffer.getBuffer() != nullptr) {
output << " Output buffer: " << mOutputBuffer.getBuffer() << '\n';
}
if (mHwc1RequestedContents) {
output << " Last requested HWC1 state\n";
output << to_string(*mHwc1RequestedContents, mDevice.mHwc1MinorVersion);
}
return output.str();
}
hwc_rect_t* HWC2On1Adapter::Display::GetRects(size_t numRects) {
if (numRects == 0) {
return nullptr;
}
if (numRects > mNumAvailableRects) {
// This should NEVER happen since we calculated how many rects the
// display would need.
ALOGE("Rect allocation failure! SF is likely to crash soon!");
return nullptr;
}
hwc_rect_t* rects = mNextAvailableRect;
mNextAvailableRect += numRects;
mNumAvailableRects -= numRects;
return rects;
}
hwc_display_contents_1* HWC2On1Adapter::Display::getDisplayContents() {
return mHwc1RequestedContents.get();
}
void HWC2On1Adapter::Display::Config::setAttribute(HWC2::Attribute attribute,
int32_t value) {
mAttributes[attribute] = value;
}
int32_t HWC2On1Adapter::Display::Config::getAttribute(Attribute attribute) const {
if (mAttributes.count(attribute) == 0) {
return -1;
}
return mAttributes.at(attribute);
}
void HWC2On1Adapter::Display::Config::setHwc1Id(uint32_t id) {
android_color_mode_t colorMode = static_cast<android_color_mode_t>(getAttribute(ColorMode));
mHwc1Ids.emplace(colorMode, id);
}
bool HWC2On1Adapter::Display::Config::hasHwc1Id(uint32_t id) const {
for (const auto& idPair : mHwc1Ids) {
if (id == idPair.second) {
return true;
}
}
return false;
}
Error HWC2On1Adapter::Display::Config::getColorModeForHwc1Id(
uint32_t id, android_color_mode_t* outMode) const {
for (const auto& idPair : mHwc1Ids) {
if (id == idPair.second) {
*outMode = idPair.first;
return Error::None;
}
}
ALOGE("Unable to find color mode for HWC ID %" PRIu32 " on config %u", id, mId);
return Error::BadParameter;
}
Error HWC2On1Adapter::Display::Config::getHwc1IdForColorMode(android_color_mode_t mode,
uint32_t* outId) const {
for (const auto& idPair : mHwc1Ids) {
if (mode == idPair.first) {
*outId = idPair.second;
return Error::None;
}
}
ALOGE("Unable to find HWC1 ID for color mode %d on config %u", mode, mId);
return Error::BadParameter;
}
bool HWC2On1Adapter::Display::Config::merge(const Config& other) {
auto attributes = {HWC2::Attribute::Width, HWC2::Attribute::Height,
HWC2::Attribute::VsyncPeriod, HWC2::Attribute::DpiX,
HWC2::Attribute::DpiY};
for (auto attribute : attributes) {
if (getAttribute(attribute) != other.getAttribute(attribute)) {
return false;
}
}
android_color_mode_t otherColorMode =
static_cast<android_color_mode_t>(other.getAttribute(ColorMode));
if (mHwc1Ids.count(otherColorMode) != 0) {
ALOGE("Attempted to merge two configs (%u and %u) which appear to be "
"identical", mHwc1Ids.at(otherColorMode),
other.mHwc1Ids.at(otherColorMode));
return false;
}
mHwc1Ids.emplace(otherColorMode,
other.mHwc1Ids.at(otherColorMode));
return true;
}
std::set<android_color_mode_t> HWC2On1Adapter::Display::Config::getColorModes() const {
std::set<android_color_mode_t> colorModes;
for (const auto& idPair : mHwc1Ids) {
colorModes.emplace(idPair.first);
}
return colorModes;
}
std::string HWC2On1Adapter::Display::Config::toString(bool splitLine) const {
std::string output;
const size_t BUFFER_SIZE = 100;
char buffer[BUFFER_SIZE] = {};
auto writtenBytes = snprintf(buffer, BUFFER_SIZE,
"%u x %u", mAttributes.at(HWC2::Attribute::Width),
mAttributes.at(HWC2::Attribute::Height));
output.append(buffer, writtenBytes);
if (mAttributes.count(HWC2::Attribute::VsyncPeriod) != 0) {
std::memset(buffer, 0, BUFFER_SIZE);
writtenBytes = snprintf(buffer, BUFFER_SIZE, " @ %.1f Hz",
1e9 / mAttributes.at(HWC2::Attribute::VsyncPeriod));
output.append(buffer, writtenBytes);
}
if (mAttributes.count(HWC2::Attribute::DpiX) != 0 &&
mAttributes.at(HWC2::Attribute::DpiX) != -1) {
std::memset(buffer, 0, BUFFER_SIZE);
writtenBytes = snprintf(buffer, BUFFER_SIZE,
", DPI: %.1f x %.1f",
mAttributes.at(HWC2::Attribute::DpiX) / 1000.0f,
mAttributes.at(HWC2::Attribute::DpiY) / 1000.0f);
output.append(buffer, writtenBytes);
}
std::memset(buffer, 0, BUFFER_SIZE);
if (splitLine) {
writtenBytes = snprintf(buffer, BUFFER_SIZE,
"\n HWC1 ID/Color transform:");
} else {
writtenBytes = snprintf(buffer, BUFFER_SIZE,
", HWC1 ID/Color transform:");
}
output.append(buffer, writtenBytes);
for (const auto& id : mHwc1Ids) {
android_color_mode_t colorMode = id.first;
uint32_t hwc1Id = id.second;
std::memset(buffer, 0, BUFFER_SIZE);
if (colorMode == mDisplay.mActiveColorMode) {
writtenBytes = snprintf(buffer, BUFFER_SIZE, " [%u/%d]", hwc1Id,
colorMode);
} else {
writtenBytes = snprintf(buffer, BUFFER_SIZE, " %u/%d", hwc1Id,
colorMode);
}
output.append(buffer, writtenBytes);
}
return output;
}
std::shared_ptr<const HWC2On1Adapter::Display::Config>
HWC2On1Adapter::Display::getConfig(hwc2_config_t configId) const {
if (configId > mConfigs.size() || !mConfigs[configId]->isOnDisplay(*this)) {
return nullptr;
}
return mConfigs[configId];
}
void HWC2On1Adapter::Display::populateColorModes() {
mColorModes = mConfigs[0]->getColorModes();
for (const auto& config : mConfigs) {
std::set<android_color_mode_t> intersection;
auto configModes = config->getColorModes();
std::set_intersection(mColorModes.cbegin(), mColorModes.cend(),
configModes.cbegin(), configModes.cend(),
std::inserter(intersection, intersection.begin()));
std::swap(intersection, mColorModes);
}
}
void HWC2On1Adapter::Display::initializeActiveConfig() {
if (mDevice.mHwc1Device->getActiveConfig == nullptr) {
ALOGV("getActiveConfig is null, choosing config 0");
mActiveConfig = mConfigs[0];
mActiveColorMode = HAL_COLOR_MODE_NATIVE;
return;
}
auto activeConfig = mDevice.mHwc1Device->getActiveConfig(
mDevice.mHwc1Device, mHwc1Id);
// Some devices startup without an activeConfig:
// We need to set one ourselves.
if (activeConfig == HWC_ERROR) {
ALOGV("There is no active configuration: Picking the first one: 0.");
const int defaultIndex = 0;
mDevice.mHwc1Device->setActiveConfig(mDevice.mHwc1Device, mHwc1Id, defaultIndex);
activeConfig = defaultIndex;
}
for (const auto& config : mConfigs) {
if (config->hasHwc1Id(activeConfig)) {
ALOGE("Setting active config to %d for HWC1 config %u", config->getId(), activeConfig);
mActiveConfig = config;
if (config->getColorModeForHwc1Id(activeConfig, &mActiveColorMode) != Error::None) {
// This should never happen since we checked for the config's presence before
// setting it as active.
ALOGE("Unable to find color mode for active HWC1 config %d", config->getId());
mActiveColorMode = HAL_COLOR_MODE_NATIVE;
}
break;
}
}
if (!mActiveConfig) {
ALOGV("Unable to find active HWC1 config %u, defaulting to "
"config 0", activeConfig);
mActiveConfig = mConfigs[0];
mActiveColorMode = HAL_COLOR_MODE_NATIVE;
}
}
void HWC2On1Adapter::Display::allocateRequestedContents() {
// What needs to be allocated:
// 1 hwc_display_contents_1_t
// 1 hwc_layer_1_t for each layer
// 1 hwc_rect_t for each layer's surfaceDamage
// 1 hwc_rect_t for each layer's visibleRegion
// 1 hwc_layer_1_t for the framebuffer
// 1 hwc_rect_t for the framebuffer's visibleRegion
// Count # of surfaceDamage
size_t numSurfaceDamages = 0;
for (const auto& layer : mLayers) {
numSurfaceDamages += layer->getNumSurfaceDamages();
}
// Count # of visibleRegions (start at 1 for mandatory framebuffer target
// region)
size_t numVisibleRegion = 1;
for (const auto& layer : mLayers) {
numVisibleRegion += layer->getNumVisibleRegions();
}
size_t numRects = numVisibleRegion + numSurfaceDamages;
auto numLayers = mLayers.size() + 1;
size_t size = sizeof(hwc_display_contents_1_t) +
sizeof(hwc_layer_1_t) * numLayers +
sizeof(hwc_rect_t) * numRects;
auto contents = static_cast<hwc_display_contents_1_t*>(std::calloc(size, 1));
mHwc1RequestedContents.reset(contents);
mNextAvailableRect = reinterpret_cast<hwc_rect_t*>(&contents->hwLayers[numLayers]);
mNumAvailableRects = numRects;
}
void HWC2On1Adapter::Display::assignHwc1LayerIds() {
mHwc1LayerMap.clear();
size_t nextHwc1Id = 0;
for (auto& layer : mLayers) {
mHwc1LayerMap[nextHwc1Id] = layer;
layer->setHwc1Id(nextHwc1Id++);
}
}
void HWC2On1Adapter::Display::updateTypeChanges(const hwc_layer_1_t& hwc1Layer,
const Layer& layer) {
auto layerId = layer.getId();
switch (hwc1Layer.compositionType) {
case HWC_FRAMEBUFFER:
if (layer.getCompositionType() != Composition::Client) {
mChanges->addTypeChange(layerId, Composition::Client);
}
break;
case HWC_OVERLAY:
if (layer.getCompositionType() != Composition::Device) {
mChanges->addTypeChange(layerId, Composition::Device);
}
break;
case HWC_BACKGROUND:
ALOGE_IF(layer.getCompositionType() != Composition::SolidColor,
"updateTypeChanges: HWC1 requested BACKGROUND, but HWC2"
" wasn't expecting SolidColor");
break;
case HWC_FRAMEBUFFER_TARGET:
// Do nothing, since it shouldn't be modified by HWC1
break;
case HWC_SIDEBAND:
ALOGE_IF(layer.getCompositionType() != Composition::Sideband,
"updateTypeChanges: HWC1 requested SIDEBAND, but HWC2"
" wasn't expecting Sideband");
break;
case HWC_CURSOR_OVERLAY:
ALOGE_IF(layer.getCompositionType() != Composition::Cursor,
"updateTypeChanges: HWC1 requested CURSOR_OVERLAY, but"
" HWC2 wasn't expecting Cursor");
break;
}
}
void HWC2On1Adapter::Display::updateLayerRequests(
const hwc_layer_1_t& hwc1Layer, const Layer& layer) {
if ((hwc1Layer.hints & HWC_HINT_CLEAR_FB) != 0) {
mChanges->addLayerRequest(layer.getId(),
LayerRequest::ClearClientTarget);
}
}
void HWC2On1Adapter::Display::prepareFramebufferTarget() {
// We check that mActiveConfig is valid in Display::prepare
int32_t width = mActiveConfig->getAttribute(Attribute::Width);
int32_t height = mActiveConfig->getAttribute(Attribute::Height);
auto& hwc1Target = mHwc1RequestedContents->hwLayers[mLayers.size()];
hwc1Target.compositionType = HWC_FRAMEBUFFER_TARGET;
hwc1Target.releaseFenceFd = -1;
hwc1Target.hints = 0;
hwc1Target.flags = 0;
hwc1Target.transform = 0;
hwc1Target.blending = HWC_BLENDING_PREMULT;
if (mDevice.getHwc1MinorVersion() < 3) {
hwc1Target.sourceCropi = {0, 0, width, height};
} else {
hwc1Target.sourceCropf = {0.0f, 0.0f, static_cast<float>(width),
static_cast<float>(height)};
}
hwc1Target.displayFrame = {0, 0, width, height};
hwc1Target.planeAlpha = 255;
hwc1Target.visibleRegionScreen.numRects = 1;
hwc_rect_t* rects = GetRects(1);
rects[0].left = 0;
rects[0].top = 0;
rects[0].right = width;
rects[0].bottom = height;
hwc1Target.visibleRegionScreen.rects = rects;
// We will set this to the correct value in set
hwc1Target.acquireFenceFd = -1;
}
// Layer functions
std::atomic<hwc2_layer_t> HWC2On1Adapter::Layer::sNextId(1);
HWC2On1Adapter::Layer::Layer(Display& display)
: mId(sNextId++),
mDisplay(display),
mBuffer(),
mSurfaceDamage(),
mBlendMode(BlendMode::None),
mColor({0, 0, 0, 0}),
mCompositionType(Composition::Invalid),
mDisplayFrame({0, 0, -1, -1}),
mPlaneAlpha(0.0f),
mSidebandStream(nullptr),
mSourceCrop({0.0f, 0.0f, -1.0f, -1.0f}),
mTransform(Transform::None),
mVisibleRegion(),
mZ(0),
mReleaseFence(),
mHwc1Id(0),
mHasUnsupportedPlaneAlpha(false) {}
bool HWC2On1Adapter::SortLayersByZ::operator()(
const std::shared_ptr<Layer>& lhs, const std::shared_ptr<Layer>& rhs) {
return lhs->getZ() < rhs->getZ();
}
Error HWC2On1Adapter::Layer::setBuffer(buffer_handle_t buffer,
int32_t acquireFence) {
ALOGV("Setting acquireFence to %d for layer %" PRIu64, acquireFence, mId);
mBuffer.setBuffer(buffer);
mBuffer.setFence(acquireFence);
return Error::None;
}
Error HWC2On1Adapter::Layer::setCursorPosition(int32_t x, int32_t y) {
if (mCompositionType != Composition::Cursor) {
return Error::BadLayer;
}
if (mDisplay.hasChanges()) {
return Error::NotValidated;
}
auto displayId = mDisplay.getHwc1Id();
auto hwc1Device = mDisplay.getDevice().getHwc1Device();
hwc1Device->setCursorPositionAsync(hwc1Device, displayId, x, y);
return Error::None;
}
Error HWC2On1Adapter::Layer::setSurfaceDamage(hwc_region_t damage) {
// HWC1 supports surface damage starting only with version 1.5.
if (mDisplay.getDevice().mHwc1MinorVersion < 5) {
return Error::None;
}
mSurfaceDamage.resize(damage.numRects);
std::copy_n(damage.rects, damage.numRects, mSurfaceDamage.begin());
return Error::None;
}
// Layer state functions
Error HWC2On1Adapter::Layer::setBlendMode(BlendMode mode) {
mBlendMode = mode;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setColor(hwc_color_t color) {
mColor = color;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setCompositionType(Composition type) {
mCompositionType = type;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setDataspace(android_dataspace_t) {
return Error::None;
}
Error HWC2On1Adapter::Layer::setDisplayFrame(hwc_rect_t frame) {
mDisplayFrame = frame;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setPlaneAlpha(float alpha) {
mPlaneAlpha = alpha;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setSidebandStream(const native_handle_t* stream) {
mSidebandStream = stream;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setSourceCrop(hwc_frect_t crop) {
mSourceCrop = crop;
mDisplay.markGeometryChanged();
return Error::None;
}
Error HWC2On1Adapter::Layer::setTransform(Transform transform) {
mTransform = transform;
mDisplay.markGeometryChanged();
return Error::None;
}
static bool compareRects(const hwc_rect_t& rect1, const hwc_rect_t& rect2) {
return rect1.left == rect2.left &&
rect1.right == rect2.right &&
rect1.top == rect2.top &&
rect1.bottom == rect2.bottom;
}
Error HWC2On1Adapter::Layer::setVisibleRegion(hwc_region_t visible) {
if ((getNumVisibleRegions() != visible.numRects) ||
!std::equal(mVisibleRegion.begin(), mVisibleRegion.end(), visible.rects,
compareRects)) {
mVisibleRegion.resize(visible.numRects);
std::copy_n(visible.rects, visible.numRects, mVisibleRegion.begin());
mDisplay.markGeometryChanged();
}
return Error::None;
}
Error HWC2On1Adapter::Layer::setZ(uint32_t z) {
mZ = z;
return Error::None;
}
void HWC2On1Adapter::Layer::addReleaseFence(int fenceFd) {
ALOGV("addReleaseFence %d to layer %" PRIu64, fenceFd, mId);
mReleaseFence.add(fenceFd);
}
const sp<MiniFence>& HWC2On1Adapter::Layer::getReleaseFence() const {
return mReleaseFence.get();
}
void HWC2On1Adapter::Layer::applyState(hwc_layer_1_t& hwc1Layer) {
applyCommonState(hwc1Layer);
applyCompositionType(hwc1Layer);
switch (mCompositionType) {
case Composition::SolidColor : applySolidColorState(hwc1Layer); break;
case Composition::Sideband : applySidebandState(hwc1Layer); break;
default: applyBufferState(hwc1Layer); break;
}
}
static std::string regionStrings(const std::vector<hwc_rect_t>& visibleRegion,
const std::vector<hwc_rect_t>& surfaceDamage) {
std::string regions;
regions += " Visible Region";
regions.resize(40, ' ');
regions += "Surface Damage\n";
size_t numPrinted = 0;
size_t maxSize = std::max(visibleRegion.size(), surfaceDamage.size());
while (numPrinted < maxSize) {
std::string line(" ");
if (visibleRegion.empty() && numPrinted == 0) {
line += "None";
} else if (numPrinted < visibleRegion.size()) {
line += rectString(visibleRegion[numPrinted]);
}
line.resize(40, ' ');
if (surfaceDamage.empty() && numPrinted == 0) {
line += "None";
} else if (numPrinted < surfaceDamage.size()) {
line += rectString(surfaceDamage[numPrinted]);
}
line += '\n';
regions += line;
++numPrinted;
}
return regions;
}
std::string HWC2On1Adapter::Layer::dump() const {
std::stringstream output;
const char* fill = " ";
output << fill << to_string(mCompositionType);
output << " Layer HWC2/1: " << mId << "/" << mHwc1Id << " ";
output << "Z: " << mZ;
if (mCompositionType == HWC2::Composition::SolidColor) {
output << " " << colorString(mColor);
} else if (mCompositionType == HWC2::Composition::Sideband) {
output << " Handle: " << mSidebandStream << '\n';
} else {
output << " Buffer: " << mBuffer.getBuffer() << "/" <<
mBuffer.getFence() << '\n';
output << fill << " Display frame [LTRB]: " <<
rectString(mDisplayFrame) << '\n';
output << fill << " Source crop: " <<
frectString(mSourceCrop) << '\n';
output << fill << " Transform: " << to_string(mTransform);
output << " Blend mode: " << to_string(mBlendMode);
if (mPlaneAlpha != 1.0f) {
output << " Alpha: " <<
alphaString(mPlaneAlpha) << '\n';
} else {
output << '\n';
}
output << regionStrings(mVisibleRegion, mSurfaceDamage);
}
return output.str();
}
static int getHwc1Blending(HWC2::BlendMode blendMode) {
switch (blendMode) {
case BlendMode::Coverage: return HWC_BLENDING_COVERAGE;
case BlendMode::Premultiplied: return HWC_BLENDING_PREMULT;
default: return HWC_BLENDING_NONE;
}
}
void HWC2On1Adapter::Layer::applyCommonState(hwc_layer_1_t& hwc1Layer) {
auto minorVersion = mDisplay.getDevice().getHwc1MinorVersion();
hwc1Layer.blending = getHwc1Blending(mBlendMode);
hwc1Layer.displayFrame = mDisplayFrame;
auto pendingAlpha = mPlaneAlpha;
if (minorVersion < 2) {
mHasUnsupportedPlaneAlpha = pendingAlpha < 1.0f;
} else {
hwc1Layer.planeAlpha =
static_cast<uint8_t>(255.0f * pendingAlpha + 0.5f);
}
if (minorVersion < 3) {
auto pending = mSourceCrop;
hwc1Layer.sourceCropi.left =
static_cast<int32_t>(std::ceil(pending.left));
hwc1Layer.sourceCropi.top =
static_cast<int32_t>(std::ceil(pending.top));
hwc1Layer.sourceCropi.right =
static_cast<int32_t>(std::floor(pending.right));
hwc1Layer.sourceCropi.bottom =
static_cast<int32_t>(std::floor(pending.bottom));
} else {
hwc1Layer.sourceCropf = mSourceCrop;
}
hwc1Layer.transform = static_cast<uint32_t>(mTransform);
auto& hwc1VisibleRegion = hwc1Layer.visibleRegionScreen;
hwc1VisibleRegion.numRects = mVisibleRegion.size();
hwc_rect_t* rects = mDisplay.GetRects(hwc1VisibleRegion.numRects);
hwc1VisibleRegion.rects = rects;
for (size_t i = 0; i < mVisibleRegion.size(); i++) {
rects[i] = mVisibleRegion[i];
}
}
void HWC2On1Adapter::Layer::applySolidColorState(hwc_layer_1_t& hwc1Layer) {
// If the device does not support background color it is likely to make
// assumption regarding backgroundColor and handle (both fields occupy
// the same location in hwc_layer_1_t union).
// To not confuse these devices we don't set background color and we
// make sure handle is a null pointer.
if (hasUnsupportedBackgroundColor()) {
hwc1Layer.handle = nullptr;
} else {
hwc1Layer.backgroundColor = mColor;
}
}
void HWC2On1Adapter::Layer::applySidebandState(hwc_layer_1_t& hwc1Layer) {
hwc1Layer.sidebandStream = mSidebandStream;
}
void HWC2On1Adapter::Layer::applyBufferState(hwc_layer_1_t& hwc1Layer) {
hwc1Layer.handle = mBuffer.getBuffer();
hwc1Layer.acquireFenceFd = mBuffer.getFence();
}
void HWC2On1Adapter::Layer::applyCompositionType(hwc_layer_1_t& hwc1Layer) {
// HWC1 never supports color transforms or dataspaces and only sometimes
// supports plane alpha (depending on the version). These require us to drop
// some or all layers to client composition.
if (mHasUnsupportedPlaneAlpha || mDisplay.hasColorTransform() ||
hasUnsupportedBackgroundColor()) {
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
hwc1Layer.flags = HWC_SKIP_LAYER;
return;
}
hwc1Layer.flags = 0;
switch (mCompositionType) {
case Composition::Client:
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
hwc1Layer.flags |= HWC_SKIP_LAYER;
break;
case Composition::Device:
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
break;
case Composition::SolidColor:
// In theory the following line should work, but since the HWC1
// version of SurfaceFlinger never used HWC_BACKGROUND, HWC1
// devices may not work correctly. To be on the safe side, we
// fall back to client composition.
//
// hwc1Layer.compositionType = HWC_BACKGROUND;
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
hwc1Layer.flags |= HWC_SKIP_LAYER;
break;
case Composition::Cursor:
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
if (mDisplay.getDevice().getHwc1MinorVersion() >= 4) {
hwc1Layer.hints |= HWC_IS_CURSOR_LAYER;
}
break;
case Composition::Sideband:
if (mDisplay.getDevice().getHwc1MinorVersion() < 4) {
hwc1Layer.compositionType = HWC_SIDEBAND;
} else {
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
hwc1Layer.flags |= HWC_SKIP_LAYER;
}
break;
default:
hwc1Layer.compositionType = HWC_FRAMEBUFFER;
hwc1Layer.flags |= HWC_SKIP_LAYER;
break;
}
ALOGV("Layer %" PRIu64 " %s set to %d", mId,
to_string(mCompositionType).c_str(),
hwc1Layer.compositionType);
ALOGV_IF(hwc1Layer.flags & HWC_SKIP_LAYER, " and skipping");
}
// Adapter helpers
void HWC2On1Adapter::populateCapabilities() {
if (mHwc1MinorVersion >= 3U) {
int supportedTypes = 0;
auto result = mHwc1Device->query(mHwc1Device,
HWC_DISPLAY_TYPES_SUPPORTED, &supportedTypes);
if ((result == 0) && ((supportedTypes & HWC_DISPLAY_VIRTUAL_BIT) != 0)) {
ALOGI("Found support for HWC virtual displays");
mHwc1SupportsVirtualDisplays = true;
}
}
if (mHwc1MinorVersion >= 4U) {
mCapabilities.insert(Capability::SidebandStream);
}
// Check for HWC background color layer support.
if (mHwc1MinorVersion >= 1U) {
int backgroundColorSupported = 0;
auto result = mHwc1Device->query(mHwc1Device,
HWC_BACKGROUND_LAYER_SUPPORTED,
&backgroundColorSupported);
if ((result == 0) && (backgroundColorSupported == 1)) {
ALOGV("Found support for HWC background color");
mHwc1SupportsBackgroundColor = true;
}
}
// Some devices might have HWC1 retire fences that accurately emulate
// HWC2 present fences when they are deferred, but it's not very reliable.
// To be safe, we indicate PresentFenceIsNotReliable for all HWC1 devices.
mCapabilities.insert(Capability::PresentFenceIsNotReliable);
}
HWC2On1Adapter::Display* HWC2On1Adapter::getDisplay(hwc2_display_t id) {
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
auto display = mDisplays.find(id);
if (display == mDisplays.end()) {
return nullptr;
}
return display->second.get();
}
std::tuple<HWC2On1Adapter::Layer*, Error> HWC2On1Adapter::getLayer(
hwc2_display_t displayId, hwc2_layer_t layerId) {
auto display = getDisplay(displayId);
if (!display) {
return std::make_tuple(static_cast<Layer*>(nullptr), Error::BadDisplay);
}
auto layerEntry = mLayers.find(layerId);
if (layerEntry == mLayers.end()) {
return std::make_tuple(static_cast<Layer*>(nullptr), Error::BadLayer);
}
auto layer = layerEntry->second;
if (layer->getDisplay().getId() != displayId) {
return std::make_tuple(static_cast<Layer*>(nullptr), Error::BadLayer);
}
return std::make_tuple(layer.get(), Error::None);
}
void HWC2On1Adapter::populatePrimary() {
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
auto display = std::make_shared<Display>(*this, HWC2::DisplayType::Physical);
mHwc1DisplayMap[HWC_DISPLAY_PRIMARY] = display->getId();
display->setHwc1Id(HWC_DISPLAY_PRIMARY);
display->populateConfigs();
mDisplays.emplace(display->getId(), std::move(display));
}
bool HWC2On1Adapter::prepareAllDisplays() {
ATRACE_CALL();
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
for (const auto& displayPair : mDisplays) {
auto& display = displayPair.second;
if (!display->prepare()) {
return false;
}
}
if (mHwc1DisplayMap.count(HWC_DISPLAY_PRIMARY) == 0) {
ALOGE("prepareAllDisplays: Unable to find primary HWC1 display");
return false;
}
// Build an array of hwc_display_contents_1 to call prepare() on HWC1.
mHwc1Contents.clear();
// Always push the primary display
auto primaryDisplayId = mHwc1DisplayMap[HWC_DISPLAY_PRIMARY];
auto& primaryDisplay = mDisplays[primaryDisplayId];
mHwc1Contents.push_back(primaryDisplay->getDisplayContents());
// Push the external display, if present
if (mHwc1DisplayMap.count(HWC_DISPLAY_EXTERNAL) != 0) {
auto externalDisplayId = mHwc1DisplayMap[HWC_DISPLAY_EXTERNAL];
auto& externalDisplay = mDisplays[externalDisplayId];
mHwc1Contents.push_back(externalDisplay->getDisplayContents());
} else {
// Even if an external display isn't present, we still need to send
// at least two displays down to HWC1
mHwc1Contents.push_back(nullptr);
}
// Push the hardware virtual display, if supported and present
if (mHwc1MinorVersion >= 3) {
if (mHwc1DisplayMap.count(HWC_DISPLAY_VIRTUAL) != 0) {
auto virtualDisplayId = mHwc1DisplayMap[HWC_DISPLAY_VIRTUAL];
auto& virtualDisplay = mDisplays[virtualDisplayId];
mHwc1Contents.push_back(virtualDisplay->getDisplayContents());
} else {
mHwc1Contents.push_back(nullptr);
}
}
for (auto& displayContents : mHwc1Contents) {
if (!displayContents) {
continue;
}
ALOGV("Display %zd layers:", mHwc1Contents.size() - 1);
for (size_t l = 0; l < displayContents->numHwLayers; ++l) {
auto& layer = displayContents->hwLayers[l];
ALOGV(" %zd: %d", l, layer.compositionType);
}
}
ALOGV("Calling HWC1 prepare");
{
ATRACE_NAME("HWC1 prepare");
mHwc1Device->prepare(mHwc1Device, mHwc1Contents.size(),
mHwc1Contents.data());
}
for (size_t c = 0; c < mHwc1Contents.size(); ++c) {
auto& contents = mHwc1Contents[c];
if (!contents) {
continue;
}
ALOGV("Display %zd layers:", c);
for (size_t l = 0; l < contents->numHwLayers; ++l) {
ALOGV(" %zd: %d", l, contents->hwLayers[l].compositionType);
}
}
// Return the received contents to their respective displays
for (size_t hwc1Id = 0; hwc1Id < mHwc1Contents.size(); ++hwc1Id) {
if (mHwc1Contents[hwc1Id] == nullptr) {
continue;
}
auto displayId = mHwc1DisplayMap[hwc1Id];
auto& display = mDisplays[displayId];
display->generateChanges();
}
return true;
}
void dumpHWC1Message(hwc_composer_device_1* device, size_t numDisplays,
hwc_display_contents_1_t** displays) {
ALOGV("*****************************");
size_t displayId = 0;
while (displayId < numDisplays) {
hwc_display_contents_1_t* display = displays[displayId];
ALOGV("hwc_display_contents_1_t[%zu] @0x%p", displayId, display);
if (display == nullptr) {
displayId++;
continue;
}
ALOGV(" retirefd:0x%08x", display->retireFenceFd);
ALOGV(" outbuf :0x%p", display->outbuf);
ALOGV(" outbuffd:0x%08x", display->outbufAcquireFenceFd);
ALOGV(" flags :0x%08x", display->flags);
for(size_t layerId=0 ; layerId < display->numHwLayers ; layerId++) {
hwc_layer_1_t& layer = display->hwLayers[layerId];
ALOGV(" Layer[%zu]:", layerId);
ALOGV(" composition : 0x%08x", layer.compositionType);
ALOGV(" hints : 0x%08x", layer.hints);
ALOGV(" flags : 0x%08x", layer.flags);
ALOGV(" handle : 0x%p", layer.handle);
ALOGV(" transform : 0x%08x", layer.transform);
ALOGV(" blending : 0x%08x", layer.blending);
ALOGV(" sourceCropf : %f, %f, %f, %f",
layer.sourceCropf.left,
layer.sourceCropf.top,
layer.sourceCropf.right,
layer.sourceCropf.bottom);
ALOGV(" displayFrame : %d, %d, %d, %d",
layer.displayFrame.left,
layer.displayFrame.left,
layer.displayFrame.left,
layer.displayFrame.left);
hwc_region_t& visReg = layer.visibleRegionScreen;
ALOGV(" visibleRegionScreen: #0x%08zx[@0x%p]",
visReg.numRects,
visReg.rects);
for (size_t visRegId=0; visRegId < visReg.numRects ; visRegId++) {
if (layer.visibleRegionScreen.rects == nullptr) {
ALOGV(" null");
} else {
ALOGV(" visibleRegionScreen[%zu] %d, %d, %d, %d",
visRegId,
visReg.rects[visRegId].left,
visReg.rects[visRegId].top,
visReg.rects[visRegId].right,
visReg.rects[visRegId].bottom);
}
}
ALOGV(" acquireFenceFd : 0x%08x", layer.acquireFenceFd);
ALOGV(" releaseFenceFd : 0x%08x", layer.releaseFenceFd);
ALOGV(" planeAlpha : 0x%08x", layer.planeAlpha);
if (getMinorVersion(device) < 5)
continue;
ALOGV(" surfaceDamage : #0x%08zx[@0x%p]",
layer.surfaceDamage.numRects,
layer.surfaceDamage.rects);
for (size_t sdId=0; sdId < layer.surfaceDamage.numRects ; sdId++) {
if (layer.surfaceDamage.rects == nullptr) {
ALOGV(" null");
} else {
ALOGV(" surfaceDamage[%zu] %d, %d, %d, %d",
sdId,
layer.surfaceDamage.rects[sdId].left,
layer.surfaceDamage.rects[sdId].top,
layer.surfaceDamage.rects[sdId].right,
layer.surfaceDamage.rects[sdId].bottom);
}
}
}
displayId++;
}
ALOGV("-----------------------------");
}
Error HWC2On1Adapter::setAllDisplays() {
ATRACE_CALL();
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
// Make sure we're ready to validate
for (size_t hwc1Id = 0; hwc1Id < mHwc1Contents.size(); ++hwc1Id) {
if (mHwc1Contents[hwc1Id] == nullptr) {
continue;
}
auto displayId = mHwc1DisplayMap[hwc1Id];
auto& display = mDisplays[displayId];
Error error = display->set(*mHwc1Contents[hwc1Id]);
if (error != Error::None) {
ALOGE("setAllDisplays: Failed to set display %zd: %s", hwc1Id,
to_string(error).c_str());
return error;
}
}
ALOGV("Calling HWC1 set");
{
ATRACE_NAME("HWC1 set");
//dumpHWC1Message(mHwc1Device, mHwc1Contents.size(), mHwc1Contents.data());
mHwc1Device->set(mHwc1Device, mHwc1Contents.size(),
mHwc1Contents.data());
}
// Add retire and release fences
for (size_t hwc1Id = 0; hwc1Id < mHwc1Contents.size(); ++hwc1Id) {
if (mHwc1Contents[hwc1Id] == nullptr) {
continue;
}
auto displayId = mHwc1DisplayMap[hwc1Id];
auto& display = mDisplays[displayId];
auto retireFenceFd = mHwc1Contents[hwc1Id]->retireFenceFd;
ALOGV("setAllDisplays: Adding retire fence %d to display %zd",
retireFenceFd, hwc1Id);
display->addRetireFence(mHwc1Contents[hwc1Id]->retireFenceFd);
display->addReleaseFences(*mHwc1Contents[hwc1Id]);
}
return Error::None;
}
void HWC2On1Adapter::hwc1Invalidate() {
ALOGV("Received hwc1Invalidate");
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
// If the HWC2-side callback hasn't been registered yet, buffer this until
// it is registered.
if (mCallbacks.count(Callback::Refresh) == 0) {
mHasPendingInvalidate = true;
return;
}
const auto& callbackInfo = mCallbacks[Callback::Refresh];
std::vector<hwc2_display_t> displays;
for (const auto& displayPair : mDisplays) {
displays.emplace_back(displayPair.first);
}
// Call back without the state lock held.
lock.unlock();
auto refresh = reinterpret_cast<HWC2_PFN_REFRESH>(callbackInfo.pointer);
for (auto display : displays) {
refresh(callbackInfo.data, display);
}
}
void HWC2On1Adapter::hwc1Vsync(int hwc1DisplayId, int64_t timestamp) {
ALOGV("Received hwc1Vsync(%d, %" PRId64 ")", hwc1DisplayId, timestamp);
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
// If the HWC2-side callback hasn't been registered yet, buffer this until
// it is registered.
if (mCallbacks.count(Callback::Vsync) == 0) {
mPendingVsyncs.emplace_back(hwc1DisplayId, timestamp);
return;
}
if (mHwc1DisplayMap.count(hwc1DisplayId) == 0) {
ALOGE("hwc1Vsync: Couldn't find display for HWC1 id %d", hwc1DisplayId);
return;
}
const auto& callbackInfo = mCallbacks[Callback::Vsync];
auto displayId = mHwc1DisplayMap[hwc1DisplayId];
// Call back without the state lock held.
lock.unlock();
auto vsync = reinterpret_cast<HWC2_PFN_VSYNC>(callbackInfo.pointer);
vsync(callbackInfo.data, displayId, timestamp);
}
void HWC2On1Adapter::hwc1Hotplug(int hwc1DisplayId, int connected) {
ALOGV("Received hwc1Hotplug(%d, %d)", hwc1DisplayId, connected);
if (hwc1DisplayId != HWC_DISPLAY_EXTERNAL) {
ALOGE("hwc1Hotplug: Received hotplug for non-external display");
return;
}
std::unique_lock<std::recursive_timed_mutex> lock(mStateMutex);
// If the HWC2-side callback hasn't been registered yet, buffer this until
// it is registered
if (mCallbacks.count(Callback::Hotplug) == 0) {
mPendingHotplugs.emplace_back(hwc1DisplayId, connected);
return;
}
hwc2_display_t displayId = UINT64_MAX;
if (mHwc1DisplayMap.count(hwc1DisplayId) == 0) {
if (connected == 0) {
ALOGW("hwc1Hotplug: Received disconnect for unconnected display");
return;
}
// Create a new display on connect
auto display = std::make_shared<HWC2On1Adapter::Display>(*this,
HWC2::DisplayType::Physical);
display->setHwc1Id(HWC_DISPLAY_EXTERNAL);
display->populateConfigs();
displayId = display->getId();
mHwc1DisplayMap[HWC_DISPLAY_EXTERNAL] = displayId;
mDisplays.emplace(displayId, std::move(display));
} else {
if (connected != 0) {
ALOGW("hwc1Hotplug: Received connect for previously connected "
"display");
return;
}
// Disconnect an existing display
displayId = mHwc1DisplayMap[hwc1DisplayId];
mHwc1DisplayMap.erase(HWC_DISPLAY_EXTERNAL);
mDisplays.erase(displayId);
}
const auto& callbackInfo = mCallbacks[Callback::Hotplug];
// Call back without the state lock held
lock.unlock();
auto hotplug = reinterpret_cast<HWC2_PFN_HOTPLUG>(callbackInfo.pointer);
auto hwc2Connected = (connected == 0) ?
HWC2::Connection::Disconnected : HWC2::Connection::Connected;
hotplug(callbackInfo.data, displayId, static_cast<int32_t>(hwc2Connected));
}
} // namespace android