| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| #undef LOG_TAG |
| #define LOG_TAG "RegionSamplingThread" |
| |
| #include "RegionSamplingThread.h" |
| |
| #include <cutils/properties.h> |
| #include <gui/IRegionSamplingListener.h> |
| #include <utils/Trace.h> |
| #include <string> |
| |
| #include <compositionengine/Display.h> |
| #include <compositionengine/impl/OutputCompositionState.h> |
| #include "DisplayDevice.h" |
| #include "Layer.h" |
| #include "SurfaceFlinger.h" |
| |
| namespace android { |
| using namespace std::chrono_literals; |
| |
| template <typename T> |
| struct SpHash { |
| size_t operator()(const sp<T>& p) const { return std::hash<T*>()(p.get()); } |
| }; |
| |
| constexpr auto lumaSamplingStepTag = "LumaSamplingStep"; |
| enum class samplingStep { |
| noWorkNeeded, |
| idleTimerWaiting, |
| waitForQuietFrame, |
| waitForZeroPhase, |
| waitForSamplePhase, |
| sample |
| }; |
| |
| constexpr auto timeForRegionSampling = 5000000ns; |
| constexpr auto maxRegionSamplingSkips = 10; |
| constexpr auto defaultRegionSamplingOffset = -3ms; |
| constexpr auto defaultRegionSamplingPeriod = 100ms; |
| constexpr auto defaultRegionSamplingTimerTimeout = 100ms; |
| // TODO: (b/127403193) duration to string conversion could probably be constexpr |
| template <typename Rep, typename Per> |
| inline std::string toNsString(std::chrono::duration<Rep, Per> t) { |
| return std::to_string(std::chrono::duration_cast<std::chrono::nanoseconds>(t).count()); |
| } |
| |
| RegionSamplingThread::EnvironmentTimingTunables::EnvironmentTimingTunables() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| |
| property_get("debug.sf.region_sampling_offset_ns", value, |
| toNsString(defaultRegionSamplingOffset).c_str()); |
| int const samplingOffsetNsRaw = atoi(value); |
| |
| property_get("debug.sf.region_sampling_period_ns", value, |
| toNsString(defaultRegionSamplingPeriod).c_str()); |
| int const samplingPeriodNsRaw = atoi(value); |
| |
| property_get("debug.sf.region_sampling_timer_timeout_ns", value, |
| toNsString(defaultRegionSamplingTimerTimeout).c_str()); |
| int const samplingTimerTimeoutNsRaw = atoi(value); |
| |
| if ((samplingPeriodNsRaw < 0) || (samplingTimerTimeoutNsRaw < 0)) { |
| ALOGW("User-specified sampling tuning options nonsensical. Using defaults"); |
| mSamplingOffset = defaultRegionSamplingOffset; |
| mSamplingPeriod = defaultRegionSamplingPeriod; |
| mSamplingTimerTimeout = defaultRegionSamplingTimerTimeout; |
| } else { |
| mSamplingOffset = std::chrono::nanoseconds(samplingOffsetNsRaw); |
| mSamplingPeriod = std::chrono::nanoseconds(samplingPeriodNsRaw); |
| mSamplingTimerTimeout = std::chrono::nanoseconds(samplingTimerTimeoutNsRaw); |
| } |
| } |
| |
| struct SamplingOffsetCallback : DispSync::Callback { |
| SamplingOffsetCallback(RegionSamplingThread& samplingThread, Scheduler& scheduler, |
| std::chrono::nanoseconds targetSamplingOffset) |
| : mRegionSamplingThread(samplingThread), |
| mScheduler(scheduler), |
| mTargetSamplingOffset(targetSamplingOffset) {} |
| |
| ~SamplingOffsetCallback() { stopVsyncListener(); } |
| |
| SamplingOffsetCallback(const SamplingOffsetCallback&) = delete; |
| SamplingOffsetCallback& operator=(const SamplingOffsetCallback&) = delete; |
| |
| void startVsyncListener() { |
| std::lock_guard lock(mMutex); |
| if (mVsyncListening) return; |
| |
| mPhaseIntervalSetting = Phase::ZERO; |
| mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { |
| sync.addEventListener("SamplingThreadDispSyncListener", 0, this, mLastCallbackTime); |
| }); |
| mVsyncListening = true; |
| } |
| |
| void stopVsyncListener() { |
| std::lock_guard lock(mMutex); |
| stopVsyncListenerLocked(); |
| } |
| |
| private: |
| void stopVsyncListenerLocked() /*REQUIRES(mMutex)*/ { |
| if (!mVsyncListening) return; |
| |
| mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { |
| sync.removeEventListener(this, &mLastCallbackTime); |
| }); |
| mVsyncListening = false; |
| } |
| |
| void onDispSyncEvent(nsecs_t /* when */) final { |
| std::unique_lock<decltype(mMutex)> lock(mMutex); |
| |
| if (mPhaseIntervalSetting == Phase::ZERO) { |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForSamplePhase)); |
| mPhaseIntervalSetting = Phase::SAMPLING; |
| mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { |
| sync.changePhaseOffset(this, mTargetSamplingOffset.count()); |
| }); |
| return; |
| } |
| |
| if (mPhaseIntervalSetting == Phase::SAMPLING) { |
| mPhaseIntervalSetting = Phase::ZERO; |
| mScheduler.withPrimaryDispSync( |
| [this](android::DispSync& sync) { sync.changePhaseOffset(this, 0); }); |
| stopVsyncListenerLocked(); |
| lock.unlock(); |
| mRegionSamplingThread.notifySamplingOffset(); |
| return; |
| } |
| } |
| |
| RegionSamplingThread& mRegionSamplingThread; |
| Scheduler& mScheduler; |
| const std::chrono::nanoseconds mTargetSamplingOffset; |
| mutable std::mutex mMutex; |
| nsecs_t mLastCallbackTime = 0; |
| enum class Phase { |
| ZERO, |
| SAMPLING |
| } mPhaseIntervalSetting /*GUARDED_BY(mMutex) macro doesnt work with unique_lock?*/ |
| = Phase::ZERO; |
| bool mVsyncListening /*GUARDED_BY(mMutex)*/ = false; |
| }; |
| |
| RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler, |
| const TimingTunables& tunables) |
| : mFlinger(flinger), |
| mScheduler(scheduler), |
| mTunables(tunables), |
| mIdleTimer(std::chrono::duration_cast<std::chrono::milliseconds>( |
| mTunables.mSamplingTimerTimeout), |
| [] {}, [this] { checkForStaleLuma(); }), |
| mPhaseCallback(std::make_unique<SamplingOffsetCallback>(*this, mScheduler, |
| tunables.mSamplingOffset)), |
| lastSampleTime(0ns) { |
| mThread = std::thread([this]() { threadMain(); }); |
| pthread_setname_np(mThread.native_handle(), "RegionSamplingThread"); |
| mIdleTimer.start(); |
| } |
| |
| RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler) |
| : RegionSamplingThread(flinger, scheduler, |
| TimingTunables{defaultRegionSamplingOffset, |
| defaultRegionSamplingPeriod, |
| defaultRegionSamplingTimerTimeout}) {} |
| |
| RegionSamplingThread::~RegionSamplingThread() { |
| mIdleTimer.stop(); |
| |
| { |
| std::lock_guard lock(mThreadControlMutex); |
| mRunning = false; |
| mCondition.notify_one(); |
| } |
| |
| if (mThread.joinable()) { |
| mThread.join(); |
| } |
| } |
| |
| void RegionSamplingThread::addListener(const Rect& samplingArea, const sp<IBinder>& stopLayerHandle, |
| const sp<IRegionSamplingListener>& listener) { |
| wp<Layer> stopLayer = stopLayerHandle != nullptr |
| ? static_cast<Layer::Handle*>(stopLayerHandle.get())->owner |
| : nullptr; |
| |
| sp<IBinder> asBinder = IInterface::asBinder(listener); |
| asBinder->linkToDeath(this); |
| std::lock_guard lock(mSamplingMutex); |
| mDescriptors.emplace(wp<IBinder>(asBinder), Descriptor{samplingArea, stopLayer, listener}); |
| } |
| |
| void RegionSamplingThread::removeListener(const sp<IRegionSamplingListener>& listener) { |
| std::lock_guard lock(mSamplingMutex); |
| mDescriptors.erase(wp<IBinder>(IInterface::asBinder(listener))); |
| } |
| |
| void RegionSamplingThread::checkForStaleLuma() { |
| std::lock_guard lock(mThreadControlMutex); |
| |
| if (mDiscardedFrames > 0) { |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForZeroPhase)); |
| mDiscardedFrames = 0; |
| mPhaseCallback->startVsyncListener(); |
| } |
| } |
| |
| void RegionSamplingThread::notifyNewContent() { |
| doSample(); |
| } |
| |
| void RegionSamplingThread::notifySamplingOffset() { |
| doSample(); |
| } |
| |
| void RegionSamplingThread::doSample() { |
| std::lock_guard lock(mThreadControlMutex); |
| auto now = std::chrono::nanoseconds(systemTime(SYSTEM_TIME_MONOTONIC)); |
| if (lastSampleTime + mTunables.mSamplingPeriod > now) { |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::idleTimerWaiting)); |
| if (mDiscardedFrames == 0) mDiscardedFrames++; |
| return; |
| } |
| if (mDiscardedFrames < maxRegionSamplingSkips) { |
| // If there is relatively little time left for surfaceflinger |
| // until the next vsync deadline, defer this sampling work |
| // to a later frame, when hopefully there will be more time. |
| DisplayStatInfo stats; |
| mScheduler.getDisplayStatInfo(&stats); |
| if (std::chrono::nanoseconds(stats.vsyncTime) - now < timeForRegionSampling) { |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForQuietFrame)); |
| mDiscardedFrames++; |
| return; |
| } |
| } |
| |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::sample)); |
| |
| mDiscardedFrames = 0; |
| lastSampleTime = now; |
| |
| mIdleTimer.reset(); |
| mPhaseCallback->stopVsyncListener(); |
| |
| mSampleRequested = true; |
| mCondition.notify_one(); |
| } |
| |
| void RegionSamplingThread::binderDied(const wp<IBinder>& who) { |
| std::lock_guard lock(mSamplingMutex); |
| mDescriptors.erase(who); |
| } |
| |
| namespace { |
| // Using Rec. 709 primaries |
| inline float getLuma(float r, float g, float b) { |
| constexpr auto rec709_red_primary = 0.2126f; |
| constexpr auto rec709_green_primary = 0.7152f; |
| constexpr auto rec709_blue_primary = 0.0722f; |
| return rec709_red_primary * r + rec709_green_primary * g + rec709_blue_primary * b; |
| } |
| } // anonymous namespace |
| |
| float sampleArea(const uint32_t* data, int32_t width, int32_t height, int32_t stride, |
| uint32_t orientation, const Rect& sample_area) { |
| if (!sample_area.isValid() || (sample_area.getWidth() > width) || |
| (sample_area.getHeight() > height)) { |
| ALOGE("invalid sampling region requested"); |
| return 0.0f; |
| } |
| |
| // (b/133849373) ROT_90 screencap images produced upside down |
| auto area = sample_area; |
| if (orientation & ui::Transform::ROT_90) { |
| area.top = height - area.top; |
| area.bottom = height - area.bottom; |
| std::swap(area.top, area.bottom); |
| |
| area.left = width - area.left; |
| area.right = width - area.right; |
| std::swap(area.left, area.right); |
| } |
| |
| std::array<int32_t, 256> brightnessBuckets = {}; |
| const int32_t majoritySampleNum = area.getWidth() * area.getHeight() / 2; |
| |
| for (int32_t row = area.top; row < area.bottom; ++row) { |
| const uint32_t* rowBase = data + row * stride; |
| for (int32_t column = area.left; column < area.right; ++column) { |
| uint32_t pixel = rowBase[column]; |
| const float r = pixel & 0xFF; |
| const float g = (pixel >> 8) & 0xFF; |
| const float b = (pixel >> 16) & 0xFF; |
| const uint8_t luma = std::round(getLuma(r, g, b)); |
| ++brightnessBuckets[luma]; |
| if (brightnessBuckets[luma] > majoritySampleNum) return luma / 255.0f; |
| } |
| } |
| |
| int32_t accumulated = 0; |
| size_t bucket = 0; |
| for (; bucket < brightnessBuckets.size(); bucket++) { |
| accumulated += brightnessBuckets[bucket]; |
| if (accumulated > majoritySampleNum) break; |
| } |
| |
| return bucket / 255.0f; |
| } |
| |
| std::vector<float> RegionSamplingThread::sampleBuffer( |
| const sp<GraphicBuffer>& buffer, const Point& leftTop, |
| const std::vector<RegionSamplingThread::Descriptor>& descriptors, uint32_t orientation) { |
| void* data_raw = nullptr; |
| buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &data_raw); |
| std::shared_ptr<uint32_t> data(reinterpret_cast<uint32_t*>(data_raw), |
| [&buffer](auto) { buffer->unlock(); }); |
| if (!data) return {}; |
| |
| const int32_t width = buffer->getWidth(); |
| const int32_t height = buffer->getHeight(); |
| const int32_t stride = buffer->getStride(); |
| std::vector<float> lumas(descriptors.size()); |
| std::transform(descriptors.begin(), descriptors.end(), lumas.begin(), |
| [&](auto const& descriptor) { |
| return sampleArea(data.get(), width, height, stride, orientation, |
| descriptor.area - leftTop); |
| }); |
| return lumas; |
| } |
| |
| void RegionSamplingThread::captureSample() { |
| ATRACE_CALL(); |
| std::lock_guard lock(mSamplingMutex); |
| |
| if (mDescriptors.empty()) { |
| return; |
| } |
| |
| const auto device = mFlinger.getDefaultDisplayDevice(); |
| const auto orientation = [](uint32_t orientation) { |
| switch (orientation) { |
| default: |
| case DisplayState::eOrientationDefault: |
| return ui::Transform::ROT_0; |
| case DisplayState::eOrientation90: |
| return ui::Transform::ROT_90; |
| case DisplayState::eOrientation180: |
| return ui::Transform::ROT_180; |
| case DisplayState::eOrientation270: |
| return ui::Transform::ROT_270; |
| } |
| }(device->getOrientation()); |
| |
| std::vector<RegionSamplingThread::Descriptor> descriptors; |
| Region sampleRegion; |
| for (const auto& [listener, descriptor] : mDescriptors) { |
| sampleRegion.orSelf(descriptor.area); |
| descriptors.emplace_back(descriptor); |
| } |
| |
| const Rect sampledArea = sampleRegion.bounds(); |
| |
| auto dx = 0; |
| auto dy = 0; |
| switch (orientation) { |
| case ui::Transform::ROT_90: |
| dx = device->getWidth(); |
| break; |
| case ui::Transform::ROT_180: |
| dx = device->getWidth(); |
| dy = device->getHeight(); |
| break; |
| case ui::Transform::ROT_270: |
| dy = device->getHeight(); |
| break; |
| default: |
| break; |
| } |
| |
| ui::Transform t(orientation); |
| auto screencapRegion = t.transform(sampleRegion); |
| screencapRegion = screencapRegion.translate(dx, dy); |
| DisplayRenderArea renderArea(device, screencapRegion.bounds(), sampledArea.getWidth(), |
| sampledArea.getHeight(), ui::Dataspace::V0_SRGB, orientation); |
| |
| std::unordered_set<sp<IRegionSamplingListener>, SpHash<IRegionSamplingListener>> listeners; |
| |
| auto traverseLayers = [&](const LayerVector::Visitor& visitor) { |
| bool stopLayerFound = false; |
| auto filterVisitor = [&](Layer* layer) { |
| // We don't want to capture any layers beyond the stop layer |
| if (stopLayerFound) return; |
| |
| // Likewise if we just found a stop layer, set the flag and abort |
| for (const auto& [area, stopLayer, listener] : descriptors) { |
| if (layer == stopLayer.promote().get()) { |
| stopLayerFound = true; |
| return; |
| } |
| } |
| |
| // Compute the layer's position on the screen |
| const Rect bounds = Rect(layer->getBounds()); |
| const ui::Transform transform = layer->getTransform(); |
| constexpr bool roundOutwards = true; |
| Rect transformed = transform.transform(bounds, roundOutwards); |
| |
| // If this layer doesn't intersect with the larger sampledArea, skip capturing it |
| Rect ignore; |
| if (!transformed.intersect(sampledArea, &ignore)) return; |
| |
| // If the layer doesn't intersect a sampling area, skip capturing it |
| bool intersectsAnyArea = false; |
| for (const auto& [area, stopLayer, listener] : descriptors) { |
| if (transformed.intersect(area, &ignore)) { |
| intersectsAnyArea = true; |
| listeners.insert(listener); |
| } |
| } |
| if (!intersectsAnyArea) return; |
| |
| ALOGV("Traversing [%s] [%d, %d, %d, %d]", layer->getName().string(), bounds.left, |
| bounds.top, bounds.right, bounds.bottom); |
| visitor(layer); |
| }; |
| mFlinger.traverseLayersInDisplay(device, filterVisitor); |
| }; |
| |
| sp<GraphicBuffer> buffer = nullptr; |
| if (mCachedBuffer && mCachedBuffer->getWidth() == sampledArea.getWidth() && |
| mCachedBuffer->getHeight() == sampledArea.getHeight()) { |
| buffer = mCachedBuffer; |
| } else { |
| const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER; |
| buffer = new GraphicBuffer(sampledArea.getWidth(), sampledArea.getHeight(), |
| PIXEL_FORMAT_RGBA_8888, 1, usage, "RegionSamplingThread"); |
| } |
| |
| bool ignored; |
| mFlinger.captureScreenCommon(renderArea, traverseLayers, buffer, false, ignored); |
| |
| std::vector<Descriptor> activeDescriptors; |
| for (const auto& descriptor : descriptors) { |
| if (listeners.count(descriptor.listener) != 0) { |
| activeDescriptors.emplace_back(descriptor); |
| } |
| } |
| |
| ALOGV("Sampling %zu descriptors", activeDescriptors.size()); |
| std::vector<float> lumas = |
| sampleBuffer(buffer, sampledArea.leftTop(), activeDescriptors, orientation); |
| if (lumas.size() != activeDescriptors.size()) { |
| ALOGW("collected %zu median luma values for %zu descriptors", lumas.size(), |
| activeDescriptors.size()); |
| return; |
| } |
| |
| for (size_t d = 0; d < activeDescriptors.size(); ++d) { |
| activeDescriptors[d].listener->onSampleCollected(lumas[d]); |
| } |
| |
| // Extend the lifetime of mCachedBuffer from the previous frame to here to ensure that: |
| // 1) The region sampling thread is the last owner of the buffer, and the freeing of the buffer |
| // happens in this thread, as opposed to the main thread. |
| // 2) The listener(s) receive their notifications prior to freeing the buffer. |
| mCachedBuffer = buffer; |
| ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::noWorkNeeded)); |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS is because std::unique_lock presently lacks thread safety annotations. |
| void RegionSamplingThread::threadMain() NO_THREAD_SAFETY_ANALYSIS { |
| std::unique_lock<std::mutex> lock(mThreadControlMutex); |
| while (mRunning) { |
| if (mSampleRequested) { |
| mSampleRequested = false; |
| lock.unlock(); |
| captureSample(); |
| lock.lock(); |
| } |
| mCondition.wait(lock, [this]() REQUIRES(mThreadControlMutex) { |
| return mSampleRequested || !mRunning; |
| }); |
| } |
| } |
| |
| } // namespace android |