blob: 63a07c35ca0be3d0b410ab7adf41ceecc3934c6a [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferStateLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <limits>
#include <compositionengine/Display.h>
#include <compositionengine/Layer.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/LayerCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <gui/BufferQueue.h>
#include <private/gui/SyncFeatures.h>
#include <renderengine/Image.h>
#include "BufferStateLayer.h"
#include "ColorLayer.h"
#include "TimeStats/TimeStats.h"
namespace android {
// clang-format off
const std::array<float, 16> BufferStateLayer::IDENTITY_MATRIX{
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
// clang-format on
BufferStateLayer::BufferStateLayer(const LayerCreationArgs& args)
: BufferLayer(args), mHwcSlotGenerator(new HwcSlotGenerator()) {
mOverrideScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
mCurrentState.dataspace = ui::Dataspace::V0_SRGB;
}
BufferStateLayer::~BufferStateLayer() {
if (mActiveBuffer != nullptr) {
// Ensure that mActiveBuffer is uncached from RenderEngine here, as
// RenderEngine may have been using the buffer as an external texture
// after the client uncached the buffer.
auto& engine(mFlinger->getRenderEngine());
engine.unbindExternalTextureBuffer(mActiveBuffer->getId());
}
}
// -----------------------------------------------------------------------
// Interface implementation for Layer
// -----------------------------------------------------------------------
void BufferStateLayer::onLayerDisplayed(const sp<Fence>& releaseFence) {
// The previous release fence notifies the client that SurfaceFlinger is done with the previous
// buffer that was presented on this layer. The first transaction that came in this frame that
// replaced the previous buffer on this layer needs this release fence, because the fence will
// let the client know when that previous buffer is removed from the screen.
//
// Every other transaction on this layer does not need a release fence because no other
// Transactions that were set on this layer this frame are going to have their preceeding buffer
// removed from the display this frame.
//
// For example, if we have 3 transactions this frame. The first transaction doesn't contain a
// buffer so it doesn't need a previous release fence because the layer still needs the previous
// buffer. The second transaction contains a buffer so it needs a previous release fence because
// the previous buffer will be released this frame. The third transaction also contains a
// buffer. It replaces the buffer in the second transaction. The buffer in the second
// transaction will now no longer be presented so it is released immediately and the third
// transaction doesn't need a previous release fence.
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer) {
handle->previousReleaseFence = releaseFence;
break;
}
}
}
void BufferStateLayer::setTransformHint(uint32_t /*orientation*/) const {
// TODO(marissaw): send the transform hint to buffer owner
return;
}
void BufferStateLayer::releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) {
mFlinger->getTransactionCompletedThread().addPresentedCallbackHandles(
mDrawingState.callbackHandles);
mDrawingState.callbackHandles = {};
}
bool BufferStateLayer::shouldPresentNow(nsecs_t /*expectedPresentTime*/) const {
if (getSidebandStreamChanged() || getAutoRefresh()) {
return true;
}
return hasFrameUpdate();
}
bool BufferStateLayer::willPresentCurrentTransaction() const {
// Returns true if the most recent Transaction applied to CurrentState will be presented.
return getSidebandStreamChanged() || getAutoRefresh() ||
(mCurrentState.modified &&
(mCurrentState.buffer != nullptr || mCurrentState.bgColorLayer != nullptr));
}
bool BufferStateLayer::getTransformToDisplayInverse() const {
return mCurrentState.transformToDisplayInverse;
}
void BufferStateLayer::pushPendingState() {
if (!mCurrentState.modified) {
return;
}
mPendingStates.push_back(mCurrentState);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
}
bool BufferStateLayer::applyPendingStates(Layer::State* stateToCommit) {
const bool stateUpdateAvailable = !mPendingStates.empty();
while (!mPendingStates.empty()) {
popPendingState(stateToCommit);
}
mCurrentStateModified = stateUpdateAvailable && mCurrentState.modified;
mCurrentState.modified = false;
return stateUpdateAvailable;
}
// Crop that applies to the window
Rect BufferStateLayer::getCrop(const Layer::State& /*s*/) const {
return Rect::INVALID_RECT;
}
bool BufferStateLayer::setTransform(uint32_t transform) {
if (mCurrentState.transform == transform) return false;
mCurrentState.transform = transform;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setTransformToDisplayInverse(bool transformToDisplayInverse) {
if (mCurrentState.transformToDisplayInverse == transformToDisplayInverse) return false;
mCurrentState.sequence++;
mCurrentState.transformToDisplayInverse = transformToDisplayInverse;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setCrop(const Rect& crop) {
Rect c = crop;
if (c.left < 0) {
c.left = 0;
}
if (c.top < 0) {
c.top = 0;
}
// If the width and/or height are < 0, make it [0, 0, -1, -1] so the equality comparision below
// treats all invalid rectangles the same.
if (!c.isValid()) {
c.makeInvalid();
}
if (mCurrentState.crop == c) return false;
mCurrentState.crop = c;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setFrame(const Rect& frame) {
int x = frame.left;
int y = frame.top;
int w = frame.getWidth();
int h = frame.getHeight();
if (x < 0) {
x = 0;
w = frame.right;
}
if (y < 0) {
y = 0;
h = frame.bottom;
}
if (mCurrentState.active.transform.tx() == x && mCurrentState.active.transform.ty() == y &&
mCurrentState.active.w == w && mCurrentState.active.h == h) {
return false;
}
if (!frame.isValid()) {
x = y = w = h = 0;
}
mCurrentState.active.transform.set(x, y);
mCurrentState.active.w = w;
mCurrentState.active.h = h;
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setBuffer(const sp<GraphicBuffer>& buffer, nsecs_t postTime,
nsecs_t desiredPresentTime, const client_cache_t& clientCacheId) {
if (mCurrentState.buffer) {
mReleasePreviousBuffer = true;
}
mCurrentState.buffer = buffer;
mCurrentState.clientCacheId = clientCacheId;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
mFlinger->mTimeStats->setPostTime(getSequence(), getFrameNumber(), getName().c_str(), postTime);
mDesiredPresentTime = desiredPresentTime;
if (mFlinger->mUseSmart90ForVideo) {
const nsecs_t presentTime = (mDesiredPresentTime == -1) ? 0 : mDesiredPresentTime;
mFlinger->mScheduler->addLayerPresentTimeAndHDR(mSchedulerLayerHandle, presentTime,
mCurrentState.hdrMetadata.validTypes != 0);
}
return true;
}
bool BufferStateLayer::setAcquireFence(const sp<Fence>& fence) {
// The acquire fences of BufferStateLayers have already signaled before they are set
mCallbackHandleAcquireTime = fence->getSignalTime();
mCurrentState.acquireFence = fence;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setDataspace(ui::Dataspace dataspace) {
if (mCurrentState.dataspace == dataspace) return false;
mCurrentState.dataspace = dataspace;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setHdrMetadata(const HdrMetadata& hdrMetadata) {
if (mCurrentState.hdrMetadata == hdrMetadata) return false;
mCurrentState.hdrMetadata = hdrMetadata;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setSurfaceDamageRegion(const Region& surfaceDamage) {
mCurrentState.surfaceDamageRegion = surfaceDamage;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setApi(int32_t api) {
if (mCurrentState.api == api) return false;
mCurrentState.api = api;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool BufferStateLayer::setSidebandStream(const sp<NativeHandle>& sidebandStream) {
if (mCurrentState.sidebandStream == sidebandStream) return false;
mCurrentState.sidebandStream = sidebandStream;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (!mSidebandStreamChanged.exchange(true)) {
// mSidebandStreamChanged was false
mFlinger->signalLayerUpdate();
}
return true;
}
bool BufferStateLayer::setTransactionCompletedListeners(
const std::vector<sp<CallbackHandle>>& handles) {
// If there is no handle, we will not send a callback so reset mReleasePreviousBuffer and return
if (handles.empty()) {
mReleasePreviousBuffer = false;
return false;
}
const bool willPresent = willPresentCurrentTransaction();
for (const auto& handle : handles) {
// If this transaction set a buffer on this layer, release its previous buffer
handle->releasePreviousBuffer = mReleasePreviousBuffer;
// If this layer will be presented in this frame
if (willPresent) {
// If this transaction set an acquire fence on this layer, set its acquire time
handle->acquireTime = mCallbackHandleAcquireTime;
// Notify the transaction completed thread that there is a pending latched callback
// handle
mFlinger->getTransactionCompletedThread().registerPendingCallbackHandle(handle);
// Store so latched time and release fence can be set
mCurrentState.callbackHandles.push_back(handle);
} else { // If this layer will NOT need to be relatched and presented this frame
// Notify the transaction completed thread this handle is done
mFlinger->getTransactionCompletedThread().addUnpresentedCallbackHandle(handle);
}
}
mReleasePreviousBuffer = false;
mCallbackHandleAcquireTime = -1;
return willPresent;
}
bool BufferStateLayer::setTransparentRegionHint(const Region& transparent) {
mCurrentState.transparentRegionHint = transparent;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
Rect BufferStateLayer::getBufferSize(const State& s) const {
// for buffer state layers we use the display frame size as the buffer size.
if (getActiveWidth(s) < UINT32_MAX && getActiveHeight(s) < UINT32_MAX) {
return Rect(getActiveWidth(s), getActiveHeight(s));
}
// if the display frame is not defined, use the parent bounds as the buffer size.
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
Rect parentBounds = Rect(p->getBounds(Region()));
if (!parentBounds.isEmpty()) {
return parentBounds;
}
}
return Rect::INVALID_RECT;
}
FloatRect BufferStateLayer::computeSourceBounds(const FloatRect& parentBounds) const {
const State& s(getDrawingState());
// for buffer state layers we use the display frame size as the buffer size.
if (getActiveWidth(s) < UINT32_MAX && getActiveHeight(s) < UINT32_MAX) {
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
}
// if the display frame is not defined, use the parent bounds as the buffer size.
return parentBounds;
}
// -----------------------------------------------------------------------
// -----------------------------------------------------------------------
// Interface implementation for BufferLayer
// -----------------------------------------------------------------------
bool BufferStateLayer::fenceHasSignaled() const {
if (latchUnsignaledBuffers()) {
return true;
}
return getDrawingState().acquireFence->getStatus() == Fence::Status::Signaled;
}
bool BufferStateLayer::framePresentTimeIsCurrent() const {
if (!hasFrameUpdate() || isRemovedFromCurrentState()) {
return true;
}
return mDesiredPresentTime <= mFlinger->getExpectedPresentTime();
}
nsecs_t BufferStateLayer::getDesiredPresentTime() {
return mDesiredPresentTime;
}
std::shared_ptr<FenceTime> BufferStateLayer::getCurrentFenceTime() const {
return std::make_shared<FenceTime>(getDrawingState().acquireFence);
}
void BufferStateLayer::getDrawingTransformMatrix(float *matrix) {
std::copy(std::begin(mTransformMatrix), std::end(mTransformMatrix), matrix);
}
uint32_t BufferStateLayer::getDrawingTransform() const {
return getDrawingState().transform;
}
ui::Dataspace BufferStateLayer::getDrawingDataSpace() const {
return getDrawingState().dataspace;
}
// Crop that applies to the buffer
Rect BufferStateLayer::getDrawingCrop() const {
const State& s(getDrawingState());
if (s.crop.isEmpty() && s.buffer) {
return s.buffer->getBounds();
} else if (s.buffer) {
Rect crop = s.crop;
crop.left = std::max(crop.left, 0);
crop.top = std::max(crop.top, 0);
uint32_t bufferWidth = s.buffer->getWidth();
uint32_t bufferHeight = s.buffer->getHeight();
if (bufferHeight <= std::numeric_limits<int32_t>::max() &&
bufferWidth <= std::numeric_limits<int32_t>::max()) {
crop.right = std::min(crop.right, static_cast<int32_t>(bufferWidth));
crop.bottom = std::min(crop.bottom, static_cast<int32_t>(bufferHeight));
}
if (!crop.isValid()) {
// Crop rect is out of bounds, return whole buffer
return s.buffer->getBounds();
}
return crop;
}
return s.crop;
}
uint32_t BufferStateLayer::getDrawingScalingMode() const {
return NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
}
Region BufferStateLayer::getDrawingSurfaceDamage() const {
return getDrawingState().surfaceDamageRegion;
}
const HdrMetadata& BufferStateLayer::getDrawingHdrMetadata() const {
return getDrawingState().hdrMetadata;
}
int BufferStateLayer::getDrawingApi() const {
return getDrawingState().api;
}
PixelFormat BufferStateLayer::getPixelFormat() const {
if (!mActiveBuffer) {
return PIXEL_FORMAT_NONE;
}
return mActiveBuffer->format;
}
uint64_t BufferStateLayer::getFrameNumber() const {
return mFrameNumber;
}
bool BufferStateLayer::getAutoRefresh() const {
// TODO(marissaw): support shared buffer mode
return false;
}
bool BufferStateLayer::getSidebandStreamChanged() const {
return mSidebandStreamChanged.load();
}
bool BufferStateLayer::latchSidebandStream(bool& recomputeVisibleRegions) {
if (mSidebandStreamChanged.exchange(false)) {
const State& s(getDrawingState());
// mSidebandStreamChanged was true
LOG_ALWAYS_FATAL_IF(!getCompositionLayer());
mSidebandStream = s.sidebandStream;
getCompositionLayer()->editState().frontEnd.sidebandStream = mSidebandStream;
if (mSidebandStream != nullptr) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
return true;
}
return false;
}
bool BufferStateLayer::hasFrameUpdate() const {
const State& c(getCurrentState());
return mCurrentStateModified && (c.buffer != nullptr || c.bgColorLayer != nullptr);
}
void BufferStateLayer::setFilteringEnabled(bool enabled) {
GLConsumer::computeTransformMatrix(mTransformMatrix.data(), mActiveBuffer, mCurrentCrop,
mCurrentTransform, enabled);
}
status_t BufferStateLayer::bindTextureImage() {
const State& s(getDrawingState());
auto& engine(mFlinger->getRenderEngine());
return engine.bindExternalTextureBuffer(mTextureName, s.buffer, s.acquireFence);
}
status_t BufferStateLayer::updateTexImage(bool& /*recomputeVisibleRegions*/, nsecs_t latchTime) {
const State& s(getDrawingState());
if (!s.buffer) {
if (s.bgColorLayer) {
for (auto& handle : mDrawingState.callbackHandles) {
handle->latchTime = latchTime;
}
}
return NO_ERROR;
}
const int32_t layerID = getSequence();
// Reject if the layer is invalid
uint32_t bufferWidth = s.buffer->width;
uint32_t bufferHeight = s.buffer->height;
if (s.transform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
if (s.transformToDisplayInverse) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
}
if (getEffectiveScalingMode() == NATIVE_WINDOW_SCALING_MODE_FREEZE &&
(s.active.w != bufferWidth || s.active.h != bufferHeight)) {
ALOGE("[%s] rejecting buffer: "
"bufferWidth=%d, bufferHeight=%d, front.active.{w=%d, h=%d}",
mName.string(), bufferWidth, bufferHeight, s.active.w, s.active.h);
mFlinger->mTimeStats->removeTimeRecord(layerID, getFrameNumber());
return BAD_VALUE;
}
for (auto& handle : mDrawingState.callbackHandles) {
handle->latchTime = latchTime;
}
if (!SyncFeatures::getInstance().useNativeFenceSync()) {
// Bind the new buffer to the GL texture.
//
// Older devices require the "implicit" synchronization provided
// by glEGLImageTargetTexture2DOES, which this method calls. Newer
// devices will either call this in Layer::onDraw, or (if it's not
// a GL-composited layer) not at all.
status_t err = bindTextureImage();
if (err != NO_ERROR) {
mFlinger->mTimeStats->onDestroy(layerID);
return BAD_VALUE;
}
}
mFlinger->mTimeStats->setAcquireFence(layerID, getFrameNumber(), getCurrentFenceTime());
mFlinger->mTimeStats->setLatchTime(layerID, getFrameNumber(), latchTime);
mCurrentStateModified = false;
return NO_ERROR;
}
status_t BufferStateLayer::updateActiveBuffer() {
const State& s(getDrawingState());
if (s.buffer == nullptr) {
return BAD_VALUE;
}
mActiveBuffer = s.buffer;
mActiveBufferFence = s.acquireFence;
auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
layerCompositionState.buffer = mActiveBuffer;
layerCompositionState.bufferSlot = 0;
return NO_ERROR;
}
status_t BufferStateLayer::updateFrameNumber(nsecs_t /*latchTime*/) {
// TODO(marissaw): support frame history events
mCurrentFrameNumber = mFrameNumber;
return NO_ERROR;
}
void BufferStateLayer::setHwcLayerBuffer(const sp<const DisplayDevice>& display) {
const auto outputLayer = findOutputLayerForDisplay(display);
LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
auto& hwcInfo = *outputLayer->editState().hwc;
auto& hwcLayer = hwcInfo.hwcLayer;
const State& s(getDrawingState());
uint32_t hwcSlot;
sp<GraphicBuffer> buffer;
hwcInfo.hwcBufferCache.getHwcBuffer(mHwcSlotGenerator->getHwcCacheSlot(s.clientCacheId),
s.buffer, &hwcSlot, &buffer);
auto error = hwcLayer->setBuffer(hwcSlot, buffer, s.acquireFence);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
s.buffer->handle, to_string(error).c_str(), static_cast<int32_t>(error));
}
mFrameNumber++;
}
void BufferStateLayer::onFirstRef() {
BufferLayer::onFirstRef();
if (const auto display = mFlinger->getDefaultDisplayDevice()) {
updateTransformHint(display);
}
}
void BufferStateLayer::HwcSlotGenerator::bufferErased(const client_cache_t& clientCacheId) {
std::lock_guard lock(mMutex);
if (!clientCacheId.isValid()) {
ALOGE("invalid process, failed to erase buffer");
return;
}
eraseBufferLocked(clientCacheId);
}
uint32_t BufferStateLayer::HwcSlotGenerator::getHwcCacheSlot(const client_cache_t& clientCacheId) {
std::lock_guard<std::mutex> lock(mMutex);
auto itr = mCachedBuffers.find(clientCacheId);
if (itr == mCachedBuffers.end()) {
return addCachedBuffer(clientCacheId);
}
auto& [hwcCacheSlot, counter] = itr->second;
counter = mCounter++;
return hwcCacheSlot;
}
uint32_t BufferStateLayer::HwcSlotGenerator::addCachedBuffer(const client_cache_t& clientCacheId)
REQUIRES(mMutex) {
if (!clientCacheId.isValid()) {
ALOGE("invalid process, returning invalid slot");
return BufferQueue::INVALID_BUFFER_SLOT;
}
ClientCache::getInstance().registerErasedRecipient(clientCacheId, wp<ErasedRecipient>(this));
uint32_t hwcCacheSlot = getFreeHwcCacheSlot();
mCachedBuffers[clientCacheId] = {hwcCacheSlot, mCounter++};
return hwcCacheSlot;
}
uint32_t BufferStateLayer::HwcSlotGenerator::getFreeHwcCacheSlot() REQUIRES(mMutex) {
if (mFreeHwcCacheSlots.empty()) {
evictLeastRecentlyUsed();
}
uint32_t hwcCacheSlot = mFreeHwcCacheSlots.top();
mFreeHwcCacheSlots.pop();
return hwcCacheSlot;
}
void BufferStateLayer::HwcSlotGenerator::evictLeastRecentlyUsed() REQUIRES(mMutex) {
uint64_t minCounter = UINT_MAX;
client_cache_t minClientCacheId = {};
for (const auto& [clientCacheId, slotCounter] : mCachedBuffers) {
const auto& [hwcCacheSlot, counter] = slotCounter;
if (counter < minCounter) {
minCounter = counter;
minClientCacheId = clientCacheId;
}
}
eraseBufferLocked(minClientCacheId);
ClientCache::getInstance().unregisterErasedRecipient(minClientCacheId, this);
}
void BufferStateLayer::HwcSlotGenerator::eraseBufferLocked(const client_cache_t& clientCacheId)
REQUIRES(mMutex) {
auto itr = mCachedBuffers.find(clientCacheId);
if (itr == mCachedBuffers.end()) {
return;
}
auto& [hwcCacheSlot, counter] = itr->second;
// TODO send to hwc cache and resources
mFreeHwcCacheSlots.push(hwcCacheSlot);
mCachedBuffers.erase(clientCacheId);
}
} // namespace android