blob: f51fbb45f688d7589e6fb49a3cb7ab2d4988afd0 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferLayer.h"
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/Display.h>
#include <compositionengine/Layer.h>
#include <compositionengine/LayerCreationArgs.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/LayerCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <renderengine/RenderEngine.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <sstream>
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "LayerRejecter.h"
#include "TimeStats/TimeStats.h"
namespace android {
BufferLayer::BufferLayer(const LayerCreationArgs& args)
: Layer(args),
mTextureName(args.flinger->getNewTexture()),
mCompositionLayer{mFlinger->getCompositionEngine().createLayer(
compositionengine::LayerCreationArgs{this})} {
ALOGV("Creating Layer %s", args.name.string());
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
}
BufferLayer::~BufferLayer() {
mFlinger->deleteTextureAsync(mTextureName);
mFlinger->mTimeStats->onDestroy(getSequence());
}
void BufferLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = getDrawingSurfaceDamage();
}
}
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}
bool BufferLayer::isVisible() const {
bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
(mActiveBuffer != nullptr || mSidebandStream != nullptr);
mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible);
return visible;
}
bool BufferLayer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
bool BufferLayer::usesSourceCrop() const {
return true;
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
bool useIdentityTransform, Region& clearRegion,
const bool supportProtectedContent,
renderengine::LayerSettings& layer) {
ATRACE_CALL();
Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion,
supportProtectedContent, layer);
if (CC_UNLIKELY(mActiveBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<BufferLayer const*>(this)) {
finished = true;
return;
}
under.orSelf(layer->visibleRegion);
});
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearRegion.orSelf(holes);
}
return false;
}
bool blackOutLayer =
(isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure());
const State& s(getDrawingState());
if (!blackOutLayer) {
layer.source.buffer.buffer = mActiveBuffer;
layer.source.buffer.isOpaque = isOpaque(s);
layer.source.buffer.fence = mActiveBufferFence;
layer.source.buffer.textureName = mTextureName;
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
layer.source.buffer.isY410BT2020 = isHdrY410();
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) ||
renderArea.needsFiltering() || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
setFilteringEnabled(useFiltering);
getDrawingTransformMatrix(textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
const Rect win{getBounds()};
float bufferWidth = getBufferSize(s).getWidth();
float bufferHeight = getBufferSize(s).getHeight();
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
// ignore them.
if (!getBufferSize(s).isValid()) {
bufferWidth = float(win.right) - float(win.left);
bufferHeight = float(win.bottom) - float(win.top);
}
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
const float translateY = float(win.top) / bufferHeight;
const float translateX = float(win.left) / bufferWidth;
// Flip y-coordinates because GLConsumer expects OpenGL convention.
mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
mat4::translate(vec4(-.5, -.5, 0, 1)) *
mat4::translate(vec4(translateX, translateY, 0, 1)) *
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
layer.source.buffer.useTextureFiltering = useFiltering;
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
} else {
// If layer is blacked out, force alpha to 1 so that we draw a black color
// layer.
layer.source.buffer.buffer = nullptr;
layer.alpha = 1.0;
}
return true;
}
bool BufferLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
}
void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice,
const ui::Transform& transform, const Rect& viewport,
int32_t supportedPerFrameMetadata,
const ui::Dataspace targetDataspace) {
RETURN_IF_NO_HWC_LAYER(displayDevice);
// Apply this display's projection's viewport to the visible region
// before giving it to the HWC HAL.
Region visible = transform.transform(visibleRegion.intersect(viewport));
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer;
auto error = hwcLayer->setVisibleRegion(visible);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
visible.dump(LOG_TAG);
}
outputLayer->editState().visibleRegion = visible;
auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
surfaceDamageRegion.dump(LOG_TAG);
}
layerCompositionState.surfaceDamage = surfaceDamageRegion;
// Sideband layers
if (layerCompositionState.sidebandStream.get()) {
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND);
ALOGV("[%s] Requesting Sideband composition", mName.string());
error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle());
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
layerCompositionState.sidebandStream->handle(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
return;
}
// Device or Cursor layers
if (mPotentialCursor) {
ALOGV("[%s] Requesting Cursor composition", mName.string());
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR);
} else {
ALOGV("[%s] Requesting Device composition", mName.string());
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE);
}
ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN
? targetDataspace
: mCurrentDataSpace;
error = hwcLayer->setDataspace(dataspace);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace,
to_string(error).c_str(), static_cast<int32_t>(error));
}
const HdrMetadata& metadata = getDrawingHdrMetadata();
error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
error = hwcLayer->setColorTransform(getColorTransform());
if (error == HWC2::Error::Unsupported) {
// If per layer color transform is not supported, we use GPU composition.
setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT);
} else if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
layerCompositionState.dataspace = mCurrentDataSpace;
layerCompositionState.colorTransform = getColorTransform();
layerCompositionState.hdrMetadata = metadata;
setHwcLayerBuffer(displayDevice);
}
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferLatched) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
}
mRefreshPending = false;
return hasReadyFrame();
}
bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mFrameLatencyNeeded) return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = getDesiredPresentTime();
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerID = getSequence();
mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (presentFence->isValid()) {
mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
mFrameTracker.advanceFrame();
mFrameLatencyNeeded = false;
return true;
}
bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
ATRACE_CALL();
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
if (refreshRequired) {
return refreshRequired;
}
if (!hasReadyFrame()) {
return false;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return false;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
ATRACE_NAME("!fenceHasSignaled()");
mFlinger->signalLayerUpdate();
return false;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
sp<GraphicBuffer> oldBuffer = mActiveBuffer;
if (!allTransactionsSignaled()) {
mFlinger->setTransactionFlags(eTraversalNeeded);
return false;
}
status_t err = updateTexImage(recomputeVisibleRegions, latchTime);
if (err != NO_ERROR) {
return false;
}
err = updateActiveBuffer();
if (err != NO_ERROR) {
return false;
}
mBufferLatched = true;
err = updateFrameNumber(latchTime);
if (err != NO_ERROR) {
return false;
}
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
ui::Dataspace dataSpace = getDrawingDataSpace();
// translate legacy dataspaces to modern dataspaces
switch (dataSpace) {
case ui::Dataspace::SRGB:
dataSpace = ui::Dataspace::V0_SRGB;
break;
case ui::Dataspace::SRGB_LINEAR:
dataSpace = ui::Dataspace::V0_SRGB_LINEAR;
break;
case ui::Dataspace::JFIF:
dataSpace = ui::Dataspace::V0_JFIF;
break;
case ui::Dataspace::BT601_625:
dataSpace = ui::Dataspace::V0_BT601_625;
break;
case ui::Dataspace::BT601_525:
dataSpace = ui::Dataspace::V0_BT601_525;
break;
case ui::Dataspace::BT709:
dataSpace = ui::Dataspace::V0_BT709;
break;
default:
break;
}
mCurrentDataSpace = dataSpace;
Rect crop(getDrawingCrop());
const uint32_t transform(getDrawingTransform());
const uint32_t scalingMode(getDrawingScalingMode());
const bool transformToDisplayInverse(getTransformToDisplayInverse());
if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode) ||
(transformToDisplayInverse != mTransformToDisplayInverse)) {
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
mTransformToDisplayInverse = transformToDisplayInverse;
recomputeVisibleRegions = true;
}
if (oldBuffer != nullptr) {
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
// Remove any sync points corresponding to the buffer which was just
// latched
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
std::stringstream ss;
ss << "Dropping sync point " << (*point)->getFrameNumber();
ATRACE_NAME(ss.str().c_str());
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
return true;
}
// transaction
void BufferLayer::notifyAvailableFrames() {
const auto headFrameNumber = getHeadFrameNumber();
const bool headFenceSignaled = fenceHasSignaled();
const bool presentTimeIsCurrent = framePresentTimeIsCurrent();
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
presentTimeIsCurrent) {
point->setFrameAvailable();
sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
if (requestedSyncLayer) {
// Need to update the transaction flag to ensure the layer's pending transaction
// gets applied.
requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
}
}
}
}
bool BufferLayer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
uint32_t BufferLayer::getEffectiveScalingMode() const {
if (mOverrideScalingMode >= 0) {
return mOverrideScalingMode;
}
return mCurrentScalingMode;
}
bool BufferLayer::isProtected() const {
const sp<GraphicBuffer>& buffer(mActiveBuffer);
return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
bool BufferLayer::latchUnsignaledBuffers() {
static bool propertyLoaded = false;
static bool latch = false;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!propertyLoaded) {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.latch_unsignaled", value, "0");
latch = atoi(value);
propertyLoaded = true;
}
return latch;
}
// h/w composer set-up
bool BufferLayer::allTransactionsSignaled() {
auto headFrameNumber = getHeadFrameNumber();
bool matchingFramesFound = false;
bool allTransactionsApplied = true;
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (point->getFrameNumber() > headFrameNumber) {
break;
}
matchingFramesFound = true;
if (!point->frameIsAvailable()) {
// We haven't notified the remote layer that the frame for
// this point is available yet. Notify it now, and then
// abort this attempt to latch.
point->setFrameAvailable();
allTransactionsApplied = false;
break;
}
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
}
return !matchingFramesFound || allTransactionsApplied;
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferLayer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
// If we are not capturing based on the state of a known display device, we
// only return mNeedsFiltering
if (displayDevice == nullptr) {
return mNeedsFiltering;
}
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
if (outputLayer == nullptr) {
return mNeedsFiltering;
}
const auto& compositionState = outputLayer->getState();
const auto displayFrame = compositionState.displayFrame;
const auto sourceCrop = compositionState.sourceCrop;
return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() ||
sourceCrop.getWidth() != displayFrame.getWidth();
}
uint64_t BufferLayer::getHeadFrameNumber() const {
if (hasFrameUpdate()) {
return getFrameNumber();
} else {
return mCurrentFrameNumber;
}
}
Rect BufferLayer::getBufferSize(const State& s) const {
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return Rect(getActiveWidth(s), getActiveHeight(s));
}
if (mActiveBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mCurrentTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(bufWidth, bufHeight);
}
std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const {
return mCompositionLayer;
}
FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
const State& s(getDrawingState());
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
}
if (mActiveBuffer == nullptr) {
return parentBounds;
}
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mCurrentTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return FloatRect(0, 0, bufWidth, bufHeight);
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif