| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "SensorDevice.h" |
| |
| #include "android/hardware/sensors/2.0/ISensorsCallback.h" |
| #include "android/hardware/sensors/2.0/types.h" |
| #include "SensorService.h" |
| |
| #include <android-base/logging.h> |
| #include <sensors/convert.h> |
| #include <cutils/atomic.h> |
| #include <utils/Errors.h> |
| #include <utils/Singleton.h> |
| |
| #include <chrono> |
| #include <cinttypes> |
| #include <thread> |
| |
| using namespace android::hardware::sensors; |
| using namespace android::hardware::sensors::V1_0; |
| using namespace android::hardware::sensors::V1_0::implementation; |
| using android::hardware::sensors::V2_0::ISensorsCallback; |
| using android::hardware::sensors::V2_0::EventQueueFlagBits; |
| using android::hardware::sensors::V2_0::WakeLockQueueFlagBits; |
| using android::hardware::hidl_vec; |
| using android::hardware::Return; |
| using android::SensorDeviceUtils::HidlServiceRegistrationWaiter; |
| |
| namespace android { |
| // --------------------------------------------------------------------------- |
| |
| ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice) |
| |
| namespace { |
| |
| status_t statusFromResult(Result result) { |
| switch (result) { |
| case Result::OK: |
| return OK; |
| case Result::BAD_VALUE: |
| return BAD_VALUE; |
| case Result::PERMISSION_DENIED: |
| return PERMISSION_DENIED; |
| case Result::INVALID_OPERATION: |
| return INVALID_OPERATION; |
| case Result::NO_MEMORY: |
| return NO_MEMORY; |
| } |
| } |
| |
| template<typename EnumType> |
| constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) { |
| return static_cast<typename std::underlying_type<EnumType>::type>(value); |
| } |
| |
| // Used internally by the framework to wake the Event FMQ. These values must start after |
| // the last value of EventQueueFlagBits |
| enum EventQueueFlagBitsInternal : uint32_t { |
| INTERNAL_WAKE = 1 << 16, |
| }; |
| |
| } // anonymous namespace |
| |
| void SensorsHalDeathReceivier::serviceDied( |
| uint64_t /* cookie */, |
| const wp<::android::hidl::base::V1_0::IBase>& /* service */) { |
| ALOGW("Sensors HAL died, attempting to reconnect."); |
| SensorDevice::getInstance().prepareForReconnect(); |
| } |
| |
| struct SensorsCallback : public ISensorsCallback { |
| using Result = ::android::hardware::sensors::V1_0::Result; |
| Return<void> onDynamicSensorsConnected( |
| const hidl_vec<SensorInfo> &dynamicSensorsAdded) override { |
| return SensorDevice::getInstance().onDynamicSensorsConnected(dynamicSensorsAdded); |
| } |
| |
| Return<void> onDynamicSensorsDisconnected( |
| const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) override { |
| return SensorDevice::getInstance().onDynamicSensorsDisconnected( |
| dynamicSensorHandlesRemoved); |
| } |
| }; |
| |
| SensorDevice::SensorDevice() |
| : mHidlTransportErrors(20), |
| mRestartWaiter(new HidlServiceRegistrationWaiter()), |
| mEventQueueFlag(nullptr), |
| mWakeLockQueueFlag(nullptr), |
| mReconnecting(false) { |
| if (!connectHidlService()) { |
| return; |
| } |
| |
| initializeSensorList(); |
| |
| mIsDirectReportSupported = |
| (checkReturnAndGetStatus(mSensors->unregisterDirectChannel(-1)) != INVALID_OPERATION); |
| } |
| |
| void SensorDevice::initializeSensorList() { |
| float minPowerMa = 0.001; // 1 microAmp |
| |
| checkReturn(mSensors->getSensorsList( |
| [&](const auto &list) { |
| const size_t count = list.size(); |
| |
| mActivationCount.setCapacity(count); |
| Info model; |
| for (size_t i=0 ; i < count; i++) { |
| sensor_t sensor; |
| convertToSensor(list[i], &sensor); |
| // Sanity check and clamp power if it is 0 (or close) |
| if (sensor.power < minPowerMa) { |
| ALOGI("Reported power %f not deemed sane, clamping to %f", |
| sensor.power, minPowerMa); |
| sensor.power = minPowerMa; |
| } |
| mSensorList.push_back(sensor); |
| |
| mActivationCount.add(list[i].sensorHandle, model); |
| |
| checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */)); |
| } |
| })); |
| } |
| |
| SensorDevice::~SensorDevice() { |
| if (mEventQueueFlag != nullptr) { |
| hardware::EventFlag::deleteEventFlag(&mEventQueueFlag); |
| mEventQueueFlag = nullptr; |
| } |
| |
| if (mWakeLockQueueFlag != nullptr) { |
| hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag); |
| mWakeLockQueueFlag = nullptr; |
| } |
| } |
| |
| bool SensorDevice::connectHidlService() { |
| HalConnectionStatus status = connectHidlServiceV2_0(); |
| if (status == HalConnectionStatus::DOES_NOT_EXIST) { |
| status = connectHidlServiceV1_0(); |
| } |
| return (status == HalConnectionStatus::CONNECTED); |
| } |
| |
| SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV1_0() { |
| // SensorDevice will wait for HAL service to start if HAL is declared in device manifest. |
| size_t retry = 10; |
| HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN; |
| |
| while (retry-- > 0) { |
| sp<V1_0::ISensors> sensors = V1_0::ISensors::getService(); |
| if (sensors == nullptr) { |
| // no sensor hidl service found |
| connectionStatus = HalConnectionStatus::DOES_NOT_EXIST; |
| break; |
| } |
| |
| mSensors = new SensorServiceUtil::SensorsWrapperV1_0(sensors); |
| mRestartWaiter->reset(); |
| // Poke ISensor service. If it has lingering connection from previous generation of |
| // system server, it will kill itself. There is no intention to handle the poll result, |
| // which will be done since the size is 0. |
| if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) { |
| // ok to continue |
| connectionStatus = HalConnectionStatus::CONNECTED; |
| break; |
| } |
| |
| // hidl service is restarting, pointer is invalid. |
| mSensors = nullptr; |
| connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT; |
| ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry); |
| mRestartWaiter->wait(); |
| } |
| |
| return connectionStatus; |
| } |
| |
| SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_0() { |
| HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN; |
| sp<V2_0::ISensors> sensors = V2_0::ISensors::getService(); |
| |
| if (sensors == nullptr) { |
| connectionStatus = HalConnectionStatus::DOES_NOT_EXIST; |
| } else { |
| mSensors = new SensorServiceUtil::SensorsWrapperV2_0(sensors); |
| |
| mEventQueue = std::make_unique<EventMessageQueue>( |
| SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT, |
| true /* configureEventFlagWord */); |
| |
| mWakeLockQueue = std::make_unique<WakeLockQueue>( |
| SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT, |
| true /* configureEventFlagWord */); |
| |
| hardware::EventFlag::deleteEventFlag(&mEventQueueFlag); |
| hardware::EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag); |
| |
| hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag); |
| hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), |
| &mWakeLockQueueFlag); |
| |
| CHECK(mSensors != nullptr && mEventQueue != nullptr && |
| mWakeLockQueue != nullptr && mEventQueueFlag != nullptr && |
| mWakeLockQueueFlag != nullptr); |
| |
| status_t status = checkReturnAndGetStatus(mSensors->initialize( |
| *mEventQueue->getDesc(), |
| *mWakeLockQueue->getDesc(), |
| new SensorsCallback())); |
| |
| if (status != NO_ERROR) { |
| connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT; |
| ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status)); |
| } else { |
| connectionStatus = HalConnectionStatus::CONNECTED; |
| mSensorsHalDeathReceiver = new SensorsHalDeathReceivier(); |
| sensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */); |
| } |
| } |
| |
| return connectionStatus; |
| } |
| |
| void SensorDevice::prepareForReconnect() { |
| mReconnecting = true; |
| |
| // Wake up the polling thread so it returns and allows the SensorService to initiate |
| // a reconnect. |
| mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE)); |
| } |
| |
| void SensorDevice::reconnect() { |
| Mutex::Autolock _l(mLock); |
| mSensors = nullptr; |
| |
| auto previousActivations = mActivationCount; |
| auto previousSensorList = mSensorList; |
| |
| mActivationCount.clear(); |
| mSensorList.clear(); |
| |
| if (connectHidlServiceV2_0() == HalConnectionStatus::CONNECTED) { |
| initializeSensorList(); |
| |
| if (sensorHandlesChanged(previousSensorList, mSensorList)) { |
| LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors."); |
| } else { |
| reactivateSensors(previousActivations); |
| } |
| } |
| mReconnecting = false; |
| } |
| |
| bool SensorDevice::sensorHandlesChanged(const Vector<sensor_t>& oldSensorList, |
| const Vector<sensor_t>& newSensorList) { |
| bool didChange = false; |
| |
| if (oldSensorList.size() != newSensorList.size()) { |
| ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(), |
| newSensorList.size()); |
| didChange = true; |
| } |
| |
| for (size_t i = 0; i < newSensorList.size() && !didChange; i++) { |
| bool found = false; |
| const sensor_t& newSensor = newSensorList[i]; |
| for (size_t j = 0; j < oldSensorList.size() && !found; j++) { |
| const sensor_t& prevSensor = oldSensorList[j]; |
| if (prevSensor.handle == newSensor.handle) { |
| found = true; |
| if (!sensorIsEquivalent(prevSensor, newSensor)) { |
| ALOGI("Sensor %s not equivalent to previous version", newSensor.name); |
| didChange = true; |
| } |
| } |
| } |
| |
| if (!found) { |
| // Could not find the new sensor in the old list of sensors, the lists must |
| // have changed. |
| ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle); |
| didChange = true; |
| } |
| } |
| return didChange; |
| } |
| |
| bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) { |
| bool equivalent = true; |
| if (prevSensor.handle != newSensor.handle || |
| (strcmp(prevSensor.vendor, newSensor.vendor) != 0) || |
| (strcmp(prevSensor.stringType, newSensor.stringType) != 0) || |
| (strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) || |
| (prevSensor.version != newSensor.version) || |
| (prevSensor.type != newSensor.type) || |
| (std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) || |
| (std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) || |
| (std::abs(prevSensor.power - newSensor.power) > 0.001f) || |
| (prevSensor.minDelay != newSensor.minDelay) || |
| (prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) || |
| (prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) || |
| (prevSensor.maxDelay != newSensor.maxDelay) || |
| (prevSensor.flags != newSensor.flags)) { |
| equivalent = false; |
| } |
| return equivalent; |
| } |
| |
| void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) { |
| for (size_t i = 0; i < mSensorList.size(); i++) { |
| int handle = mSensorList[i].handle; |
| ssize_t activationIndex = previousActivations.indexOfKey(handle); |
| if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) { |
| continue; |
| } |
| |
| const Info& info = previousActivations[activationIndex]; |
| for (size_t j = 0; j < info.batchParams.size(); j++) { |
| const BatchParams& batchParams = info.batchParams[j]; |
| status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */, |
| batchParams.mTSample, batchParams.mTBatch); |
| |
| if (res == NO_ERROR) { |
| activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */); |
| } |
| } |
| } |
| } |
| |
| void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) { |
| // not need to check mSensors because this is is only called after successful poll() |
| if (connected) { |
| Info model; |
| mActivationCount.add(handle, model); |
| checkReturn(mSensors->activate(handle, 0 /* enabled */)); |
| } else { |
| mActivationCount.removeItem(handle); |
| } |
| } |
| |
| std::string SensorDevice::dump() const { |
| if (mSensors == nullptr) return "HAL not initialized\n"; |
| |
| String8 result; |
| result.appendFormat("Total %zu h/w sensors, %zu running:\n", |
| mSensorList.size(), mActivationCount.size()); |
| |
| Mutex::Autolock _l(mLock); |
| for (const auto & s : mSensorList) { |
| int32_t handle = s.handle; |
| const Info& info = mActivationCount.valueFor(handle); |
| if (info.numActiveClients() == 0) continue; |
| |
| result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size()); |
| |
| result.append("sampling_period(ms) = {"); |
| for (size_t j = 0; j < info.batchParams.size(); j++) { |
| const BatchParams& params = info.batchParams[j]; |
| result.appendFormat("%.1f%s", params.mTSample / 1e6f, |
| j < info.batchParams.size() - 1 ? ", " : ""); |
| } |
| result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f); |
| |
| result.append("batching_period(ms) = {"); |
| for (size_t j = 0; j < info.batchParams.size(); j++) { |
| const BatchParams& params = info.batchParams[j]; |
| result.appendFormat("%.1f%s", params.mTBatch / 1e6f, |
| j < info.batchParams.size() - 1 ? ", " : ""); |
| } |
| result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f); |
| } |
| |
| return result.string(); |
| } |
| |
| ssize_t SensorDevice::getSensorList(sensor_t const** list) { |
| *list = &mSensorList[0]; |
| |
| return mSensorList.size(); |
| } |
| |
| status_t SensorDevice::initCheck() const { |
| return mSensors != nullptr ? NO_ERROR : NO_INIT; |
| } |
| |
| ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) { |
| if (mSensors == nullptr) return NO_INIT; |
| |
| ssize_t eventsRead = 0; |
| if (mSensors->supportsMessageQueues()) { |
| eventsRead = pollFmq(buffer, count); |
| } else if (mSensors->supportsPolling()) { |
| eventsRead = pollHal(buffer, count); |
| } else { |
| ALOGE("Must support polling or FMQ"); |
| eventsRead = -1; |
| } |
| return eventsRead; |
| } |
| |
| ssize_t SensorDevice::pollHal(sensors_event_t* buffer, size_t count) { |
| ssize_t err; |
| int numHidlTransportErrors = 0; |
| bool hidlTransportError = false; |
| |
| do { |
| auto ret = mSensors->poll( |
| count, |
| [&](auto result, |
| const auto &events, |
| const auto &dynamicSensorsAdded) { |
| if (result == Result::OK) { |
| convertToSensorEvents(events, dynamicSensorsAdded, buffer); |
| err = (ssize_t)events.size(); |
| } else { |
| err = statusFromResult(result); |
| } |
| }); |
| |
| if (ret.isOk()) { |
| hidlTransportError = false; |
| } else { |
| hidlTransportError = true; |
| numHidlTransportErrors++; |
| if (numHidlTransportErrors > 50) { |
| // Log error and bail |
| ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors); |
| handleHidlDeath(ret.description()); |
| } else { |
| std::this_thread::sleep_for(std::chrono::milliseconds(10)); |
| } |
| } |
| } while (hidlTransportError); |
| |
| if(numHidlTransportErrors > 0) { |
| ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors); |
| HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors); |
| mHidlTransportErrors.add(errLog); |
| mTotalHidlTransportErrors++; |
| } |
| |
| return err; |
| } |
| |
| ssize_t SensorDevice::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) { |
| ssize_t eventsRead = 0; |
| size_t availableEvents = mEventQueue->availableToRead(); |
| |
| if (availableEvents == 0) { |
| uint32_t eventFlagState = 0; |
| |
| // Wait for events to become available. This is necessary so that the Event FMQ's read() is |
| // able to be called with the correct number of events to read. If the specified number of |
| // events is not available, then read() would return no events, possibly introducing |
| // additional latency in delivering events to applications. |
| mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) | |
| asBaseType(INTERNAL_WAKE), &eventFlagState); |
| availableEvents = mEventQueue->availableToRead(); |
| |
| if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) { |
| ALOGD("Event FMQ internal wake, returning from poll with no events"); |
| return DEAD_OBJECT; |
| } |
| } |
| |
| size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()}); |
| if (eventsToRead > 0) { |
| if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) { |
| // Notify the Sensors HAL that sensor events have been read. This is required to support |
| // the use of writeBlocking by the Sensors HAL. |
| mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ)); |
| |
| for (size_t i = 0; i < eventsToRead; i++) { |
| convertToSensorEvent(mEventBuffer[i], &buffer[i]); |
| } |
| eventsRead = eventsToRead; |
| } else { |
| ALOGW("Failed to read %zu events, currently %zu events available", |
| eventsToRead, availableEvents); |
| } |
| } |
| |
| return eventsRead; |
| } |
| |
| Return<void> SensorDevice::onDynamicSensorsConnected( |
| const hidl_vec<SensorInfo> &dynamicSensorsAdded) { |
| // Allocate a sensor_t structure for each dynamic sensor added and insert |
| // it into the dictionary of connected dynamic sensors keyed by handle. |
| for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) { |
| const SensorInfo &info = dynamicSensorsAdded[i]; |
| |
| auto it = mConnectedDynamicSensors.find(info.sensorHandle); |
| CHECK(it == mConnectedDynamicSensors.end()); |
| |
| sensor_t *sensor = new sensor_t(); |
| convertToSensor(info, sensor); |
| |
| mConnectedDynamicSensors.insert( |
| std::make_pair(sensor->handle, sensor)); |
| } |
| |
| return Return<void>(); |
| } |
| |
| Return<void> SensorDevice::onDynamicSensorsDisconnected( |
| const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) { |
| (void) dynamicSensorHandlesRemoved; |
| // TODO: Currently dynamic sensors do not seem to be removed |
| return Return<void>(); |
| } |
| |
| void SensorDevice::writeWakeLockHandled(uint32_t count) { |
| if (mSensors != nullptr && mSensors->supportsMessageQueues()) { |
| if (mWakeLockQueue->write(&count)) { |
| mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN)); |
| } else { |
| ALOGW("Failed to write wake lock handled"); |
| } |
| } |
| } |
| |
| void SensorDevice::autoDisable(void *ident, int handle) { |
| Mutex::Autolock _l(mLock); |
| ssize_t activationIndex = mActivationCount.indexOfKey(handle); |
| if (activationIndex < 0) { |
| ALOGW("Handle %d cannot be found in activation record", handle); |
| return; |
| } |
| Info& info(mActivationCount.editValueAt(activationIndex)); |
| info.removeBatchParamsForIdent(ident); |
| if (info.numActiveClients() == 0) { |
| info.isActive = false; |
| } |
| } |
| |
| status_t SensorDevice::activate(void* ident, int handle, int enabled) { |
| if (mSensors == nullptr) return NO_INIT; |
| |
| Mutex::Autolock _l(mLock); |
| return activateLocked(ident, handle, enabled); |
| } |
| |
| status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) { |
| bool actuateHardware = false; |
| |
| status_t err(NO_ERROR); |
| |
| ssize_t activationIndex = mActivationCount.indexOfKey(handle); |
| if (activationIndex < 0) { |
| ALOGW("Handle %d cannot be found in activation record", handle); |
| return BAD_VALUE; |
| } |
| Info& info(mActivationCount.editValueAt(activationIndex)); |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu", |
| ident, handle, enabled, info.batchParams.size()); |
| |
| if (enabled) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident)); |
| |
| if (isClientDisabledLocked(ident)) { |
| ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d", |
| ident, handle); |
| return INVALID_OPERATION; |
| } |
| |
| if (info.batchParams.indexOfKey(ident) >= 0) { |
| if (info.numActiveClients() > 0 && !info.isActive) { |
| actuateHardware = true; |
| } |
| } else { |
| // Log error. Every activate call should be preceded by a batch() call. |
| ALOGE("\t >>>ERROR: activate called without batch"); |
| } |
| } else { |
| ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident)); |
| |
| // If a connected dynamic sensor is deactivated, remove it from the |
| // dictionary. |
| auto it = mConnectedDynamicSensors.find(handle); |
| if (it != mConnectedDynamicSensors.end()) { |
| delete it->second; |
| mConnectedDynamicSensors.erase(it); |
| } |
| |
| if (info.removeBatchParamsForIdent(ident) >= 0) { |
| if (info.numActiveClients() == 0) { |
| // This is the last connection, we need to de-activate the underlying h/w sensor. |
| actuateHardware = true; |
| } else { |
| // Call batch for this sensor with the previously calculated best effort |
| // batch_rate and timeout. One of the apps has unregistered for sensor |
| // events, and the best effort batch parameters might have changed. |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle, |
| info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch); |
| checkReturn(mSensors->batch( |
| handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch)); |
| } |
| } else { |
| // sensor wasn't enabled for this ident |
| } |
| |
| if (isClientDisabledLocked(ident)) { |
| return NO_ERROR; |
| } |
| } |
| |
| if (actuateHardware) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle, |
| enabled); |
| err = checkReturnAndGetStatus(mSensors->activate(handle, enabled)); |
| ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle, |
| strerror(-err)); |
| |
| if (err != NO_ERROR && enabled) { |
| // Failure when enabling the sensor. Clean up on failure. |
| info.removeBatchParamsForIdent(ident); |
| } else { |
| // Update the isActive flag if there is no error. If there is an error when disabling a |
| // sensor, still set the flag to false since the batch parameters have already been |
| // removed. This ensures that everything remains in-sync. |
| info.isActive = enabled; |
| } |
| } |
| |
| return err; |
| } |
| |
| status_t SensorDevice::batch( |
| void* ident, |
| int handle, |
| int flags, |
| int64_t samplingPeriodNs, |
| int64_t maxBatchReportLatencyNs) { |
| if (mSensors == nullptr) return NO_INIT; |
| |
| if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) { |
| samplingPeriodNs = MINIMUM_EVENTS_PERIOD; |
| } |
| if (maxBatchReportLatencyNs < 0) { |
| maxBatchReportLatencyNs = 0; |
| } |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64, |
| ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs); |
| |
| Mutex::Autolock _l(mLock); |
| return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs); |
| } |
| |
| status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs, |
| int64_t maxBatchReportLatencyNs) { |
| ssize_t activationIndex = mActivationCount.indexOfKey(handle); |
| if (activationIndex < 0) { |
| ALOGW("Handle %d cannot be found in activation record", handle); |
| return BAD_VALUE; |
| } |
| Info& info(mActivationCount.editValueAt(activationIndex)); |
| |
| if (info.batchParams.indexOfKey(ident) < 0) { |
| BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs); |
| info.batchParams.add(ident, params); |
| } else { |
| // A batch has already been called with this ident. Update the batch parameters. |
| info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs); |
| } |
| |
| BatchParams prevBestBatchParams = info.bestBatchParams; |
| // Find the minimum of all timeouts and batch_rates for this sensor. |
| info.selectBatchParams(); |
| |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "\t>>> curr_period=%" PRId64 " min_period=%" PRId64 |
| " curr_timeout=%" PRId64 " min_timeout=%" PRId64, |
| prevBestBatchParams.mTSample, info.bestBatchParams.mTSample, |
| prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch); |
| |
| status_t err(NO_ERROR); |
| // If the min period or min timeout has changed since the last batch call, call batch. |
| if (prevBestBatchParams != info.bestBatchParams) { |
| ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle, |
| info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch); |
| err = checkReturnAndGetStatus(mSensors->batch( |
| handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch)); |
| if (err != NO_ERROR) { |
| ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s", |
| mSensors.get(), handle, info.bestBatchParams.mTSample, |
| info.bestBatchParams.mTBatch, strerror(-err)); |
| info.removeBatchParamsForIdent(ident); |
| } |
| } |
| return err; |
| } |
| |
| status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) { |
| return batch(ident, handle, 0, samplingPeriodNs, 0); |
| } |
| |
| int SensorDevice::getHalDeviceVersion() const { |
| if (mSensors == nullptr) return -1; |
| return SENSORS_DEVICE_API_VERSION_1_4; |
| } |
| |
| status_t SensorDevice::flush(void* ident, int handle) { |
| if (mSensors == nullptr) return NO_INIT; |
| if (isClientDisabled(ident)) return INVALID_OPERATION; |
| ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle); |
| return checkReturnAndGetStatus(mSensors->flush(handle)); |
| } |
| |
| bool SensorDevice::isClientDisabled(void* ident) { |
| Mutex::Autolock _l(mLock); |
| return isClientDisabledLocked(ident); |
| } |
| |
| bool SensorDevice::isClientDisabledLocked(void* ident) { |
| return mDisabledClients.indexOf(ident) >= 0; |
| } |
| |
| bool SensorDevice::isSensorActive(int handle) const { |
| Mutex::Autolock _l(mLock); |
| ssize_t activationIndex = mActivationCount.indexOfKey(handle); |
| if (activationIndex < 0) { |
| return false; |
| } |
| return mActivationCount.valueAt(activationIndex).numActiveClients() > 0; |
| } |
| |
| void SensorDevice::enableAllSensors() { |
| if (mSensors == nullptr) return; |
| Mutex::Autolock _l(mLock); |
| mDisabledClients.clear(); |
| ALOGI("cleared mDisabledClients"); |
| for (size_t i = 0; i< mActivationCount.size(); ++i) { |
| Info& info = mActivationCount.editValueAt(i); |
| if (info.batchParams.isEmpty()) continue; |
| info.selectBatchParams(); |
| const int sensor_handle = mActivationCount.keyAt(i); |
| ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ", |
| sensor_handle); |
| status_t err = checkReturnAndGetStatus(mSensors->batch( |
| sensor_handle, |
| info.bestBatchParams.mTSample, |
| info.bestBatchParams.mTBatch)); |
| ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err)); |
| |
| if (err == NO_ERROR) { |
| err = checkReturnAndGetStatus(mSensors->activate(sensor_handle, 1 /* enabled */)); |
| ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err)); |
| } |
| |
| if (err == NO_ERROR) { |
| info.isActive = true; |
| } |
| } |
| } |
| |
| void SensorDevice::disableAllSensors() { |
| if (mSensors == nullptr) return; |
| Mutex::Autolock _l(mLock); |
| for (size_t i = 0; i< mActivationCount.size(); ++i) { |
| Info& info = mActivationCount.editValueAt(i); |
| // Check if this sensor has been activated previously and disable it. |
| if (info.batchParams.size() > 0) { |
| const int sensor_handle = mActivationCount.keyAt(i); |
| ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ", |
| sensor_handle); |
| checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */)); |
| |
| // Add all the connections that were registered for this sensor to the disabled |
| // clients list. |
| for (size_t j = 0; j < info.batchParams.size(); ++j) { |
| mDisabledClients.add(info.batchParams.keyAt(j)); |
| ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j)); |
| } |
| |
| info.isActive = false; |
| } |
| } |
| } |
| |
| status_t SensorDevice::injectSensorData( |
| const sensors_event_t *injected_sensor_event) { |
| if (mSensors == nullptr) return NO_INIT; |
| ALOGD_IF(DEBUG_CONNECTIONS, |
| "sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f", |
| injected_sensor_event->sensor, |
| injected_sensor_event->timestamp, injected_sensor_event->data[0], |
| injected_sensor_event->data[1], injected_sensor_event->data[2], |
| injected_sensor_event->data[3], injected_sensor_event->data[4], |
| injected_sensor_event->data[5]); |
| |
| Event ev; |
| convertFromSensorEvent(*injected_sensor_event, &ev); |
| |
| return checkReturnAndGetStatus(mSensors->injectSensorData(ev)); |
| } |
| |
| status_t SensorDevice::setMode(uint32_t mode) { |
| if (mSensors == nullptr) return NO_INIT; |
| return checkReturnAndGetStatus(mSensors->setOperationMode( |
| static_cast<hardware::sensors::V1_0::OperationMode>(mode))); |
| } |
| |
| int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) { |
| if (mSensors == nullptr) return NO_INIT; |
| Mutex::Autolock _l(mLock); |
| |
| SharedMemType type; |
| switch (memory->type) { |
| case SENSOR_DIRECT_MEM_TYPE_ASHMEM: |
| type = SharedMemType::ASHMEM; |
| break; |
| case SENSOR_DIRECT_MEM_TYPE_GRALLOC: |
| type = SharedMemType::GRALLOC; |
| break; |
| default: |
| return BAD_VALUE; |
| } |
| |
| SharedMemFormat format; |
| if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) { |
| return BAD_VALUE; |
| } |
| format = SharedMemFormat::SENSORS_EVENT; |
| |
| SharedMemInfo mem = { |
| .type = type, |
| .format = format, |
| .size = static_cast<uint32_t>(memory->size), |
| .memoryHandle = memory->handle, |
| }; |
| |
| int32_t ret; |
| checkReturn(mSensors->registerDirectChannel(mem, |
| [&ret](auto result, auto channelHandle) { |
| if (result == Result::OK) { |
| ret = channelHandle; |
| } else { |
| ret = statusFromResult(result); |
| } |
| })); |
| return ret; |
| } |
| |
| void SensorDevice::unregisterDirectChannel(int32_t channelHandle) { |
| if (mSensors == nullptr) return; |
| Mutex::Autolock _l(mLock); |
| checkReturn(mSensors->unregisterDirectChannel(channelHandle)); |
| } |
| |
| int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle, |
| int32_t channelHandle, const struct sensors_direct_cfg_t *config) { |
| if (mSensors == nullptr) return NO_INIT; |
| Mutex::Autolock _l(mLock); |
| |
| RateLevel rate; |
| switch(config->rate_level) { |
| case SENSOR_DIRECT_RATE_STOP: |
| rate = RateLevel::STOP; |
| break; |
| case SENSOR_DIRECT_RATE_NORMAL: |
| rate = RateLevel::NORMAL; |
| break; |
| case SENSOR_DIRECT_RATE_FAST: |
| rate = RateLevel::FAST; |
| break; |
| case SENSOR_DIRECT_RATE_VERY_FAST: |
| rate = RateLevel::VERY_FAST; |
| break; |
| default: |
| return BAD_VALUE; |
| } |
| |
| int32_t ret; |
| checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate, |
| [&ret, rate] (auto result, auto token) { |
| if (rate == RateLevel::STOP) { |
| ret = statusFromResult(result); |
| } else { |
| if (result == Result::OK) { |
| ret = token; |
| } else { |
| ret = statusFromResult(result); |
| } |
| } |
| })); |
| |
| return ret; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| int SensorDevice::Info::numActiveClients() const { |
| SensorDevice& device(SensorDevice::getInstance()); |
| int num = 0; |
| for (size_t i = 0; i < batchParams.size(); ++i) { |
| if (!device.isClientDisabledLocked(batchParams.keyAt(i))) { |
| ++num; |
| } |
| } |
| return num; |
| } |
| |
| status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int, |
| int64_t samplingPeriodNs, |
| int64_t maxBatchReportLatencyNs) { |
| ssize_t index = batchParams.indexOfKey(ident); |
| if (index < 0) { |
| ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64 |
| " timeout=%" PRId64 ") failed (%s)", |
| ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index)); |
| return BAD_INDEX; |
| } |
| BatchParams& params = batchParams.editValueAt(index); |
| params.mTSample = samplingPeriodNs; |
| params.mTBatch = maxBatchReportLatencyNs; |
| return NO_ERROR; |
| } |
| |
| void SensorDevice::Info::selectBatchParams() { |
| BatchParams bestParams; // default to max Tsample and max Tbatch |
| SensorDevice& device(SensorDevice::getInstance()); |
| |
| for (size_t i = 0; i < batchParams.size(); ++i) { |
| if (device.isClientDisabledLocked(batchParams.keyAt(i))) { |
| continue; |
| } |
| bestParams.merge(batchParams[i]); |
| } |
| // if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly. |
| if (bestParams.mTBatch <= bestParams.mTSample) { |
| bestParams.mTBatch = 0; |
| } |
| bestBatchParams = bestParams; |
| } |
| |
| ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) { |
| ssize_t idx = batchParams.removeItem(ident); |
| if (idx >= 0) { |
| selectBatchParams(); |
| } |
| return idx; |
| } |
| |
| void SensorDevice::notifyConnectionDestroyed(void* ident) { |
| Mutex::Autolock _l(mLock); |
| mDisabledClients.remove(ident); |
| } |
| |
| bool SensorDevice::isDirectReportSupported() const { |
| return mIsDirectReportSupported; |
| } |
| |
| void SensorDevice::convertToSensorEvent( |
| const Event &src, sensors_event_t *dst) { |
| ::android::hardware::sensors::V1_0::implementation::convertToSensorEvent( |
| src, dst); |
| |
| if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) { |
| const DynamicSensorInfo &dyn = src.u.dynamic; |
| |
| dst->dynamic_sensor_meta.connected = dyn.connected; |
| dst->dynamic_sensor_meta.handle = dyn.sensorHandle; |
| if (dyn.connected) { |
| auto it = mConnectedDynamicSensors.find(dyn.sensorHandle); |
| CHECK(it != mConnectedDynamicSensors.end()); |
| |
| dst->dynamic_sensor_meta.sensor = it->second; |
| |
| memcpy(dst->dynamic_sensor_meta.uuid, |
| dyn.uuid.data(), |
| sizeof(dst->dynamic_sensor_meta.uuid)); |
| } |
| } |
| } |
| |
| void SensorDevice::convertToSensorEvents( |
| const hidl_vec<Event> &src, |
| const hidl_vec<SensorInfo> &dynamicSensorsAdded, |
| sensors_event_t *dst) { |
| |
| if (dynamicSensorsAdded.size() > 0) { |
| onDynamicSensorsConnected(dynamicSensorsAdded); |
| } |
| |
| for (size_t i = 0; i < src.size(); ++i) { |
| convertToSensorEvent(src[i], &dst[i]); |
| } |
| } |
| |
| void SensorDevice::handleHidlDeath(const std::string & detail) { |
| if (!mSensors->supportsMessageQueues()) { |
| // restart is the only option at present. |
| LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str()); |
| } else { |
| ALOGD("ISensors HAL died, death recipient will attempt reconnect"); |
| } |
| } |
| |
| status_t SensorDevice::checkReturnAndGetStatus(const Return<Result>& ret) { |
| checkReturn(ret); |
| return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret); |
| } |
| |
| // --------------------------------------------------------------------------- |
| }; // namespace android |