blob: 717f31769b597d530473a333e278d22cad591030 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "android/hardware/sensors/2.0/ISensorsCallback.h"
#include "android/hardware/sensors/2.0/types.h"
#include "SensorService.h"
#include <android-base/logging.h>
#include <sensors/convert.h>
#include <cutils/atomic.h>
#include <utils/Errors.h>
#include <utils/Singleton.h>
#include <chrono>
#include <cinttypes>
#include <thread>
using namespace android::hardware::sensors;
using namespace android::hardware::sensors::V1_0;
using namespace android::hardware::sensors::V1_0::implementation;
using android::hardware::sensors::V2_0::ISensorsCallback;
using android::hardware::sensors::V2_0::EventQueueFlagBits;
using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using android::hardware::hidl_vec;
using android::hardware::Return;
using android::SensorDeviceUtils::HidlServiceRegistrationWaiter;
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
namespace {
status_t statusFromResult(Result result) {
switch (result) {
case Result::OK:
return OK;
case Result::BAD_VALUE:
return BAD_VALUE;
case Result::PERMISSION_DENIED:
return PERMISSION_DENIED;
case Result::INVALID_OPERATION:
return INVALID_OPERATION;
case Result::NO_MEMORY:
return NO_MEMORY;
}
}
template<typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
// Used internally by the framework to wake the Event FMQ. These values must start after
// the last value of EventQueueFlagBits
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
} // anonymous namespace
void SensorsHalDeathReceivier::serviceDied(
uint64_t /* cookie */,
const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
ALOGW("Sensors HAL died, attempting to reconnect.");
SensorDevice::getInstance().prepareForReconnect();
}
struct SensorsCallback : public ISensorsCallback {
using Result = ::android::hardware::sensors::V1_0::Result;
Return<void> onDynamicSensorsConnected(
const hidl_vec<SensorInfo> &dynamicSensorsAdded) override {
return SensorDevice::getInstance().onDynamicSensorsConnected(dynamicSensorsAdded);
}
Return<void> onDynamicSensorsDisconnected(
const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) override {
return SensorDevice::getInstance().onDynamicSensorsDisconnected(
dynamicSensorHandlesRemoved);
}
};
SensorDevice::SensorDevice()
: mHidlTransportErrors(20),
mRestartWaiter(new HidlServiceRegistrationWaiter()),
mEventQueueFlag(nullptr),
mWakeLockQueueFlag(nullptr),
mReconnecting(false) {
if (!connectHidlService()) {
return;
}
initializeSensorList();
mIsDirectReportSupported =
(checkReturnAndGetStatus(mSensors->unregisterDirectChannel(-1)) != INVALID_OPERATION);
}
void SensorDevice::initializeSensorList() {
float minPowerMa = 0.001; // 1 microAmp
checkReturn(mSensors->getSensorsList(
[&](const auto &list) {
const size_t count = list.size();
mActivationCount.setCapacity(count);
Info model;
for (size_t i=0 ; i < count; i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
// Sanity check and clamp power if it is 0 (or close)
if (sensor.power < minPowerMa) {
ALOGI("Reported power %f not deemed sane, clamping to %f",
sensor.power, minPowerMa);
sensor.power = minPowerMa;
}
mSensorList.push_back(sensor);
mActivationCount.add(list[i].sensorHandle, model);
checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
}
}));
}
SensorDevice::~SensorDevice() {
if (mEventQueueFlag != nullptr) {
hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
mEventQueueFlag = nullptr;
}
if (mWakeLockQueueFlag != nullptr) {
hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
mWakeLockQueueFlag = nullptr;
}
}
bool SensorDevice::connectHidlService() {
HalConnectionStatus status = connectHidlServiceV2_0();
if (status == HalConnectionStatus::DOES_NOT_EXIST) {
status = connectHidlServiceV1_0();
}
return (status == HalConnectionStatus::CONNECTED);
}
SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV1_0() {
// SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
size_t retry = 10;
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
while (retry-- > 0) {
sp<V1_0::ISensors> sensors = V1_0::ISensors::getService();
if (sensors == nullptr) {
// no sensor hidl service found
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
break;
}
mSensors = new SensorServiceUtil::SensorsWrapperV1_0(sensors);
mRestartWaiter->reset();
// Poke ISensor service. If it has lingering connection from previous generation of
// system server, it will kill itself. There is no intention to handle the poll result,
// which will be done since the size is 0.
if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) {
// ok to continue
connectionStatus = HalConnectionStatus::CONNECTED;
break;
}
// hidl service is restarting, pointer is invalid.
mSensors = nullptr;
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
mRestartWaiter->wait();
}
return connectionStatus;
}
SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_0() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
sp<V2_0::ISensors> sensors = V2_0::ISensors::getService();
if (sensors == nullptr) {
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
} else {
mSensors = new SensorServiceUtil::SensorsWrapperV2_0(sensors);
mEventQueue = std::make_unique<EventMessageQueue>(
SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
true /* configureEventFlagWord */);
mWakeLockQueue = std::make_unique<WakeLockQueue>(
SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
true /* configureEventFlagWord */);
hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
hardware::EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(),
&mWakeLockQueueFlag);
CHECK(mSensors != nullptr && mEventQueue != nullptr &&
mWakeLockQueue != nullptr && mEventQueueFlag != nullptr &&
mWakeLockQueueFlag != nullptr);
status_t status = checkReturnAndGetStatus(mSensors->initialize(
*mEventQueue->getDesc(),
*mWakeLockQueue->getDesc(),
new SensorsCallback()));
if (status != NO_ERROR) {
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
} else {
connectionStatus = HalConnectionStatus::CONNECTED;
mSensorsHalDeathReceiver = new SensorsHalDeathReceivier();
sensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
}
}
return connectionStatus;
}
void SensorDevice::prepareForReconnect() {
mReconnecting = true;
// Wake up the polling thread so it returns and allows the SensorService to initiate
// a reconnect.
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
void SensorDevice::reconnect() {
Mutex::Autolock _l(mLock);
mSensors = nullptr;
auto previousActivations = mActivationCount;
auto previousSensorList = mSensorList;
mActivationCount.clear();
mSensorList.clear();
if (connectHidlServiceV2_0() == HalConnectionStatus::CONNECTED) {
initializeSensorList();
if (sensorHandlesChanged(previousSensorList, mSensorList)) {
LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors.");
} else {
reactivateSensors(previousActivations);
}
}
mReconnecting = false;
}
bool SensorDevice::sensorHandlesChanged(const Vector<sensor_t>& oldSensorList,
const Vector<sensor_t>& newSensorList) {
bool didChange = false;
if (oldSensorList.size() != newSensorList.size()) {
ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(),
newSensorList.size());
didChange = true;
}
for (size_t i = 0; i < newSensorList.size() && !didChange; i++) {
bool found = false;
const sensor_t& newSensor = newSensorList[i];
for (size_t j = 0; j < oldSensorList.size() && !found; j++) {
const sensor_t& prevSensor = oldSensorList[j];
if (prevSensor.handle == newSensor.handle) {
found = true;
if (!sensorIsEquivalent(prevSensor, newSensor)) {
ALOGI("Sensor %s not equivalent to previous version", newSensor.name);
didChange = true;
}
}
}
if (!found) {
// Could not find the new sensor in the old list of sensors, the lists must
// have changed.
ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle);
didChange = true;
}
}
return didChange;
}
bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) {
bool equivalent = true;
if (prevSensor.handle != newSensor.handle ||
(strcmp(prevSensor.vendor, newSensor.vendor) != 0) ||
(strcmp(prevSensor.stringType, newSensor.stringType) != 0) ||
(strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) ||
(prevSensor.version != newSensor.version) ||
(prevSensor.type != newSensor.type) ||
(std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) ||
(std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) ||
(std::abs(prevSensor.power - newSensor.power) > 0.001f) ||
(prevSensor.minDelay != newSensor.minDelay) ||
(prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) ||
(prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) ||
(prevSensor.maxDelay != newSensor.maxDelay) ||
(prevSensor.flags != newSensor.flags)) {
equivalent = false;
}
return equivalent;
}
void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) {
for (size_t i = 0; i < mSensorList.size(); i++) {
int handle = mSensorList[i].handle;
ssize_t activationIndex = previousActivations.indexOfKey(handle);
if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) {
continue;
}
const Info& info = previousActivations[activationIndex];
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& batchParams = info.batchParams[j];
status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */,
batchParams.mTSample, batchParams.mTBatch);
if (res == NO_ERROR) {
activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */);
}
}
}
}
void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
// not need to check mSensors because this is is only called after successful poll()
if (connected) {
Info model;
mActivationCount.add(handle, model);
checkReturn(mSensors->activate(handle, 0 /* enabled */));
} else {
mActivationCount.removeItem(handle);
}
}
std::string SensorDevice::dump() const {
if (mSensors == nullptr) return "HAL not initialized\n";
String8 result;
result.appendFormat("Total %zu h/w sensors, %zu running:\n",
mSensorList.size(), mActivationCount.size());
Mutex::Autolock _l(mLock);
for (const auto & s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.numActiveClients() == 0) continue;
result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
result.append("sampling_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s", params.mTSample / 1e6f,
j < info.batchParams.size() - 1 ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
result.append("batching_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s", params.mTBatch / 1e6f,
j < info.batchParams.size() - 1 ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
}
return result.string();
}
ssize_t SensorDevice::getSensorList(sensor_t const** list) {
*list = &mSensorList[0];
return mSensorList.size();
}
status_t SensorDevice::initCheck() const {
return mSensors != nullptr ? NO_ERROR : NO_INIT;
}
ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
if (mSensors == nullptr) return NO_INIT;
ssize_t eventsRead = 0;
if (mSensors->supportsMessageQueues()) {
eventsRead = pollFmq(buffer, count);
} else if (mSensors->supportsPolling()) {
eventsRead = pollHal(buffer, count);
} else {
ALOGE("Must support polling or FMQ");
eventsRead = -1;
}
return eventsRead;
}
ssize_t SensorDevice::pollHal(sensors_event_t* buffer, size_t count) {
ssize_t err;
int numHidlTransportErrors = 0;
bool hidlTransportError = false;
do {
auto ret = mSensors->poll(
count,
[&](auto result,
const auto &events,
const auto &dynamicSensorsAdded) {
if (result == Result::OK) {
convertToSensorEvents(events, dynamicSensorsAdded, buffer);
err = (ssize_t)events.size();
} else {
err = statusFromResult(result);
}
});
if (ret.isOk()) {
hidlTransportError = false;
} else {
hidlTransportError = true;
numHidlTransportErrors++;
if (numHidlTransportErrors > 50) {
// Log error and bail
ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
handleHidlDeath(ret.description());
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
} while (hidlTransportError);
if(numHidlTransportErrors > 0) {
ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
mHidlTransportErrors.add(errLog);
mTotalHidlTransportErrors++;
}
return err;
}
ssize_t SensorDevice::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
ssize_t eventsRead = 0;
size_t availableEvents = mEventQueue->availableToRead();
if (availableEvents == 0) {
uint32_t eventFlagState = 0;
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
// able to be called with the correct number of events to read. If the specified number of
// events is not available, then read() would return no events, possibly introducing
// additional latency in delivering events to applications.
mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
asBaseType(INTERNAL_WAKE), &eventFlagState);
availableEvents = mEventQueue->availableToRead();
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
ALOGD("Event FMQ internal wake, returning from poll with no events");
return DEAD_OBJECT;
}
}
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
if (eventsToRead > 0) {
if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
// Notify the Sensors HAL that sensor events have been read. This is required to support
// the use of writeBlocking by the Sensors HAL.
mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
for (size_t i = 0; i < eventsToRead; i++) {
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
}
eventsRead = eventsToRead;
} else {
ALOGW("Failed to read %zu events, currently %zu events available",
eventsToRead, availableEvents);
}
}
return eventsRead;
}
Return<void> SensorDevice::onDynamicSensorsConnected(
const hidl_vec<SensorInfo> &dynamicSensorsAdded) {
// Allocate a sensor_t structure for each dynamic sensor added and insert
// it into the dictionary of connected dynamic sensors keyed by handle.
for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
const SensorInfo &info = dynamicSensorsAdded[i];
auto it = mConnectedDynamicSensors.find(info.sensorHandle);
CHECK(it == mConnectedDynamicSensors.end());
sensor_t *sensor = new sensor_t();
convertToSensor(info, sensor);
mConnectedDynamicSensors.insert(
std::make_pair(sensor->handle, sensor));
}
return Return<void>();
}
Return<void> SensorDevice::onDynamicSensorsDisconnected(
const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) {
(void) dynamicSensorHandlesRemoved;
// TODO: Currently dynamic sensors do not seem to be removed
return Return<void>();
}
void SensorDevice::writeWakeLockHandled(uint32_t count) {
if (mSensors != nullptr && mSensors->supportsMessageQueues()) {
if (mWakeLockQueue->write(&count)) {
mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
} else {
ALOGW("Failed to write wake lock handled");
}
}
}
void SensorDevice::autoDisable(void *ident, int handle) {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return;
}
Info& info(mActivationCount.editValueAt(activationIndex));
info.removeBatchParamsForIdent(ident);
if (info.numActiveClients() == 0) {
info.isActive = false;
}
}
status_t SensorDevice::activate(void* ident, int handle, int enabled) {
if (mSensors == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
return activateLocked(ident, handle, enabled);
}
status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) {
bool actuateHardware = false;
status_t err(NO_ERROR);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu",
ident, handle, enabled, info.batchParams.size());
if (enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
if (isClientDisabledLocked(ident)) {
ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d",
ident, handle);
return INVALID_OPERATION;
}
if (info.batchParams.indexOfKey(ident) >= 0) {
if (info.numActiveClients() > 0 && !info.isActive) {
actuateHardware = true;
}
} else {
// Log error. Every activate call should be preceded by a batch() call.
ALOGE("\t >>>ERROR: activate called without batch");
}
} else {
ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
// If a connected dynamic sensor is deactivated, remove it from the
// dictionary.
auto it = mConnectedDynamicSensors.find(handle);
if (it != mConnectedDynamicSensors.end()) {
delete it->second;
mConnectedDynamicSensors.erase(it);
}
if (info.removeBatchParamsForIdent(ident) >= 0) {
if (info.numActiveClients() == 0) {
// This is the last connection, we need to de-activate the underlying h/w sensor.
actuateHardware = true;
} else {
// Call batch for this sensor with the previously calculated best effort
// batch_rate and timeout. One of the apps has unregistered for sensor
// events, and the best effort batch parameters might have changed.
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
checkReturn(mSensors->batch(
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
}
} else {
// sensor wasn't enabled for this ident
}
if (isClientDisabledLocked(ident)) {
return NO_ERROR;
}
}
if (actuateHardware) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
enabled);
err = checkReturnAndGetStatus(mSensors->activate(handle, enabled));
ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
strerror(-err));
if (err != NO_ERROR && enabled) {
// Failure when enabling the sensor. Clean up on failure.
info.removeBatchParamsForIdent(ident);
} else {
// Update the isActive flag if there is no error. If there is an error when disabling a
// sensor, still set the flag to false since the batch parameters have already been
// removed. This ensures that everything remains in-sync.
info.isActive = enabled;
}
}
return err;
}
status_t SensorDevice::batch(
void* ident,
int handle,
int flags,
int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
}
if (maxBatchReportLatencyNs < 0) {
maxBatchReportLatencyNs = 0;
}
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64,
ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
Mutex::Autolock _l(mLock);
return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
if (info.batchParams.indexOfKey(ident) < 0) {
BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
info.batchParams.add(ident, params);
} else {
// A batch has already been called with this ident. Update the batch parameters.
info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
BatchParams prevBestBatchParams = info.bestBatchParams;
// Find the minimum of all timeouts and batch_rates for this sensor.
info.selectBatchParams();
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> curr_period=%" PRId64 " min_period=%" PRId64
" curr_timeout=%" PRId64 " min_timeout=%" PRId64,
prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
status_t err(NO_ERROR);
// If the min period or min timeout has changed since the last batch call, call batch.
if (prevBestBatchParams != info.bestBatchParams) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
err = checkReturnAndGetStatus(mSensors->batch(
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
if (err != NO_ERROR) {
ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s",
mSensors.get(), handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch, strerror(-err));
info.removeBatchParamsForIdent(ident);
}
}
return err;
}
status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
return batch(ident, handle, 0, samplingPeriodNs, 0);
}
int SensorDevice::getHalDeviceVersion() const {
if (mSensors == nullptr) return -1;
return SENSORS_DEVICE_API_VERSION_1_4;
}
status_t SensorDevice::flush(void* ident, int handle) {
if (mSensors == nullptr) return NO_INIT;
if (isClientDisabled(ident)) return INVALID_OPERATION;
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
return checkReturnAndGetStatus(mSensors->flush(handle));
}
bool SensorDevice::isClientDisabled(void* ident) {
Mutex::Autolock _l(mLock);
return isClientDisabledLocked(ident);
}
bool SensorDevice::isClientDisabledLocked(void* ident) {
return mDisabledClients.indexOf(ident) >= 0;
}
bool SensorDevice::isSensorActive(int handle) const {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
return false;
}
return mActivationCount.valueAt(activationIndex).numActiveClients() > 0;
}
void SensorDevice::enableAllSensors() {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
mDisabledClients.clear();
ALOGI("cleared mDisabledClients");
for (size_t i = 0; i< mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
if (info.batchParams.isEmpty()) continue;
info.selectBatchParams();
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
sensor_handle);
status_t err = checkReturnAndGetStatus(mSensors->batch(
sensor_handle,
info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch));
ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
if (err == NO_ERROR) {
err = checkReturnAndGetStatus(mSensors->activate(sensor_handle, 1 /* enabled */));
ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
}
if (err == NO_ERROR) {
info.isActive = true;
}
}
}
void SensorDevice::disableAllSensors() {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i< mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
// Check if this sensor has been activated previously and disable it.
if (info.batchParams.size() > 0) {
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
sensor_handle);
checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */));
// Add all the connections that were registered for this sensor to the disabled
// clients list.
for (size_t j = 0; j < info.batchParams.size(); ++j) {
mDisabledClients.add(info.batchParams.keyAt(j));
ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
}
info.isActive = false;
}
}
}
status_t SensorDevice::injectSensorData(
const sensors_event_t *injected_sensor_event) {
if (mSensors == nullptr) return NO_INIT;
ALOGD_IF(DEBUG_CONNECTIONS,
"sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
injected_sensor_event->sensor,
injected_sensor_event->timestamp, injected_sensor_event->data[0],
injected_sensor_event->data[1], injected_sensor_event->data[2],
injected_sensor_event->data[3], injected_sensor_event->data[4],
injected_sensor_event->data[5]);
Event ev;
convertFromSensorEvent(*injected_sensor_event, &ev);
return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
}
status_t SensorDevice::setMode(uint32_t mode) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->setOperationMode(
static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
}
int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
if (mSensors == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
SharedMemFormat format;
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
format = SharedMemFormat::SENSORS_EVENT;
SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<uint32_t>(memory->size),
.memoryHandle = memory->handle,
};
int32_t ret;
checkReturn(mSensors->registerDirectChannel(mem,
[&ret](auto result, auto channelHandle) {
if (result == Result::OK) {
ret = channelHandle;
} else {
ret = statusFromResult(result);
}
}));
return ret;
}
void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return;
Mutex::Autolock _l(mLock);
checkReturn(mSensors->unregisterDirectChannel(channelHandle));
}
int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle,
int32_t channelHandle, const struct sensors_direct_cfg_t *config) {
if (mSensors == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
RateLevel rate;
switch(config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
int32_t ret;
checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
[&ret, rate] (auto result, auto token) {
if (rate == RateLevel::STOP) {
ret = statusFromResult(result);
} else {
if (result == Result::OK) {
ret = token;
} else {
ret = statusFromResult(result);
}
}
}));
return ret;
}
// ---------------------------------------------------------------------------
int SensorDevice::Info::numActiveClients() const {
SensorDevice& device(SensorDevice::getInstance());
int num = 0;
for (size_t i = 0; i < batchParams.size(); ++i) {
if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
++num;
}
}
return num;
}
status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int,
int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t index = batchParams.indexOfKey(ident);
if (index < 0) {
ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64
" timeout=%" PRId64 ") failed (%s)",
ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
return BAD_INDEX;
}
BatchParams& params = batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
params.mTBatch = maxBatchReportLatencyNs;
return NO_ERROR;
}
void SensorDevice::Info::selectBatchParams() {
BatchParams bestParams; // default to max Tsample and max Tbatch
SensorDevice& device(SensorDevice::getInstance());
for (size_t i = 0; i < batchParams.size(); ++i) {
if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
continue;
}
bestParams.merge(batchParams[i]);
}
// if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
if (bestParams.mTBatch <= bestParams.mTSample) {
bestParams.mTBatch = 0;
}
bestBatchParams = bestParams;
}
ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
ssize_t idx = batchParams.removeItem(ident);
if (idx >= 0) {
selectBatchParams();
}
return idx;
}
void SensorDevice::notifyConnectionDestroyed(void* ident) {
Mutex::Autolock _l(mLock);
mDisabledClients.remove(ident);
}
bool SensorDevice::isDirectReportSupported() const {
return mIsDirectReportSupported;
}
void SensorDevice::convertToSensorEvent(
const Event &src, sensors_event_t *dst) {
::android::hardware::sensors::V1_0::implementation::convertToSensorEvent(
src, dst);
if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) {
const DynamicSensorInfo &dyn = src.u.dynamic;
dst->dynamic_sensor_meta.connected = dyn.connected;
dst->dynamic_sensor_meta.handle = dyn.sensorHandle;
if (dyn.connected) {
auto it = mConnectedDynamicSensors.find(dyn.sensorHandle);
CHECK(it != mConnectedDynamicSensors.end());
dst->dynamic_sensor_meta.sensor = it->second;
memcpy(dst->dynamic_sensor_meta.uuid,
dyn.uuid.data(),
sizeof(dst->dynamic_sensor_meta.uuid));
}
}
}
void SensorDevice::convertToSensorEvents(
const hidl_vec<Event> &src,
const hidl_vec<SensorInfo> &dynamicSensorsAdded,
sensors_event_t *dst) {
if (dynamicSensorsAdded.size() > 0) {
onDynamicSensorsConnected(dynamicSensorsAdded);
}
for (size_t i = 0; i < src.size(); ++i) {
convertToSensorEvent(src[i], &dst[i]);
}
}
void SensorDevice::handleHidlDeath(const std::string & detail) {
if (!mSensors->supportsMessageQueues()) {
// restart is the only option at present.
LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
} else {
ALOGD("ISensors HAL died, death recipient will attempt reconnect");
}
}
status_t SensorDevice::checkReturnAndGetStatus(const Return<Result>& ret) {
checkReturn(ret);
return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
}
// ---------------------------------------------------------------------------
}; // namespace android