blob: f0a71aebcd1483d1e9d48058eae556423b0af2d6 [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <math.h>
#include <stdint.h>
#include <sys/types.h>
#include <iostream>
#include <math/vec3.h>
#define PURE __attribute__((pure))
namespace android {
namespace details {
// -------------------------------------------------------------------------------------
/*
* No user serviceable parts here.
*
* Don't use this file directly, instead include ui/quat.h
*/
/*
* TQuatProductOperators implements basic arithmetic and basic compound assignment
* operators on a quaternion of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TQuatProductOperators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class QUATERNION, typename T>
class TQuatProductOperators {
public:
/* compound assignment from a another quaternion of the same size but different
* element type.
*/
template <typename OTHER>
QUATERNION<T>& operator *= (const QUATERNION<OTHER>& r) {
QUATERNION<T>& q = static_cast<QUATERNION<T>&>(*this);
q = q * r;
return q;
}
/* compound assignment products by a scalar
*/
QUATERNION<T>& operator *= (T v) {
QUATERNION<T>& lhs = static_cast<QUATERNION<T>&>(*this);
for (size_t i = 0; i < QUATERNION<T>::size(); i++) {
lhs[i] *= v;
}
return lhs;
}
QUATERNION<T>& operator /= (T v) {
QUATERNION<T>& lhs = static_cast<QUATERNION<T>&>(*this);
for (size_t i = 0; i < QUATERNION<T>::size(); i++) {
lhs[i] /= v;
}
return lhs;
}
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
/* The operators below handle operation between quaternion of the same size
* but of a different element type.
*/
template<typename RT>
friend inline
constexpr QUATERNION<T> PURE operator *(const QUATERNION<T>& q, const QUATERNION<RT>& r) {
// could be written as:
// return QUATERNION<T>(
// q.w*r.w - dot(q.xyz, r.xyz),
// q.w*r.xyz + r.w*q.xyz + cross(q.xyz, r.xyz));
return QUATERNION<T>(
q.w*r.w - q.x*r.x - q.y*r.y - q.z*r.z,
q.w*r.x + q.x*r.w + q.y*r.z - q.z*r.y,
q.w*r.y - q.x*r.z + q.y*r.w + q.z*r.x,
q.w*r.z + q.x*r.y - q.y*r.x + q.z*r.w);
}
template<typename RT>
friend inline
constexpr TVec3<T> PURE operator *(const QUATERNION<T>& q, const TVec3<RT>& v) {
// note: if q is known to be a unit quaternion, then this simplifies to:
// TVec3<T> t = 2 * cross(q.xyz, v)
// return v + (q.w * t) + cross(q.xyz, t)
return imaginary(q * QUATERNION<T>(v, 0) * inverse(q));
}
/* For quaternions, we use explicit "by a scalar" products because it's much faster
* than going (implicitly) through the quaternion multiplication.
* For reference: we could use the code below instead, but it would be a lot slower.
* friend inline
* constexpr BASE<T> PURE operator *(const BASE<T>& q, const BASE<T>& r) {
* return BASE<T>(
* q.w*r.w - q.x*r.x - q.y*r.y - q.z*r.z,
* q.w*r.x + q.x*r.w + q.y*r.z - q.z*r.y,
* q.w*r.y - q.x*r.z + q.y*r.w + q.z*r.x,
* q.w*r.z + q.x*r.y - q.y*r.x + q.z*r.w);
*
*/
friend inline
constexpr QUATERNION<T> PURE operator *(QUATERNION<T> q, T scalar) {
// don't pass q by reference because we need a copy anyways
return q *= scalar;
}
friend inline
constexpr QUATERNION<T> PURE operator *(T scalar, QUATERNION<T> q) {
// don't pass q by reference because we need a copy anyways
return q *= scalar;
}
friend inline
constexpr QUATERNION<T> PURE operator /(QUATERNION<T> q, T scalar) {
// don't pass q by reference because we need a copy anyways
return q /= scalar;
}
};
/*
* TQuatFunctions implements functions on a quaternion of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TQuatFunctions<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class QUATERNION, typename T>
class TQuatFunctions {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename RT>
friend inline
constexpr T PURE dot(const QUATERNION<T>& p, const QUATERNION<RT>& q) {
return p.x * q.x +
p.y * q.y +
p.z * q.z +
p.w * q.w;
}
friend inline
constexpr T PURE norm(const QUATERNION<T>& q) {
return std::sqrt( dot(q, q) );
}
friend inline
constexpr T PURE length(const QUATERNION<T>& q) {
return norm(q);
}
friend inline
constexpr T PURE length2(const QUATERNION<T>& q) {
return dot(q, q);
}
friend inline
constexpr QUATERNION<T> PURE normalize(const QUATERNION<T>& q) {
return length(q) ? q / length(q) : QUATERNION<T>(1);
}
friend inline
constexpr QUATERNION<T> PURE conj(const QUATERNION<T>& q) {
return QUATERNION<T>(q.w, -q.x, -q.y, -q.z);
}
friend inline
constexpr QUATERNION<T> PURE inverse(const QUATERNION<T>& q) {
return conj(q) * (1 / dot(q, q));
}
friend inline
constexpr T PURE real(const QUATERNION<T>& q) {
return q.w;
}
friend inline
constexpr TVec3<T> PURE imaginary(const QUATERNION<T>& q) {
return q.xyz;
}
friend inline
constexpr QUATERNION<T> PURE unreal(const QUATERNION<T>& q) {
return QUATERNION<T>(q.xyz, 0);
}
friend inline
constexpr QUATERNION<T> PURE cross(const QUATERNION<T>& p, const QUATERNION<T>& q) {
return unreal(p*q);
}
friend inline
QUATERNION<T> PURE exp(const QUATERNION<T>& q) {
const T nq(norm(q.xyz));
return std::exp(q.w)*QUATERNION<T>((sin(nq)/nq)*q.xyz, cos(nq));
}
friend inline
QUATERNION<T> PURE log(const QUATERNION<T>& q) {
const T nq(norm(q));
return QUATERNION<T>((std::acos(q.w/nq)/norm(q.xyz))*q.xyz, log(nq));
}
friend inline
QUATERNION<T> PURE pow(const QUATERNION<T>& q, T a) {
// could also be computed as: exp(a*log(q));
const T nq(norm(q));
const T theta(a*std::acos(q.w / nq));
return std::pow(nq, a) * QUATERNION<T>(normalize(q.xyz) * std::sin(theta), std::cos(theta));
}
friend inline
QUATERNION<T> PURE slerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) {
// could also be computed as: pow(q * inverse(p), t) * p;
const T d = dot(p, q);
const T npq = sqrt(dot(p, p) * dot(q, q)); // ||p|| * ||q||
const T a = std::acos(std::abs(d) / npq);
const T a0 = a * (1 - t);
const T a1 = a * t;
const T isina = 1 / sin(a);
const T s0 = std::sin(a0) * isina;
const T s1 = std::sin(a1) * isina;
// ensure we're taking the "short" side
return normalize(s0 * p + ((d < 0) ? (-s1) : (s1)) * q);
}
friend inline
constexpr QUATERNION<T> PURE lerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) {
return ((1 - t) * p) + (t * q);
}
friend inline
constexpr QUATERNION<T> PURE nlerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) {
return normalize(lerp(p, q, t));
}
friend inline
constexpr QUATERNION<T> PURE positive(const QUATERNION<T>& q) {
return q.w < 0 ? -q : q;
}
};
/*
* TQuatDebug implements functions on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TQuatDebug<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class QUATERNION, typename T>
class TQuatDebug {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
friend std::ostream& operator<< (std::ostream& stream, const QUATERNION<T>& q) {
return stream << "< " << q.w << " + " << q.x << "i + " << q.y << "j + " << q.z << "k >";
}
};
#undef PURE
// -------------------------------------------------------------------------------------
} // namespace details
} // namespace android