| /* |
| * Copyright 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #pragma once |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include <sys/types.h> |
| |
| #include <iostream> |
| |
| #include <math/vec3.h> |
| |
| #define PURE __attribute__((pure)) |
| |
| namespace android { |
| namespace details { |
| // ------------------------------------------------------------------------------------- |
| |
| /* |
| * No user serviceable parts here. |
| * |
| * Don't use this file directly, instead include ui/quat.h |
| */ |
| |
| |
| /* |
| * TQuatProductOperators implements basic arithmetic and basic compound assignment |
| * operators on a quaternion of type BASE<T>. |
| * |
| * BASE only needs to implement operator[] and size(). |
| * By simply inheriting from TQuatProductOperators<BASE, T> BASE will automatically |
| * get all the functionality here. |
| */ |
| |
| template <template<typename T> class QUATERNION, typename T> |
| class TQuatProductOperators { |
| public: |
| /* compound assignment from a another quaternion of the same size but different |
| * element type. |
| */ |
| template <typename OTHER> |
| QUATERNION<T>& operator *= (const QUATERNION<OTHER>& r) { |
| QUATERNION<T>& q = static_cast<QUATERNION<T>&>(*this); |
| q = q * r; |
| return q; |
| } |
| |
| /* compound assignment products by a scalar |
| */ |
| QUATERNION<T>& operator *= (T v) { |
| QUATERNION<T>& lhs = static_cast<QUATERNION<T>&>(*this); |
| for (size_t i = 0; i < QUATERNION<T>::size(); i++) { |
| lhs[i] *= v; |
| } |
| return lhs; |
| } |
| QUATERNION<T>& operator /= (T v) { |
| QUATERNION<T>& lhs = static_cast<QUATERNION<T>&>(*this); |
| for (size_t i = 0; i < QUATERNION<T>::size(); i++) { |
| lhs[i] /= v; |
| } |
| return lhs; |
| } |
| |
| /* |
| * NOTE: the functions below ARE NOT member methods. They are friend functions |
| * with they definition inlined with their declaration. This makes these |
| * template functions available to the compiler when (and only when) this class |
| * is instantiated, at which point they're only templated on the 2nd parameter |
| * (the first one, BASE<T> being known). |
| */ |
| |
| /* The operators below handle operation between quaternion of the same size |
| * but of a different element type. |
| */ |
| template<typename RT> |
| friend inline |
| constexpr QUATERNION<T> PURE operator *(const QUATERNION<T>& q, const QUATERNION<RT>& r) { |
| // could be written as: |
| // return QUATERNION<T>( |
| // q.w*r.w - dot(q.xyz, r.xyz), |
| // q.w*r.xyz + r.w*q.xyz + cross(q.xyz, r.xyz)); |
| |
| return QUATERNION<T>( |
| q.w*r.w - q.x*r.x - q.y*r.y - q.z*r.z, |
| q.w*r.x + q.x*r.w + q.y*r.z - q.z*r.y, |
| q.w*r.y - q.x*r.z + q.y*r.w + q.z*r.x, |
| q.w*r.z + q.x*r.y - q.y*r.x + q.z*r.w); |
| } |
| |
| template<typename RT> |
| friend inline |
| constexpr TVec3<T> PURE operator *(const QUATERNION<T>& q, const TVec3<RT>& v) { |
| // note: if q is known to be a unit quaternion, then this simplifies to: |
| // TVec3<T> t = 2 * cross(q.xyz, v) |
| // return v + (q.w * t) + cross(q.xyz, t) |
| return imaginary(q * QUATERNION<T>(v, 0) * inverse(q)); |
| } |
| |
| |
| /* For quaternions, we use explicit "by a scalar" products because it's much faster |
| * than going (implicitly) through the quaternion multiplication. |
| * For reference: we could use the code below instead, but it would be a lot slower. |
| * friend inline |
| * constexpr BASE<T> PURE operator *(const BASE<T>& q, const BASE<T>& r) { |
| * return BASE<T>( |
| * q.w*r.w - q.x*r.x - q.y*r.y - q.z*r.z, |
| * q.w*r.x + q.x*r.w + q.y*r.z - q.z*r.y, |
| * q.w*r.y - q.x*r.z + q.y*r.w + q.z*r.x, |
| * q.w*r.z + q.x*r.y - q.y*r.x + q.z*r.w); |
| * |
| */ |
| friend inline |
| constexpr QUATERNION<T> PURE operator *(QUATERNION<T> q, T scalar) { |
| // don't pass q by reference because we need a copy anyways |
| return q *= scalar; |
| } |
| friend inline |
| constexpr QUATERNION<T> PURE operator *(T scalar, QUATERNION<T> q) { |
| // don't pass q by reference because we need a copy anyways |
| return q *= scalar; |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE operator /(QUATERNION<T> q, T scalar) { |
| // don't pass q by reference because we need a copy anyways |
| return q /= scalar; |
| } |
| }; |
| |
| |
| /* |
| * TQuatFunctions implements functions on a quaternion of type BASE<T>. |
| * |
| * BASE only needs to implement operator[] and size(). |
| * By simply inheriting from TQuatFunctions<BASE, T> BASE will automatically |
| * get all the functionality here. |
| */ |
| template <template<typename T> class QUATERNION, typename T> |
| class TQuatFunctions { |
| public: |
| /* |
| * NOTE: the functions below ARE NOT member methods. They are friend functions |
| * with they definition inlined with their declaration. This makes these |
| * template functions available to the compiler when (and only when) this class |
| * is instantiated, at which point they're only templated on the 2nd parameter |
| * (the first one, BASE<T> being known). |
| */ |
| |
| template<typename RT> |
| friend inline |
| constexpr T PURE dot(const QUATERNION<T>& p, const QUATERNION<RT>& q) { |
| return p.x * q.x + |
| p.y * q.y + |
| p.z * q.z + |
| p.w * q.w; |
| } |
| |
| friend inline |
| constexpr T PURE norm(const QUATERNION<T>& q) { |
| return std::sqrt( dot(q, q) ); |
| } |
| |
| friend inline |
| constexpr T PURE length(const QUATERNION<T>& q) { |
| return norm(q); |
| } |
| |
| friend inline |
| constexpr T PURE length2(const QUATERNION<T>& q) { |
| return dot(q, q); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE normalize(const QUATERNION<T>& q) { |
| return length(q) ? q / length(q) : QUATERNION<T>(1); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE conj(const QUATERNION<T>& q) { |
| return QUATERNION<T>(q.w, -q.x, -q.y, -q.z); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE inverse(const QUATERNION<T>& q) { |
| return conj(q) * (1 / dot(q, q)); |
| } |
| |
| friend inline |
| constexpr T PURE real(const QUATERNION<T>& q) { |
| return q.w; |
| } |
| |
| friend inline |
| constexpr TVec3<T> PURE imaginary(const QUATERNION<T>& q) { |
| return q.xyz; |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE unreal(const QUATERNION<T>& q) { |
| return QUATERNION<T>(q.xyz, 0); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE cross(const QUATERNION<T>& p, const QUATERNION<T>& q) { |
| return unreal(p*q); |
| } |
| |
| friend inline |
| QUATERNION<T> PURE exp(const QUATERNION<T>& q) { |
| const T nq(norm(q.xyz)); |
| return std::exp(q.w)*QUATERNION<T>((sin(nq)/nq)*q.xyz, cos(nq)); |
| } |
| |
| friend inline |
| QUATERNION<T> PURE log(const QUATERNION<T>& q) { |
| const T nq(norm(q)); |
| return QUATERNION<T>((std::acos(q.w/nq)/norm(q.xyz))*q.xyz, log(nq)); |
| } |
| |
| friend inline |
| QUATERNION<T> PURE pow(const QUATERNION<T>& q, T a) { |
| // could also be computed as: exp(a*log(q)); |
| const T nq(norm(q)); |
| const T theta(a*std::acos(q.w / nq)); |
| return std::pow(nq, a) * QUATERNION<T>(normalize(q.xyz) * std::sin(theta), std::cos(theta)); |
| } |
| |
| friend inline |
| QUATERNION<T> PURE slerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) { |
| // could also be computed as: pow(q * inverse(p), t) * p; |
| const T d = dot(p, q); |
| const T npq = sqrt(dot(p, p) * dot(q, q)); // ||p|| * ||q|| |
| const T a = std::acos(std::abs(d) / npq); |
| const T a0 = a * (1 - t); |
| const T a1 = a * t; |
| const T isina = 1 / sin(a); |
| const T s0 = std::sin(a0) * isina; |
| const T s1 = std::sin(a1) * isina; |
| // ensure we're taking the "short" side |
| return normalize(s0 * p + ((d < 0) ? (-s1) : (s1)) * q); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE lerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) { |
| return ((1 - t) * p) + (t * q); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE nlerp(const QUATERNION<T>& p, const QUATERNION<T>& q, T t) { |
| return normalize(lerp(p, q, t)); |
| } |
| |
| friend inline |
| constexpr QUATERNION<T> PURE positive(const QUATERNION<T>& q) { |
| return q.w < 0 ? -q : q; |
| } |
| }; |
| |
| /* |
| * TQuatDebug implements functions on a vector of type BASE<T>. |
| * |
| * BASE only needs to implement operator[] and size(). |
| * By simply inheriting from TQuatDebug<BASE, T> BASE will automatically |
| * get all the functionality here. |
| */ |
| template <template<typename T> class QUATERNION, typename T> |
| class TQuatDebug { |
| public: |
| /* |
| * NOTE: the functions below ARE NOT member methods. They are friend functions |
| * with they definition inlined with their declaration. This makes these |
| * template functions available to the compiler when (and only when) this class |
| * is instantiated, at which point they're only templated on the 2nd parameter |
| * (the first one, BASE<T> being known). |
| */ |
| friend std::ostream& operator<< (std::ostream& stream, const QUATERNION<T>& q) { |
| return stream << "< " << q.w << " + " << q.x << "i + " << q.y << "j + " << q.z << "k >"; |
| } |
| }; |
| #undef PURE |
| |
| // ------------------------------------------------------------------------------------- |
| } // namespace details |
| } // namespace android |