| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // #define LOG_NDEBUG 0 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <algorithm> |
| #include <errno.h> |
| #include <math.h> |
| #include <mutex> |
| #include <dlfcn.h> |
| #include <inttypes.h> |
| #include <stdatomic.h> |
| #include <optional> |
| |
| #include <cutils/properties.h> |
| #include <log/log.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <dvr/vr_flinger.h> |
| |
| #include <ui/DebugUtils.h> |
| #include <ui/DisplayInfo.h> |
| #include <ui/DisplayStatInfo.h> |
| |
| #include <gui/BufferQueue.h> |
| #include <gui/GuiConfig.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| |
| #include <ui/GraphicBufferAllocator.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/UiConfig.h> |
| |
| #include <utils/misc.h> |
| #include <utils/String8.h> |
| #include <utils/String16.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <private/android_filesystem_config.h> |
| #include <private/gui/SyncFeatures.h> |
| |
| #include "BufferLayer.h" |
| #include "Client.h" |
| #include "ColorLayer.h" |
| #include "Colorizer.h" |
| #include "ContainerLayer.h" |
| #include "DdmConnection.h" |
| #include "DispSync.h" |
| #include "DisplayDevice.h" |
| #include "EventControlThread.h" |
| #include "EventThread.h" |
| #include "Layer.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| #include "clz.h" |
| |
| #include "DisplayHardware/ComposerHal.h" |
| #include "DisplayHardware/FramebufferSurface.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/VirtualDisplaySurface.h" |
| |
| #include "Effects/Daltonizer.h" |
| |
| #include "RenderEngine/RenderEngine.h" |
| #include <cutils/compiler.h> |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/types.h> |
| #include <configstore/Utils.h> |
| |
| #include <layerproto/LayerProtoParser.h> |
| |
| #define DISPLAY_COUNT 1 |
| |
| /* |
| * DEBUG_SCREENSHOTS: set to true to check that screenshots are not all |
| * black pixels. |
| */ |
| #define DEBUG_SCREENSHOTS false |
| |
| namespace android { |
| |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| using ui::ColorMode; |
| using ui::Dataspace; |
| using ui::Hdr; |
| using ui::RenderIntent; |
| |
| namespace { |
| class ConditionalLock { |
| public: |
| ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) { |
| if (lock) { |
| mMutex.lock(); |
| } |
| } |
| ~ConditionalLock() { if (mLocked) mMutex.unlock(); } |
| private: |
| Mutex& mMutex; |
| bool mLocked; |
| }; |
| } // namespace anonymous |
| |
| // --------------------------------------------------------------------------- |
| |
| const String16 sHardwareTest("android.permission.HARDWARE_TEST"); |
| const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); |
| const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); |
| const String16 sDump("android.permission.DUMP"); |
| |
| // --------------------------------------------------------------------------- |
| int64_t SurfaceFlinger::vsyncPhaseOffsetNs; |
| int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs; |
| int64_t SurfaceFlinger::dispSyncPresentTimeOffset; |
| bool SurfaceFlinger::useHwcForRgbToYuv; |
| uint64_t SurfaceFlinger::maxVirtualDisplaySize; |
| bool SurfaceFlinger::hasSyncFramework; |
| bool SurfaceFlinger::useVrFlinger; |
| int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; |
| // TODO(courtneygo): Rename hasWideColorDisplay to clarify its actual meaning. |
| bool SurfaceFlinger::hasWideColorDisplay; |
| |
| |
| std::string getHwcServiceName() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.hwc_service_name", value, "default"); |
| ALOGI("Using HWComposer service: '%s'", value); |
| return std::string(value); |
| } |
| |
| bool useTrebleTestingOverride() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.treble_testing_override", value, "false"); |
| ALOGI("Treble testing override: '%s'", value); |
| return std::string(value) == "true"; |
| } |
| |
| std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { |
| switch(displayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| return std::string("Managed"); |
| case DisplayColorSetting::UNMANAGED: |
| return std::string("Unmanaged"); |
| case DisplayColorSetting::ENHANCED: |
| return std::string("Enhanced"); |
| default: |
| return std::string("Unknown ") + |
| std::to_string(static_cast<int>(displayColorSetting)); |
| } |
| } |
| |
| NativeWindowSurface::~NativeWindowSurface() = default; |
| |
| namespace impl { |
| |
| class NativeWindowSurface final : public android::NativeWindowSurface { |
| public: |
| static std::unique_ptr<android::NativeWindowSurface> create( |
| const sp<IGraphicBufferProducer>& producer) { |
| return std::make_unique<NativeWindowSurface>(producer); |
| } |
| |
| explicit NativeWindowSurface(const sp<IGraphicBufferProducer>& producer) |
| : surface(new Surface(producer, false)) {} |
| |
| ~NativeWindowSurface() override = default; |
| |
| private: |
| sp<ANativeWindow> getNativeWindow() const override { return surface; } |
| |
| void preallocateBuffers() override { surface->allocateBuffers(); } |
| |
| sp<Surface> surface; |
| }; |
| |
| } // namespace impl |
| |
| SurfaceFlingerBE::SurfaceFlingerBE() |
| : mHwcServiceName(getHwcServiceName()), |
| mRenderEngine(nullptr), |
| mFrameBuckets(), |
| mTotalTime(0), |
| mLastSwapTime(0), |
| mComposerSequenceId(0) { |
| } |
| |
| SurfaceFlinger::SurfaceFlinger(SurfaceFlinger::SkipInitializationTag) |
| : BnSurfaceComposer(), |
| mTransactionFlags(0), |
| mTransactionPending(false), |
| mAnimTransactionPending(false), |
| mLayersRemoved(false), |
| mLayersAdded(false), |
| mRepaintEverything(0), |
| mBootTime(systemTime()), |
| mBuiltinDisplays(), |
| mVisibleRegionsDirty(false), |
| mGeometryInvalid(false), |
| mAnimCompositionPending(false), |
| mDebugRegion(0), |
| mDebugDDMS(0), |
| mDebugDisableHWC(0), |
| mDebugDisableTransformHint(0), |
| mDebugInSwapBuffers(0), |
| mLastSwapBufferTime(0), |
| mDebugInTransaction(0), |
| mLastTransactionTime(0), |
| mBootFinished(false), |
| mForceFullDamage(false), |
| mPrimaryDispSync("PrimaryDispSync"), |
| mPrimaryHWVsyncEnabled(false), |
| mHWVsyncAvailable(false), |
| mHasPoweredOff(false), |
| mNumLayers(0), |
| mVrFlingerRequestsDisplay(false), |
| mMainThreadId(std::this_thread::get_id()), |
| mCreateBufferQueue(&BufferQueue::createBufferQueue), |
| mCreateNativeWindowSurface(&impl::NativeWindowSurface::create) {} |
| |
| SurfaceFlinger::SurfaceFlinger() : SurfaceFlinger(SkipInitialization) { |
| ALOGI("SurfaceFlinger is starting"); |
| |
| vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000); |
| |
| sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000); |
| |
| hasSyncFramework = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::hasSyncFramework>(true); |
| |
| dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0); |
| |
| useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false); |
| |
| maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0); |
| |
| // Vr flinger is only enabled on Daydream ready devices. |
| useVrFlinger = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useVrFlinger>(false); |
| |
| maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2); |
| |
| hasWideColorDisplay = |
| getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false); |
| |
| V1_1::DisplayOrientation primaryDisplayOrientation = |
| getDisplayOrientation< V1_1::ISurfaceFlingerConfigs, &V1_1::ISurfaceFlingerConfigs::primaryDisplayOrientation>( |
| V1_1::DisplayOrientation::ORIENTATION_0); |
| |
| switch (primaryDisplayOrientation) { |
| case V1_1::DisplayOrientation::ORIENTATION_90: |
| mPrimaryDisplayOrientation = DisplayState::eOrientation90; |
| break; |
| case V1_1::DisplayOrientation::ORIENTATION_180: |
| mPrimaryDisplayOrientation = DisplayState::eOrientation180; |
| break; |
| case V1_1::DisplayOrientation::ORIENTATION_270: |
| mPrimaryDisplayOrientation = DisplayState::eOrientation270; |
| break; |
| default: |
| mPrimaryDisplayOrientation = DisplayState::eOrientationDefault; |
| break; |
| } |
| ALOGV("Primary Display Orientation is set to %2d.", mPrimaryDisplayOrientation); |
| |
| mPrimaryDispSync.init(SurfaceFlinger::hasSyncFramework, SurfaceFlinger::dispSyncPresentTimeOffset); |
| |
| // debugging stuff... |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); |
| mGpuToCpuSupported = !atoi(value); |
| |
| property_get("debug.sf.showupdates", value, "0"); |
| mDebugRegion = atoi(value); |
| |
| property_get("debug.sf.ddms", value, "0"); |
| mDebugDDMS = atoi(value); |
| if (mDebugDDMS) { |
| if (!startDdmConnection()) { |
| // start failed, and DDMS debugging not enabled |
| mDebugDDMS = 0; |
| } |
| } |
| ALOGI_IF(mDebugRegion, "showupdates enabled"); |
| ALOGI_IF(mDebugDDMS, "DDMS debugging enabled"); |
| |
| property_get("debug.sf.disable_backpressure", value, "0"); |
| mPropagateBackpressure = !atoi(value); |
| ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation"); |
| |
| property_get("debug.sf.enable_hwc_vds", value, "0"); |
| mUseHwcVirtualDisplays = atoi(value); |
| ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays"); |
| |
| property_get("ro.sf.disable_triple_buffer", value, "1"); |
| mLayerTripleBufferingDisabled = atoi(value); |
| ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering"); |
| |
| const size_t defaultListSize = MAX_LAYERS; |
| auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize)); |
| mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize; |
| |
| property_get("debug.sf.early_phase_offset_ns", value, "0"); |
| const int earlyWakeupOffsetOffsetNs = atoi(value); |
| ALOGI_IF(earlyWakeupOffsetOffsetNs != 0, "Enabling separate early offset"); |
| mVsyncModulator.setPhaseOffsets(sfVsyncPhaseOffsetNs - earlyWakeupOffsetOffsetNs, |
| sfVsyncPhaseOffsetNs); |
| |
| // We should be reading 'persist.sys.sf.color_saturation' here |
| // but since /data may be encrypted, we need to wait until after vold |
| // comes online to attempt to read the property. The property is |
| // instead read after the boot animation |
| |
| if (useTrebleTestingOverride()) { |
| // Without the override SurfaceFlinger cannot connect to HIDL |
| // services that are not listed in the manifests. Considered |
| // deriving the setting from the set service name, but it |
| // would be brittle if the name that's not 'default' is used |
| // for production purposes later on. |
| setenv("TREBLE_TESTING_OVERRIDE", "true", true); |
| } |
| } |
| |
| void SurfaceFlinger::onFirstRef() |
| { |
| mEventQueue->init(this); |
| } |
| |
| SurfaceFlinger::~SurfaceFlinger() |
| { |
| } |
| |
| void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */) |
| { |
| // the window manager died on us. prepare its eulogy. |
| |
| // restore initial conditions (default device unblank, etc) |
| initializeDisplays(); |
| |
| // restart the boot-animation |
| startBootAnim(); |
| } |
| |
| static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) { |
| status_t err = client->initCheck(); |
| if (err == NO_ERROR) { |
| return client; |
| } |
| return nullptr; |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { |
| return initClient(new Client(this)); |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection( |
| const sp<IGraphicBufferProducer>& gbp) { |
| if (authenticateSurfaceTexture(gbp) == false) { |
| return nullptr; |
| } |
| const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| if (layer == nullptr) { |
| return nullptr; |
| } |
| |
| return initClient(new Client(this, layer)); |
| } |
| |
| sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, |
| bool secure) |
| { |
| class DisplayToken : public BBinder { |
| sp<SurfaceFlinger> flinger; |
| virtual ~DisplayToken() { |
| // no more references, this display must be terminated |
| Mutex::Autolock _l(flinger->mStateLock); |
| flinger->mCurrentState.displays.removeItem(this); |
| flinger->setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| public: |
| explicit DisplayToken(const sp<SurfaceFlinger>& flinger) |
| : flinger(flinger) { |
| } |
| }; |
| |
| sp<BBinder> token = new DisplayToken(this); |
| |
| Mutex::Autolock _l(mStateLock); |
| DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure); |
| info.displayName = displayName; |
| mCurrentState.displays.add(token, info); |
| mInterceptor->saveDisplayCreation(info); |
| return token; |
| } |
| |
| void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) { |
| Mutex::Autolock _l(mStateLock); |
| |
| ssize_t idx = mCurrentState.displays.indexOfKey(display); |
| if (idx < 0) { |
| ALOGW("destroyDisplay: invalid display token"); |
| return; |
| } |
| |
| const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx)); |
| if (!info.isVirtualDisplay()) { |
| ALOGE("destroyDisplay called for non-virtual display"); |
| return; |
| } |
| mInterceptor->saveDisplayDeletion(info.displayId); |
| mCurrentState.displays.removeItemsAt(idx); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) { |
| if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id); |
| return nullptr; |
| } |
| return mBuiltinDisplays[id]; |
| } |
| |
| void SurfaceFlinger::bootFinished() |
| { |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| const nsecs_t now = systemTime(); |
| const nsecs_t duration = now - mBootTime; |
| ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); |
| |
| // wait patiently for the window manager death |
| const String16 name("window"); |
| sp<IBinder> window(defaultServiceManager()->getService(name)); |
| if (window != 0) { |
| window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); |
| } |
| |
| if (mVrFlinger) { |
| mVrFlinger->OnBootFinished(); |
| } |
| |
| // stop boot animation |
| // formerly we would just kill the process, but we now ask it to exit so it |
| // can choose where to stop the animation. |
| property_set("service.bootanim.exit", "1"); |
| |
| const int LOGTAG_SF_STOP_BOOTANIM = 60110; |
| LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, |
| ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); |
| |
| sp<LambdaMessage> readProperties = new LambdaMessage([&]() { |
| readPersistentProperties(); |
| }); |
| postMessageAsync(readProperties); |
| } |
| |
| void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { |
| class MessageDestroyGLTexture : public MessageBase { |
| RE::RenderEngine& engine; |
| uint32_t texture; |
| public: |
| MessageDestroyGLTexture(RE::RenderEngine& engine, uint32_t texture) |
| : engine(engine), texture(texture) {} |
| virtual bool handler() { |
| engine.deleteTextures(1, &texture); |
| return true; |
| } |
| }; |
| postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture)); |
| } |
| |
| class DispSyncSource final : public VSyncSource, private DispSync::Callback { |
| public: |
| DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync, |
| const char* name) : |
| mName(name), |
| mValue(0), |
| mTraceVsync(traceVsync), |
| mVsyncOnLabel(String8::format("VsyncOn-%s", name)), |
| mVsyncEventLabel(String8::format("VSYNC-%s", name)), |
| mDispSync(dispSync), |
| mCallbackMutex(), |
| mVsyncMutex(), |
| mPhaseOffset(phaseOffset), |
| mEnabled(false) {} |
| |
| ~DispSyncSource() override = default; |
| |
| void setVSyncEnabled(bool enable) override { |
| Mutex::Autolock lock(mVsyncMutex); |
| if (enable) { |
| status_t err = mDispSync->addEventListener(mName, mPhaseOffset, |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error registering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| //ATRACE_INT(mVsyncOnLabel.string(), 1); |
| } else { |
| status_t err = mDispSync->removeEventListener( |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error unregistering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| //ATRACE_INT(mVsyncOnLabel.string(), 0); |
| } |
| mEnabled = enable; |
| } |
| |
| void setCallback(VSyncSource::Callback* callback) override{ |
| Mutex::Autolock lock(mCallbackMutex); |
| mCallback = callback; |
| } |
| |
| void setPhaseOffset(nsecs_t phaseOffset) override { |
| Mutex::Autolock lock(mVsyncMutex); |
| |
| // Normalize phaseOffset to [0, period) |
| auto period = mDispSync->getPeriod(); |
| phaseOffset %= period; |
| if (phaseOffset < 0) { |
| // If we're here, then phaseOffset is in (-period, 0). After this |
| // operation, it will be in (0, period) |
| phaseOffset += period; |
| } |
| mPhaseOffset = phaseOffset; |
| |
| // If we're not enabled, we don't need to mess with the listeners |
| if (!mEnabled) { |
| return; |
| } |
| |
| status_t err = mDispSync->changePhaseOffset(static_cast<DispSync::Callback*>(this), |
| mPhaseOffset); |
| if (err != NO_ERROR) { |
| ALOGE("error changing vsync offset: %s (%d)", |
| strerror(-err), err); |
| } |
| } |
| |
| private: |
| virtual void onDispSyncEvent(nsecs_t when) { |
| VSyncSource::Callback* callback; |
| { |
| Mutex::Autolock lock(mCallbackMutex); |
| callback = mCallback; |
| |
| if (mTraceVsync) { |
| mValue = (mValue + 1) % 2; |
| ATRACE_INT(mVsyncEventLabel.string(), mValue); |
| } |
| } |
| |
| if (callback != nullptr) { |
| callback->onVSyncEvent(when); |
| } |
| } |
| |
| const char* const mName; |
| |
| int mValue; |
| |
| const bool mTraceVsync; |
| const String8 mVsyncOnLabel; |
| const String8 mVsyncEventLabel; |
| |
| DispSync* mDispSync; |
| |
| Mutex mCallbackMutex; // Protects the following |
| VSyncSource::Callback* mCallback = nullptr; |
| |
| Mutex mVsyncMutex; // Protects the following |
| nsecs_t mPhaseOffset; |
| bool mEnabled; |
| }; |
| |
| class InjectVSyncSource final : public VSyncSource { |
| public: |
| InjectVSyncSource() = default; |
| ~InjectVSyncSource() override = default; |
| |
| void setCallback(VSyncSource::Callback* callback) override { |
| std::lock_guard<std::mutex> lock(mCallbackMutex); |
| mCallback = callback; |
| } |
| |
| void onInjectSyncEvent(nsecs_t when) { |
| std::lock_guard<std::mutex> lock(mCallbackMutex); |
| if (mCallback) { |
| mCallback->onVSyncEvent(when); |
| } |
| } |
| |
| void setVSyncEnabled(bool) override {} |
| void setPhaseOffset(nsecs_t) override {} |
| |
| private: |
| std::mutex mCallbackMutex; // Protects the following |
| VSyncSource::Callback* mCallback = nullptr; |
| }; |
| |
| // Do not call property_set on main thread which will be blocked by init |
| // Use StartPropertySetThread instead. |
| void SurfaceFlinger::init() { |
| ALOGI( "SurfaceFlinger's main thread ready to run. " |
| "Initializing graphics H/W..."); |
| |
| ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs); |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| // start the EventThread |
| mEventThreadSource = |
| std::make_unique<DispSyncSource>(&mPrimaryDispSync, SurfaceFlinger::vsyncPhaseOffsetNs, |
| true, "app"); |
| mEventThread = std::make_unique<impl::EventThread>(mEventThreadSource.get(), |
| [this]() { resyncWithRateLimit(); }, |
| impl::EventThread::InterceptVSyncsCallback(), |
| "appEventThread"); |
| mSfEventThreadSource = |
| std::make_unique<DispSyncSource>(&mPrimaryDispSync, |
| SurfaceFlinger::sfVsyncPhaseOffsetNs, true, "sf"); |
| |
| mSFEventThread = |
| std::make_unique<impl::EventThread>(mSfEventThreadSource.get(), |
| [this]() { resyncWithRateLimit(); }, |
| [this](nsecs_t timestamp) { |
| mInterceptor->saveVSyncEvent(timestamp); |
| }, |
| "sfEventThread"); |
| mEventQueue->setEventThread(mSFEventThread.get()); |
| mVsyncModulator.setEventThread(mSFEventThread.get()); |
| |
| // Get a RenderEngine for the given display / config (can't fail) |
| getBE().mRenderEngine = |
| RE::impl::RenderEngine::create(HAL_PIXEL_FORMAT_RGBA_8888, |
| hasWideColorDisplay |
| ? RE::RenderEngine::WIDE_COLOR_SUPPORT |
| : 0); |
| LOG_ALWAYS_FATAL_IF(getBE().mRenderEngine == nullptr, "couldn't create RenderEngine"); |
| |
| LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay, |
| "Starting with vr flinger active is not currently supported."); |
| getBE().mHwc.reset( |
| new HWComposer(std::make_unique<Hwc2::impl::Composer>(getBE().mHwcServiceName))); |
| getBE().mHwc->registerCallback(this, getBE().mComposerSequenceId); |
| // Process any initial hotplug and resulting display changes. |
| processDisplayHotplugEventsLocked(); |
| LOG_ALWAYS_FATAL_IF(!getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY), |
| "Registered composer callback but didn't create the default primary display"); |
| |
| // make the default display GLContext current so that we can create textures |
| // when creating Layers (which may happens before we render something) |
| getDefaultDisplayDeviceLocked()->makeCurrent(); |
| |
| if (useVrFlinger) { |
| auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) { |
| // This callback is called from the vr flinger dispatch thread. We |
| // need to call signalTransaction(), which requires holding |
| // mStateLock when we're not on the main thread. Acquiring |
| // mStateLock from the vr flinger dispatch thread might trigger a |
| // deadlock in surface flinger (see b/66916578), so post a message |
| // to be handled on the main thread instead. |
| sp<LambdaMessage> message = new LambdaMessage([=]() { |
| ALOGI("VR request display mode: requestDisplay=%d", requestDisplay); |
| mVrFlingerRequestsDisplay = requestDisplay; |
| signalTransaction(); |
| }); |
| postMessageAsync(message); |
| }; |
| mVrFlinger = dvr::VrFlinger::Create(getBE().mHwc->getComposer(), |
| getBE().mHwc->getHwcDisplayId(HWC_DISPLAY_PRIMARY).value_or(0), |
| vrFlingerRequestDisplayCallback); |
| if (!mVrFlinger) { |
| ALOGE("Failed to start vrflinger"); |
| } |
| } |
| |
| mEventControlThread = std::make_unique<impl::EventControlThread>( |
| [this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); }); |
| |
| // initialize our drawing state |
| mDrawingState = mCurrentState; |
| |
| // set initial conditions (e.g. unblank default device) |
| initializeDisplays(); |
| |
| getBE().mRenderEngine->primeCache(); |
| |
| // Inform native graphics APIs whether the present timestamp is supported: |
| if (getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| mStartPropertySetThread = new StartPropertySetThread(false); |
| } else { |
| mStartPropertySetThread = new StartPropertySetThread(true); |
| } |
| |
| if (mStartPropertySetThread->Start() != NO_ERROR) { |
| ALOGE("Run StartPropertySetThread failed!"); |
| } |
| |
| mLegacySrgbSaturationMatrix = getBE().mHwc->getDataspaceSaturationMatrix(HWC_DISPLAY_PRIMARY, |
| Dataspace::SRGB_LINEAR); |
| |
| ALOGV("Done initializing"); |
| } |
| |
| void SurfaceFlinger::readPersistentProperties() { |
| Mutex::Autolock _l(mStateLock); |
| |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("persist.sys.sf.color_saturation", value, "1.0"); |
| mGlobalSaturationFactor = atof(value); |
| updateColorMatrixLocked(); |
| ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); |
| |
| property_get("persist.sys.sf.native_mode", value, "0"); |
| mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value)); |
| } |
| |
| void SurfaceFlinger::startBootAnim() { |
| // Start boot animation service by setting a property mailbox |
| // if property setting thread is already running, Start() will be just a NOP |
| mStartPropertySetThread->Start(); |
| // Wait until property was set |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| } |
| |
| size_t SurfaceFlinger::getMaxTextureSize() const { |
| return getBE().mRenderEngine->getMaxTextureSize(); |
| } |
| |
| size_t SurfaceFlinger::getMaxViewportDims() const { |
| return getBE().mRenderEngine->getMaxViewportDims(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| bool SurfaceFlinger::authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| Mutex::Autolock _l(mStateLock); |
| return authenticateSurfaceTextureLocked(bufferProducer); |
| } |
| |
| bool SurfaceFlinger::authenticateSurfaceTextureLocked( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer)); |
| return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0; |
| } |
| |
| status_t SurfaceFlinger::getSupportedFrameTimestamps( |
| std::vector<FrameEvent>* outSupported) const { |
| *outSupported = { |
| FrameEvent::REQUESTED_PRESENT, |
| FrameEvent::ACQUIRE, |
| FrameEvent::LATCH, |
| FrameEvent::FIRST_REFRESH_START, |
| FrameEvent::LAST_REFRESH_START, |
| FrameEvent::GPU_COMPOSITION_DONE, |
| FrameEvent::DEQUEUE_READY, |
| FrameEvent::RELEASE, |
| }; |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| if (!getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| outSupported->push_back(FrameEvent::DISPLAY_PRESENT); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display, |
| Vector<DisplayInfo>* configs) { |
| if (configs == nullptr || display.get() == nullptr) { |
| return BAD_VALUE; |
| } |
| |
| if (!display.get()) |
| return NAME_NOT_FOUND; |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) { |
| if (display == mBuiltinDisplays[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| // TODO: Not sure if display density should handled by SF any longer |
| class Density { |
| static int getDensityFromProperty(char const* propName) { |
| char property[PROPERTY_VALUE_MAX]; |
| int density = 0; |
| if (property_get(propName, property, nullptr) > 0) { |
| density = atoi(property); |
| } |
| return density; |
| } |
| public: |
| static int getEmuDensity() { |
| return getDensityFromProperty("qemu.sf.lcd_density"); } |
| static int getBuildDensity() { |
| return getDensityFromProperty("ro.sf.lcd_density"); } |
| }; |
| |
| configs->clear(); |
| |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| for (const auto& hwConfig : getHwComposer().getConfigs(type)) { |
| DisplayInfo info = DisplayInfo(); |
| |
| float xdpi = hwConfig->getDpiX(); |
| float ydpi = hwConfig->getDpiY(); |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // The density of the device is provided by a build property |
| float density = Density::getBuildDensity() / 160.0f; |
| if (density == 0) { |
| // the build doesn't provide a density -- this is wrong! |
| // use xdpi instead |
| ALOGE("ro.sf.lcd_density must be defined as a build property"); |
| density = xdpi / 160.0f; |
| } |
| if (Density::getEmuDensity()) { |
| // if "qemu.sf.lcd_density" is specified, it overrides everything |
| xdpi = ydpi = density = Density::getEmuDensity(); |
| density /= 160.0f; |
| } |
| info.density = density; |
| |
| // TODO: this needs to go away (currently needed only by webkit) |
| sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked()); |
| info.orientation = hw ? hw->getOrientation() : 0; |
| } else { |
| // TODO: where should this value come from? |
| static const int TV_DENSITY = 213; |
| info.density = TV_DENSITY / 160.0f; |
| info.orientation = 0; |
| } |
| |
| info.w = hwConfig->getWidth(); |
| info.h = hwConfig->getHeight(); |
| info.xdpi = xdpi; |
| info.ydpi = ydpi; |
| info.fps = 1e9 / hwConfig->getVsyncPeriod(); |
| info.appVsyncOffset = vsyncPhaseOffsetNs; |
| |
| // This is how far in advance a buffer must be queued for |
| // presentation at a given time. If you want a buffer to appear |
| // on the screen at time N, you must submit the buffer before |
| // (N - presentationDeadline). |
| // |
| // Normally it's one full refresh period (to give SF a chance to |
| // latch the buffer), but this can be reduced by configuring a |
| // DispSync offset. Any additional delays introduced by the hardware |
| // composer or panel must be accounted for here. |
| // |
| // We add an additional 1ms to allow for processing time and |
| // differences between the ideal and actual refresh rate. |
| info.presentationDeadline = hwConfig->getVsyncPeriod() - |
| sfVsyncPhaseOffsetNs + 1000000; |
| |
| // All non-virtual displays are currently considered secure. |
| info.secure = true; |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY && |
| mPrimaryDisplayOrientation & DisplayState::eOrientationSwapMask) { |
| std::swap(info.w, info.h); |
| } |
| |
| configs->push_back(info); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */, |
| DisplayStatInfo* stats) { |
| if (stats == nullptr) { |
| return BAD_VALUE; |
| } |
| |
| // FIXME for now we always return stats for the primary display |
| memset(stats, 0, sizeof(*stats)); |
| stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0); |
| stats->vsyncPeriod = mPrimaryDispSync.getPeriod(); |
| return NO_ERROR; |
| } |
| |
| int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) { |
| if (display == nullptr) { |
| ALOGE("%s : display is nullptr", __func__); |
| return BAD_VALUE; |
| } |
| |
| sp<const DisplayDevice> device(getDisplayDevice(display)); |
| if (device != nullptr) { |
| return device->getActiveConfig(); |
| } |
| |
| return BAD_VALUE; |
| } |
| |
| void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) { |
| ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(), |
| this); |
| int32_t type = hw->getDisplayType(); |
| int currentMode = hw->getActiveConfig(); |
| |
| if (mode == currentMode) { |
| ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode); |
| return; |
| } |
| |
| if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| hw->setActiveConfig(mode); |
| getHwComposer().setActiveConfig(type, mode); |
| } |
| |
| status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) { |
| class MessageSetActiveConfig: public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| int mMode; |
| public: |
| MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp, |
| int mode) : |
| mFlinger(flinger), mDisplay(disp) { mMode = mode; } |
| virtual bool handler() { |
| Vector<DisplayInfo> configs; |
| mFlinger.getDisplayConfigs(mDisplay, &configs); |
| if (mMode < 0 || mMode >= static_cast<int>(configs.size())) { |
| ALOGE("Attempt to set active config = %d for display with %zu configs", |
| mMode, configs.size()); |
| return true; |
| } |
| sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == nullptr) { |
| ALOGE("Attempt to set active config = %d for null display %p", |
| mMode, mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) { |
| ALOGW("Attempt to set active config = %d for virtual display", |
| mMode); |
| } else { |
| mFlinger.setActiveConfigInternal(hw, mMode); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode); |
| postMessageSync(msg); |
| return NO_ERROR; |
| } |
| status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display, |
| Vector<ColorMode>* outColorModes) { |
| if ((outColorModes == nullptr) || (display.get() == nullptr)) { |
| return BAD_VALUE; |
| } |
| |
| if (!display.get()) { |
| return NAME_NOT_FOUND; |
| } |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) { |
| if (display == mBuiltinDisplays[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| std::vector<ColorMode> modes; |
| { |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| modes = getHwComposer().getColorModes(type); |
| } |
| outColorModes->clear(); |
| std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes)); |
| |
| return NO_ERROR; |
| } |
| |
| ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) { |
| sp<const DisplayDevice> device(getDisplayDevice(display)); |
| if (device != nullptr) { |
| return device->getActiveColorMode(); |
| } |
| return static_cast<ColorMode>(BAD_VALUE); |
| } |
| |
| void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw, |
| ColorMode mode, Dataspace dataSpace, |
| RenderIntent renderIntent) { |
| int32_t type = hw->getDisplayType(); |
| ColorMode currentMode = hw->getActiveColorMode(); |
| Dataspace currentDataSpace = hw->getCompositionDataSpace(); |
| RenderIntent currentRenderIntent = hw->getActiveRenderIntent(); |
| |
| if (mode == currentMode && dataSpace == currentDataSpace && |
| renderIntent == currentRenderIntent) { |
| return; |
| } |
| |
| if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| hw->setActiveColorMode(mode); |
| hw->setCompositionDataSpace(dataSpace); |
| hw->setActiveRenderIntent(renderIntent); |
| getHwComposer().setActiveColorMode(type, mode, renderIntent); |
| |
| ALOGV("Set active color mode: %s (%d), active render intent: %s (%d), type=%d", |
| decodeColorMode(mode).c_str(), mode, |
| decodeRenderIntent(renderIntent).c_str(), renderIntent, |
| hw->getDisplayType()); |
| } |
| |
| |
| status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display, |
| ColorMode colorMode) { |
| class MessageSetActiveColorMode: public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| ColorMode mMode; |
| public: |
| MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp, |
| ColorMode mode) : |
| mFlinger(flinger), mDisplay(disp) { mMode = mode; } |
| virtual bool handler() { |
| Vector<ColorMode> modes; |
| mFlinger.getDisplayColorModes(mDisplay, &modes); |
| bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes); |
| if (mMode < ColorMode::NATIVE || !exists) { |
| ALOGE("Attempt to set invalid active color mode %s (%d) for display %p", |
| decodeColorMode(mMode).c_str(), mMode, mDisplay.get()); |
| return true; |
| } |
| sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == nullptr) { |
| ALOGE("Attempt to set active color mode %s (%d) for null display %p", |
| decodeColorMode(mMode).c_str(), mMode, mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) { |
| ALOGW("Attempt to set active color mode %s %d for virtual display", |
| decodeColorMode(mMode).c_str(), mMode); |
| } else { |
| mFlinger.setActiveColorModeInternal(hw, mMode, Dataspace::UNKNOWN, |
| RenderIntent::COLORIMETRIC); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode); |
| postMessageSync(msg); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::clearAnimationFrameStats() { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.clearStats(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.getStats(outStats); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display, |
| HdrCapabilities* outCapabilities) const { |
| Mutex::Autolock _l(mStateLock); |
| |
| sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display)); |
| if (displayDevice == nullptr) { |
| ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get()); |
| return BAD_VALUE; |
| } |
| |
| // At this point the DisplayDeivce should already be set up, |
| // meaning the luminance information is already queried from |
| // hardware composer and stored properly. |
| const HdrCapabilities& capabilities = displayDevice->getHdrCapabilities(); |
| *outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(), |
| capabilities.getDesiredMaxLuminance(), |
| capabilities.getDesiredMaxAverageLuminance(), |
| capabilities.getDesiredMinLuminance()); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::enableVSyncInjections(bool enable) { |
| sp<LambdaMessage> enableVSyncInjections = new LambdaMessage([&]() { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (mInjectVSyncs == enable) { |
| return; |
| } |
| |
| if (enable) { |
| ALOGV("VSync Injections enabled"); |
| if (mVSyncInjector.get() == nullptr) { |
| mVSyncInjector = std::make_unique<InjectVSyncSource>(); |
| mInjectorEventThread = std::make_unique< |
| impl::EventThread>(mVSyncInjector.get(), |
| [this]() { resyncWithRateLimit(); }, |
| impl::EventThread::InterceptVSyncsCallback(), |
| "injEventThread"); |
| } |
| mEventQueue->setEventThread(mInjectorEventThread.get()); |
| } else { |
| ALOGV("VSync Injections disabled"); |
| mEventQueue->setEventThread(mSFEventThread.get()); |
| } |
| |
| mInjectVSyncs = enable; |
| }); |
| postMessageSync(enableVSyncInjections); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::injectVSync(nsecs_t when) { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (!mInjectVSyncs) { |
| ALOGE("VSync Injections not enabled"); |
| return BAD_VALUE; |
| } |
| if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) { |
| ALOGV("Injecting VSync inside SurfaceFlinger"); |
| mVSyncInjector->onInjectSyncEvent(when); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) |
| NO_THREAD_SAFETY_ANALYSIS { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_SHELL) && |
| !PermissionCache::checkPermission(sDump, pid, uid)) { |
| ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| |
| outLayers->clear(); |
| postMessageSync(new LambdaMessage([&]() { |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| outLayers->push_back(layer->getLayerDebugInfo()); |
| }); |
| |
| })); |
| return NO_ERROR; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection( |
| ISurfaceComposer::VsyncSource vsyncSource) { |
| if (vsyncSource == eVsyncSourceSurfaceFlinger) { |
| return mSFEventThread->createEventConnection(); |
| } else { |
| return mEventThread->createEventConnection(); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::waitForEvent() { |
| mEventQueue->waitMessage(); |
| } |
| |
| void SurfaceFlinger::signalTransaction() { |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalLayerUpdate() { |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalRefresh() { |
| mRefreshPending = true; |
| mEventQueue->refresh(); |
| } |
| |
| status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| return mEventQueue->postMessage(msg, reltime); |
| } |
| |
| status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| status_t res = mEventQueue->postMessage(msg, reltime); |
| if (res == NO_ERROR) { |
| msg->wait(); |
| } |
| return res; |
| } |
| |
| void SurfaceFlinger::run() { |
| do { |
| waitForEvent(); |
| } while (true); |
| } |
| |
| void SurfaceFlinger::enableHardwareVsync() { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mPrimaryDispSync.beginResync(); |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| |
| if (makeAvailable) { |
| mHWVsyncAvailable = true; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| |
| const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| |
| mPrimaryDispSync.reset(); |
| mPrimaryDispSync.setPeriod(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mPrimaryDispSync.beginResync(); |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false); |
| mEventControlThread->setVsyncEnabled(false); |
| mPrimaryDispSync.endResync(); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void SurfaceFlinger::resyncWithRateLimit() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(500); |
| |
| // No explicit locking is needed here since EventThread holds a lock while calling this method |
| static nsecs_t sLastResyncAttempted = 0; |
| const nsecs_t now = systemTime(); |
| if (now - sLastResyncAttempted > kIgnoreDelay) { |
| resyncToHardwareVsync(false); |
| } |
| sLastResyncAttempted = now; |
| } |
| |
| void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, |
| hwc2_display_t displayId, int64_t timestamp) { |
| Mutex::Autolock lock(mStateLock); |
| // Ignore any vsyncs from a previous hardware composer. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| int32_t type; |
| if (!getBE().mHwc->onVsync(displayId, timestamp, &type)) { |
| return; |
| } |
| |
| bool needsHwVsync = false; |
| |
| { // Scope for the lock |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) { |
| needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| *compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t display, |
| HWC2::Connection connection) { |
| ALOGV("onHotplugReceived(%d, %" PRIu64 ", %s)", sequenceId, display, |
| connection == HWC2::Connection::Connected ? "connected" : "disconnected"); |
| |
| // Ignore events that do not have the right sequenceId. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| // Only lock if we're not on the main thread. This function is normally |
| // called on a hwbinder thread, but for the primary display it's called on |
| // the main thread with the state lock already held, so don't attempt to |
| // acquire it here. |
| ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); |
| |
| mPendingHotplugEvents.emplace_back(HotplugEvent{display, connection}); |
| |
| if (std::this_thread::get_id() == mMainThreadId) { |
| // Process all pending hot plug events immediately if we are on the main thread. |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onRefreshReceived(int sequenceId, |
| hwc2_display_t /*display*/) { |
| Mutex::Autolock lock(mStateLock); |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| repaintEverything(); |
| } |
| |
| void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) { |
| ATRACE_CALL(); |
| Mutex::Autolock lock(mStateLock); |
| getHwComposer().setVsyncEnabled(disp, |
| enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable); |
| } |
| |
| // Note: it is assumed the caller holds |mStateLock| when this is called |
| void SurfaceFlinger::resetDisplayState() { |
| disableHardwareVsync(true); |
| // Clear the drawing state so that the logic inside of |
| // handleTransactionLocked will fire. It will determine the delta between |
| // mCurrentState and mDrawingState and re-apply all changes when we make the |
| // transition. |
| mDrawingState.displays.clear(); |
| getRenderEngine().resetCurrentSurface(); |
| mDisplays.clear(); |
| } |
| |
| void SurfaceFlinger::updateVrFlinger() { |
| if (!mVrFlinger) |
| return; |
| bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay; |
| if (vrFlingerRequestsDisplay == getBE().mHwc->isUsingVrComposer()) { |
| return; |
| } |
| |
| if (vrFlingerRequestsDisplay && !getBE().mHwc->getComposer()->isRemote()) { |
| ALOGE("Vr flinger is only supported for remote hardware composer" |
| " service connections. Ignoring request to transition to vr" |
| " flinger."); |
| mVrFlingerRequestsDisplay = false; |
| return; |
| } |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| int currentDisplayPowerMode = getDisplayDeviceLocked( |
| mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])->getPowerMode(); |
| |
| if (!vrFlingerRequestsDisplay) { |
| mVrFlinger->SeizeDisplayOwnership(); |
| } |
| |
| resetDisplayState(); |
| getBE().mHwc.reset(); // Delete the current instance before creating the new one |
| getBE().mHwc.reset(new HWComposer(std::make_unique<Hwc2::impl::Composer>( |
| vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName))); |
| getBE().mHwc->registerCallback(this, ++getBE().mComposerSequenceId); |
| |
| LOG_ALWAYS_FATAL_IF(!getBE().mHwc->getComposer()->isRemote(), |
| "Switched to non-remote hardware composer"); |
| |
| if (vrFlingerRequestsDisplay) { |
| mVrFlinger->GrantDisplayOwnership(); |
| } else { |
| enableHardwareVsync(); |
| } |
| |
| mVisibleRegionsDirty = true; |
| invalidateHwcGeometry(); |
| |
| // Re-enable default display. |
| sp<DisplayDevice> hw(getDisplayDeviceLocked( |
| mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])); |
| setPowerModeInternal(hw, currentDisplayPowerMode, /*stateLockHeld*/ true); |
| |
| // Reset the timing values to account for the period of the swapped in HWC |
| const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(period); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| setCompositorTimingSnapped(0, period, 0); |
| |
| android_atomic_or(1, &mRepaintEverything); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onMessageReceived(int32_t what) { |
| ATRACE_CALL(); |
| switch (what) { |
| case MessageQueue::INVALIDATE: { |
| bool frameMissed = !mHadClientComposition && |
| mPreviousPresentFence != Fence::NO_FENCE && |
| (mPreviousPresentFence->getSignalTime() == |
| Fence::SIGNAL_TIME_PENDING); |
| ATRACE_INT("FrameMissed", static_cast<int>(frameMissed)); |
| if (frameMissed) { |
| mTimeStats.incrementMissedFrames(); |
| if (mPropagateBackpressure) { |
| signalLayerUpdate(); |
| break; |
| } |
| } |
| |
| // Now that we're going to make it to the handleMessageTransaction() |
| // call below it's safe to call updateVrFlinger(), which will |
| // potentially trigger a display handoff. |
| updateVrFlinger(); |
| |
| bool refreshNeeded = handleMessageTransaction(); |
| refreshNeeded |= handleMessageInvalidate(); |
| refreshNeeded |= mRepaintEverything; |
| if (refreshNeeded) { |
| // Signal a refresh if a transaction modified the window state, |
| // a new buffer was latched, or if HWC has requested a full |
| // repaint |
| signalRefresh(); |
| } |
| break; |
| } |
| case MessageQueue::REFRESH: { |
| handleMessageRefresh(); |
| break; |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handleMessageTransaction() { |
| uint32_t transactionFlags = peekTransactionFlags(); |
| if (transactionFlags) { |
| handleTransaction(transactionFlags); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SurfaceFlinger::handleMessageInvalidate() { |
| ATRACE_CALL(); |
| return handlePageFlip(); |
| } |
| |
| void SurfaceFlinger::handleMessageRefresh() { |
| ATRACE_CALL(); |
| |
| mRefreshPending = false; |
| |
| nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| preComposition(refreshStartTime); |
| rebuildLayerStacks(); |
| setUpHWComposer(); |
| doDebugFlashRegions(); |
| doTracing("handleRefresh"); |
| logLayerStats(); |
| doComposition(); |
| postComposition(refreshStartTime); |
| |
| mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY); |
| |
| mHadClientComposition = false; |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| const sp<DisplayDevice>& displayDevice = mDisplays[displayId]; |
| mHadClientComposition = mHadClientComposition || |
| getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId()); |
| } |
| mVsyncModulator.onRefreshed(mHadClientComposition); |
| |
| mLayersWithQueuedFrames.clear(); |
| } |
| |
| void SurfaceFlinger::doDebugFlashRegions() |
| { |
| // is debugging enabled |
| if (CC_LIKELY(!mDebugRegion)) |
| return; |
| |
| const bool repaintEverything = mRepaintEverything; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->isDisplayOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| if (!dirtyRegion.isEmpty()) { |
| // redraw the whole screen |
| doComposeSurfaces(hw); |
| |
| // and draw the dirty region |
| const int32_t height = hw->getHeight(); |
| auto& engine(getRenderEngine()); |
| engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1); |
| |
| hw->swapBuffers(getHwComposer()); |
| } |
| } |
| } |
| |
| postFramebuffer(); |
| |
| if (mDebugRegion > 1) { |
| usleep(mDebugRegion * 1000); |
| } |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| |
| status_t result = displayDevice->prepareFrame(*getBE().mHwc); |
| ALOGE_IF(result != NO_ERROR, |
| "prepareFrame for display %zd failed:" |
| " %d (%s)", |
| displayId, result, strerror(-result)); |
| } |
| } |
| |
| void SurfaceFlinger::doTracing(const char* where) { |
| ATRACE_CALL(); |
| ATRACE_NAME(where); |
| if (CC_UNLIKELY(mTracing.isEnabled())) { |
| mTracing.traceLayers(where, dumpProtoInfo(LayerVector::StateSet::Drawing)); |
| } |
| } |
| |
| void SurfaceFlinger::logLayerStats() { |
| ATRACE_CALL(); |
| if (CC_UNLIKELY(mLayerStats.isEnabled())) { |
| int32_t hwcId = -1; |
| for (size_t dpy = 0; dpy < mDisplays.size(); ++dpy) { |
| const sp<const DisplayDevice>& displayDevice(mDisplays[dpy]); |
| if (displayDevice->isPrimary()) { |
| hwcId = displayDevice->getHwcDisplayId(); |
| break; |
| } |
| } |
| if (hwcId < 0) { |
| ALOGE("LayerStats: Hmmm, no primary display?"); |
| return; |
| } |
| mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(hwcId)); |
| } |
| } |
| |
| void SurfaceFlinger::preComposition(nsecs_t refreshStartTime) |
| { |
| ATRACE_CALL(); |
| ALOGV("preComposition"); |
| |
| bool needExtraInvalidate = false; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->onPreComposition(refreshStartTime)) { |
| needExtraInvalidate = true; |
| } |
| }); |
| |
| if (needExtraInvalidate) { |
| signalLayerUpdate(); |
| } |
| } |
| |
| void SurfaceFlinger::updateCompositorTiming( |
| nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime, |
| std::shared_ptr<FenceTime>& presentFenceTime) { |
| // Update queue of past composite+present times and determine the |
| // most recently known composite to present latency. |
| getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime}); |
| nsecs_t compositeToPresentLatency = -1; |
| while (!getBE().mCompositePresentTimes.empty()) { |
| SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front(); |
| // Cached values should have been updated before calling this method, |
| // which helps avoid duplicate syscalls. |
| nsecs_t displayTime = cpt.display->getCachedSignalTime(); |
| if (displayTime == Fence::SIGNAL_TIME_PENDING) { |
| break; |
| } |
| compositeToPresentLatency = displayTime - cpt.composite; |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| // Don't let mCompositePresentTimes grow unbounded, just in case. |
| while (getBE().mCompositePresentTimes.size() > 16) { |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| setCompositorTimingSnapped( |
| vsyncPhase, vsyncInterval, compositeToPresentLatency); |
| } |
| |
| void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase, |
| nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) { |
| // Integer division and modulo round toward 0 not -inf, so we need to |
| // treat negative and positive offsets differently. |
| nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ? |
| (vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) : |
| ((-sfVsyncPhaseOffsetNs) % vsyncInterval); |
| |
| // Just in case sfVsyncPhaseOffsetNs == -vsyncInterval. |
| if (idealLatency <= 0) { |
| idealLatency = vsyncInterval; |
| } |
| |
| // Snap the latency to a value that removes scheduling jitter from the |
| // composition and present times, which often have >1ms of jitter. |
| // Reducing jitter is important if an app attempts to extrapolate |
| // something (such as user input) to an accurate diasplay time. |
| // Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs |
| // with (presentLatency % interval). |
| nsecs_t bias = vsyncInterval / 2; |
| int64_t extraVsyncs = |
| (compositeToPresentLatency - idealLatency + bias) / vsyncInterval; |
| nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ? |
| idealLatency + (extraVsyncs * vsyncInterval) : idealLatency; |
| |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| getBE().mCompositorTiming.deadline = vsyncPhase - idealLatency; |
| getBE().mCompositorTiming.interval = vsyncInterval; |
| getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency; |
| } |
| |
| void SurfaceFlinger::postComposition(nsecs_t refreshStartTime) |
| { |
| ATRACE_CALL(); |
| ALOGV("postComposition"); |
| |
| // Release any buffers which were replaced this frame |
| nsecs_t dequeueReadyTime = systemTime(); |
| for (auto& layer : mLayersWithQueuedFrames) { |
| layer->releasePendingBuffer(dequeueReadyTime); |
| } |
| |
| // |mStateLock| not needed as we are on the main thread |
| const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked()); |
| |
| getBE().mGlCompositionDoneTimeline.updateSignalTimes(); |
| std::shared_ptr<FenceTime> glCompositionDoneFenceTime; |
| if (hw && getBE().mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) { |
| glCompositionDoneFenceTime = |
| std::make_shared<FenceTime>(hw->getClientTargetAcquireFence()); |
| getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime); |
| } else { |
| glCompositionDoneFenceTime = FenceTime::NO_FENCE; |
| } |
| |
| getBE().mDisplayTimeline.updateSignalTimes(); |
| sp<Fence> presentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY); |
| auto presentFenceTime = std::make_shared<FenceTime>(presentFence); |
| getBE().mDisplayTimeline.push(presentFenceTime); |
| |
| nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0); |
| nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod(); |
| |
| // We use the refreshStartTime which might be sampled a little later than |
| // when we started doing work for this frame, but that should be okay |
| // since updateCompositorTiming has snapping logic. |
| updateCompositorTiming( |
| vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime); |
| CompositorTiming compositorTiming; |
| { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime, |
| presentFenceTime, compositorTiming); |
| if (frameLatched) { |
| recordBufferingStats(layer->getName().string(), |
| layer->getOccupancyHistory(false)); |
| } |
| }); |
| |
| if (presentFenceTime->isValid()) { |
| if (mPrimaryDispSync.addPresentFence(presentFenceTime)) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| if (!hasSyncFramework) { |
| if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) && hw->isDisplayOn()) { |
| enableHardwareVsync(); |
| } |
| } |
| |
| if (mAnimCompositionPending) { |
| mAnimCompositionPending = false; |
| |
| if (presentFenceTime->isValid()) { |
| mAnimFrameTracker.setActualPresentFence( |
| std::move(presentFenceTime)); |
| } else if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| nsecs_t presentTime = |
| getBE().mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY); |
| mAnimFrameTracker.setActualPresentTime(presentTime); |
| } |
| mAnimFrameTracker.advanceFrame(); |
| } |
| |
| mTimeStats.incrementTotalFrames(); |
| if (mHadClientComposition) { |
| mTimeStats.incrementClientCompositionFrames(); |
| } |
| |
| if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) && |
| hw->getPowerMode() == HWC_POWER_MODE_OFF) { |
| return; |
| } |
| |
| nsecs_t currentTime = systemTime(); |
| if (mHasPoweredOff) { |
| mHasPoweredOff = false; |
| } else { |
| nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime; |
| size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval); |
| if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) { |
| getBE().mFrameBuckets[numPeriods] += elapsedTime; |
| } else { |
| getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime; |
| } |
| getBE().mTotalTime += elapsedTime; |
| } |
| getBE().mLastSwapTime = currentTime; |
| } |
| |
| void SurfaceFlinger::rebuildLayerStacks() { |
| ATRACE_CALL(); |
| ALOGV("rebuildLayerStacks"); |
| |
| // rebuild the visible layer list per screen |
| if (CC_UNLIKELY(mVisibleRegionsDirty)) { |
| ATRACE_NAME("rebuildLayerStacks VR Dirty"); |
| mVisibleRegionsDirty = false; |
| invalidateHwcGeometry(); |
| |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| Region opaqueRegion; |
| Region dirtyRegion; |
| Vector<sp<Layer>> layersSortedByZ; |
| Vector<sp<Layer>> layersNeedingFences; |
| const sp<DisplayDevice>& displayDevice(mDisplays[dpy]); |
| const Transform& tr(displayDevice->getTransform()); |
| const Rect bounds(displayDevice->getBounds()); |
| if (displayDevice->isDisplayOn()) { |
| computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion); |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool hwcLayerDestroyed = false; |
| if (layer->belongsToDisplay(displayDevice->getLayerStack(), |
| displayDevice->isPrimary())) { |
| Region drawRegion(tr.transform( |
| layer->visibleNonTransparentRegion)); |
| drawRegion.andSelf(bounds); |
| if (!drawRegion.isEmpty()) { |
| layersSortedByZ.add(layer); |
| } else { |
| // Clear out the HWC layer if this layer was |
| // previously visible, but no longer is |
| hwcLayerDestroyed = layer->destroyHwcLayer( |
| displayDevice->getHwcDisplayId()); |
| } |
| } else { |
| // WM changes displayDevice->layerStack upon sleep/awake. |
| // Here we make sure we delete the HWC layers even if |
| // WM changed their layer stack. |
| hwcLayerDestroyed = layer->destroyHwcLayer( |
| displayDevice->getHwcDisplayId()); |
| } |
| |
| // If a layer is not going to get a release fence because |
| // it is invisible, but it is also going to release its |
| // old buffer, add it to the list of layers needing |
| // fences. |
| if (hwcLayerDestroyed) { |
| auto found = std::find(mLayersWithQueuedFrames.cbegin(), |
| mLayersWithQueuedFrames.cend(), layer); |
| if (found != mLayersWithQueuedFrames.cend()) { |
| layersNeedingFences.add(layer); |
| } |
| } |
| }); |
| } |
| displayDevice->setVisibleLayersSortedByZ(layersSortedByZ); |
| displayDevice->setLayersNeedingFences(layersNeedingFences); |
| displayDevice->undefinedRegion.set(bounds); |
| displayDevice->undefinedRegion.subtractSelf( |
| tr.transform(opaqueRegion)); |
| displayDevice->dirtyRegion.orSelf(dirtyRegion); |
| } |
| } |
| } |
| |
| // Returns a data space that fits all visible layers. The returned data space |
| // can only be one of |
| // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) |
| // - Dataspace::DISPLAY_P3 |
| // The returned HDR data space is one of |
| // - Dataspace::UNKNOWN |
| // - Dataspace::BT2020_HLG |
| // - Dataspace::BT2020_PQ |
| Dataspace SurfaceFlinger::getBestDataspace( |
| const sp<const DisplayDevice>& displayDevice, Dataspace* outHdrDataSpace) const { |
| Dataspace bestDataSpace = Dataspace::SRGB; |
| *outHdrDataSpace = Dataspace::UNKNOWN; |
| |
| for (const auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| switch (layer->getDataSpace()) { |
| case Dataspace::V0_SCRGB: |
| case Dataspace::V0_SCRGB_LINEAR: |
| case Dataspace::DISPLAY_P3: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| break; |
| case Dataspace::BT2020_PQ: |
| case Dataspace::BT2020_ITU_PQ: |
| *outHdrDataSpace = Dataspace::BT2020_PQ; |
| break; |
| case Dataspace::BT2020_HLG: |
| case Dataspace::BT2020_ITU_HLG: |
| // When there's mixed PQ content and HLG content, we set the HDR |
| // data space to be BT2020_PQ and convert HLG to PQ. |
| if (*outHdrDataSpace == Dataspace::UNKNOWN) { |
| *outHdrDataSpace = Dataspace::BT2020_HLG; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return bestDataSpace; |
| } |
| |
| // Pick the ColorMode / Dataspace for the display device. |
| void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& displayDevice, |
| ColorMode* outMode, Dataspace* outDataSpace, |
| RenderIntent* outRenderIntent) const { |
| if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) { |
| *outMode = ColorMode::NATIVE; |
| *outDataSpace = Dataspace::UNKNOWN; |
| *outRenderIntent = RenderIntent::COLORIMETRIC; |
| return; |
| } |
| |
| Dataspace hdrDataSpace; |
| Dataspace bestDataSpace = getBestDataspace(displayDevice, &hdrDataSpace); |
| |
| // respect hdrDataSpace only when there is no legacy HDR support |
| const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN && |
| !displayDevice->hasLegacyHdrSupport(hdrDataSpace); |
| if (isHdr) { |
| bestDataSpace = hdrDataSpace; |
| } |
| |
| RenderIntent intent; |
| switch (mDisplayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| case DisplayColorSetting::UNMANAGED: |
| intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC; |
| break; |
| case DisplayColorSetting::ENHANCED: |
| intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE; |
| break; |
| default: // vendor display color setting |
| intent = static_cast<RenderIntent>(mDisplayColorSetting); |
| break; |
| } |
| |
| displayDevice->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent); |
| } |
| |
| void SurfaceFlinger::setUpHWComposer() { |
| ATRACE_CALL(); |
| ALOGV("setUpHWComposer"); |
| |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| bool dirty = !mDisplays[dpy]->getDirtyRegion(mRepaintEverything).isEmpty(); |
| bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0; |
| bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers; |
| |
| // If nothing has changed (!dirty), don't recompose. |
| // If something changed, but we don't currently have any visible layers, |
| // and didn't when we last did a composition, then skip it this time. |
| // The second rule does two things: |
| // - When all layers are removed from a display, we'll emit one black |
| // frame, then nothing more until we get new layers. |
| // - When a display is created with a private layer stack, we won't |
| // emit any black frames until a layer is added to the layer stack. |
| bool mustRecompose = dirty && !(empty && wasEmpty); |
| |
| ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL, |
| "dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy, |
| mustRecompose ? "doing" : "skipping", |
| dirty ? "+" : "-", |
| empty ? "+" : "-", |
| wasEmpty ? "+" : "-"); |
| |
| mDisplays[dpy]->beginFrame(mustRecompose); |
| |
| if (mustRecompose) { |
| mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty; |
| } |
| } |
| |
| // build the h/w work list |
| if (CC_UNLIKELY(mGeometryInvalid)) { |
| mGeometryInvalid = false; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> displayDevice(mDisplays[dpy]); |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId >= 0) { |
| const Vector<sp<Layer>>& currentLayers( |
| displayDevice->getVisibleLayersSortedByZ()); |
| for (size_t i = 0; i < currentLayers.size(); i++) { |
| const auto& layer = currentLayers[i]; |
| if (!layer->hasHwcLayer(hwcId)) { |
| if (!layer->createHwcLayer(getBE().mHwc.get(), hwcId)) { |
| layer->forceClientComposition(hwcId); |
| continue; |
| } |
| } |
| |
| layer->setGeometry(displayDevice, i); |
| if (mDebugDisableHWC || mDebugRegion) { |
| layer->forceClientComposition(hwcId); |
| } |
| } |
| } |
| } |
| } |
| |
| // Set the per-frame data |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| |
| if (hwcId < 0) { |
| continue; |
| } |
| if (mDrawingState.colorMatrixChanged) { |
| displayDevice->setColorTransform(mDrawingState.colorMatrix); |
| status_t result = getBE().mHwc->setColorTransform(hwcId, mDrawingState.colorMatrix); |
| ALOGE_IF(result != NO_ERROR, "Failed to set color transform on " |
| "display %zd: %d", displayId, result); |
| } |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| if (layer->isHdrY410()) { |
| layer->forceClientComposition(hwcId); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_PQ || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) && |
| !displayDevice->hasHDR10Support()) { |
| layer->forceClientComposition(hwcId); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_HLG || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) && |
| !displayDevice->hasHLGSupport()) { |
| layer->forceClientComposition(hwcId); |
| } |
| |
| if (layer->getForceClientComposition(hwcId)) { |
| ALOGV("[%s] Requesting Client composition", layer->getName().string()); |
| layer->setCompositionType(hwcId, HWC2::Composition::Client); |
| continue; |
| } |
| |
| layer->setPerFrameData(displayDevice); |
| } |
| |
| if (hasWideColorDisplay) { |
| ColorMode colorMode; |
| Dataspace dataSpace; |
| RenderIntent renderIntent; |
| pickColorMode(displayDevice, &colorMode, &dataSpace, &renderIntent); |
| setActiveColorModeInternal(displayDevice, colorMode, dataSpace, renderIntent); |
| } |
| } |
| |
| mDrawingState.colorMatrixChanged = false; |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| |
| status_t result = displayDevice->prepareFrame(*getBE().mHwc); |
| ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:" |
| " %d (%s)", displayId, result, strerror(-result)); |
| } |
| } |
| |
| void SurfaceFlinger::doComposition() { |
| ATRACE_CALL(); |
| ALOGV("doComposition"); |
| |
| const bool repaintEverything = android_atomic_and(0, &mRepaintEverything); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->isDisplayOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| |
| // repaint the framebuffer (if needed) |
| doDisplayComposition(hw, dirtyRegion); |
| |
| hw->dirtyRegion.clear(); |
| hw->flip(); |
| } |
| } |
| postFramebuffer(); |
| } |
| |
| void SurfaceFlinger::postFramebuffer() |
| { |
| ATRACE_CALL(); |
| ALOGV("postFramebuffer"); |
| |
| const nsecs_t now = systemTime(); |
| mDebugInSwapBuffers = now; |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId >= 0) { |
| getBE().mHwc->presentAndGetReleaseFences(hwcId); |
| } |
| displayDevice->onSwapBuffersCompleted(); |
| displayDevice->makeCurrent(); |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| // The layer buffer from the previous frame (if any) is released |
| // by HWC only when the release fence from this frame (if any) is |
| // signaled. Always get the release fence from HWC first. |
| auto hwcLayer = layer->getHwcLayer(hwcId); |
| sp<Fence> releaseFence = getBE().mHwc->getLayerReleaseFence(hwcId, hwcLayer); |
| |
| // If the layer was client composited in the previous frame, we |
| // need to merge with the previous client target acquire fence. |
| // Since we do not track that, always merge with the current |
| // client target acquire fence when it is available, even though |
| // this is suboptimal. |
| if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) { |
| releaseFence = Fence::merge("LayerRelease", releaseFence, |
| displayDevice->getClientTargetAcquireFence()); |
| } |
| |
| layer->onLayerDisplayed(releaseFence); |
| } |
| |
| // We've got a list of layers needing fences, that are disjoint with |
| // displayDevice->getVisibleLayersSortedByZ. The best we can do is to |
| // supply them with the present fence. |
| if (!displayDevice->getLayersNeedingFences().isEmpty()) { |
| sp<Fence> presentFence = getBE().mHwc->getPresentFence(hwcId); |
| for (auto& layer : displayDevice->getLayersNeedingFences()) { |
| layer->onLayerDisplayed(presentFence); |
| } |
| } |
| |
| if (hwcId >= 0) { |
| getBE().mHwc->clearReleaseFences(hwcId); |
| } |
| } |
| |
| mLastSwapBufferTime = systemTime() - now; |
| mDebugInSwapBuffers = 0; |
| |
| // |mStateLock| not needed as we are on the main thread |
| if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) { |
| uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount(); |
| if (flipCount % LOG_FRAME_STATS_PERIOD == 0) { |
| logFrameStats(); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) |
| { |
| ATRACE_CALL(); |
| |
| // here we keep a copy of the drawing state (that is the state that's |
| // going to be overwritten by handleTransactionLocked()) outside of |
| // mStateLock so that the side-effects of the State assignment |
| // don't happen with mStateLock held (which can cause deadlocks). |
| State drawingState(mDrawingState); |
| |
| Mutex::Autolock _l(mStateLock); |
| const nsecs_t now = systemTime(); |
| mDebugInTransaction = now; |
| |
| // Here we're guaranteed that some transaction flags are set |
| // so we can call handleTransactionLocked() unconditionally. |
| // We call getTransactionFlags(), which will also clear the flags, |
| // with mStateLock held to guarantee that mCurrentState won't change |
| // until the transaction is committed. |
| |
| mVsyncModulator.onTransactionHandled(); |
| transactionFlags = getTransactionFlags(eTransactionMask); |
| handleTransactionLocked(transactionFlags); |
| |
| mLastTransactionTime = systemTime() - now; |
| mDebugInTransaction = 0; |
| invalidateHwcGeometry(); |
| // here the transaction has been committed |
| } |
| |
| DisplayDevice::DisplayType SurfaceFlinger::determineDisplayType(hwc2_display_t display, |
| HWC2::Connection connection) const { |
| // Figure out whether the event is for the primary display or an |
| // external display by matching the Hwc display id against one for a |
| // connected display. If we did not find a match, we then check what |
| // displays are not already connected to determine the type. If we don't |
| // have a connected primary display, we assume the new display is meant to |
| // be the primary display, and then if we don't have an external display, |
| // we assume it is that. |
| const auto primaryDisplayId = |
| getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_PRIMARY); |
| const auto externalDisplayId = |
| getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_EXTERNAL); |
| if (primaryDisplayId && primaryDisplayId == display) { |
| return DisplayDevice::DISPLAY_PRIMARY; |
| } else if (externalDisplayId && externalDisplayId == display) { |
| return DisplayDevice::DISPLAY_EXTERNAL; |
| } else if (connection == HWC2::Connection::Connected && !primaryDisplayId) { |
| return DisplayDevice::DISPLAY_PRIMARY; |
| } else if (connection == HWC2::Connection::Connected && !externalDisplayId) { |
| return DisplayDevice::DISPLAY_EXTERNAL; |
| } |
| |
| return DisplayDevice::DISPLAY_ID_INVALID; |
| } |
| |
| void SurfaceFlinger::processDisplayHotplugEventsLocked() { |
| for (const auto& event : mPendingHotplugEvents) { |
| auto displayType = determineDisplayType(event.display, event.connection); |
| if (displayType == DisplayDevice::DISPLAY_ID_INVALID) { |
| ALOGW("Unable to determine the display type for display %" PRIu64, event.display); |
| continue; |
| } |
| |
| if (getBE().mHwc->isUsingVrComposer() && displayType == DisplayDevice::DISPLAY_EXTERNAL) { |
| ALOGE("External displays are not supported by the vr hardware composer."); |
| continue; |
| } |
| |
| getBE().mHwc->onHotplug(event.display, displayType, event.connection); |
| |
| if (event.connection == HWC2::Connection::Connected) { |
| if (!mBuiltinDisplays[displayType].get()) { |
| ALOGV("Creating built in display %d", displayType); |
| mBuiltinDisplays[displayType] = new BBinder(); |
| // All non-virtual displays are currently considered secure. |
| DisplayDeviceState info(displayType, true); |
| info.displayName = displayType == DisplayDevice::DISPLAY_PRIMARY ? |
| "Built-in Screen" : "External Screen"; |
| mCurrentState.displays.add(mBuiltinDisplays[displayType], info); |
| mInterceptor->saveDisplayCreation(info); |
| } |
| } else { |
| ALOGV("Removing built in display %d", displayType); |
| |
| ssize_t idx = mCurrentState.displays.indexOfKey(mBuiltinDisplays[displayType]); |
| if (idx >= 0) { |
| const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx)); |
| mInterceptor->saveDisplayDeletion(info.displayId); |
| mCurrentState.displays.removeItemsAt(idx); |
| } |
| mBuiltinDisplays[displayType].clear(); |
| } |
| |
| processDisplayChangesLocked(); |
| } |
| |
| mPendingHotplugEvents.clear(); |
| } |
| |
| sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal( |
| const wp<IBinder>& display, int hwcId, const DisplayDeviceState& state, |
| const sp<DisplaySurface>& dispSurface, const sp<IGraphicBufferProducer>& producer) { |
| bool hasWideColorGamut = false; |
| std::unordered_map<ColorMode, std::vector<RenderIntent>> hwcColorModes; |
| |
| if (hasWideColorDisplay) { |
| std::vector<ColorMode> modes = getHwComposer().getColorModes(hwcId); |
| for (ColorMode colorMode : modes) { |
| switch (colorMode) { |
| case ColorMode::DISPLAY_P3: |
| case ColorMode::ADOBE_RGB: |
| case ColorMode::DCI_P3: |
| hasWideColorGamut = true; |
| break; |
| default: |
| break; |
| } |
| |
| std::vector<RenderIntent> renderIntents = getHwComposer().getRenderIntents(hwcId, |
| colorMode); |
| hwcColorModes.emplace(colorMode, renderIntents); |
| } |
| } |
| |
| HdrCapabilities hdrCapabilities; |
| getHwComposer().getHdrCapabilities(hwcId, &hdrCapabilities); |
| |
| auto nativeWindowSurface = mCreateNativeWindowSurface(producer); |
| auto nativeWindow = nativeWindowSurface->getNativeWindow(); |
| |
| /* |
| * Create our display's surface |
| */ |
| std::unique_ptr<RE::Surface> renderSurface = getRenderEngine().createSurface(); |
| renderSurface->setCritical(state.type == DisplayDevice::DISPLAY_PRIMARY); |
| renderSurface->setAsync(state.type >= DisplayDevice::DISPLAY_VIRTUAL); |
| renderSurface->setNativeWindow(nativeWindow.get()); |
| const int displayWidth = renderSurface->queryWidth(); |
| const int displayHeight = renderSurface->queryHeight(); |
| |
| // Make sure that composition can never be stalled by a virtual display |
| // consumer that isn't processing buffers fast enough. We have to do this |
| // in two places: |
| // * Here, in case the display is composed entirely by HWC. |
| // * In makeCurrent(), using eglSwapInterval. Some EGL drivers set the |
| // window's swap interval in eglMakeCurrent, so they'll override the |
| // interval we set here. |
| if (state.type >= DisplayDevice::DISPLAY_VIRTUAL) { |
| nativeWindow->setSwapInterval(nativeWindow.get(), 0); |
| } |
| |
| // virtual displays are always considered enabled |
| auto initialPowerMode = (state.type >= DisplayDevice::DISPLAY_VIRTUAL) ? HWC_POWER_MODE_NORMAL |
| : HWC_POWER_MODE_OFF; |
| |
| sp<DisplayDevice> hw = |
| new DisplayDevice(this, state.type, hwcId, state.isSecure, display, nativeWindow, |
| dispSurface, std::move(renderSurface), displayWidth, displayHeight, |
| hasWideColorGamut, hdrCapabilities, |
| getHwComposer().getSupportedPerFrameMetadata(hwcId), |
| hwcColorModes, initialPowerMode); |
| |
| if (maxFrameBufferAcquiredBuffers >= 3) { |
| nativeWindowSurface->preallocateBuffers(); |
| } |
| |
| ColorMode defaultColorMode = ColorMode::NATIVE; |
| Dataspace defaultDataSpace = Dataspace::UNKNOWN; |
| if (hasWideColorGamut) { |
| defaultColorMode = ColorMode::SRGB; |
| defaultDataSpace = Dataspace::SRGB; |
| } |
| setActiveColorModeInternal(hw, defaultColorMode, defaultDataSpace, |
| RenderIntent::COLORIMETRIC); |
| if (state.type < DisplayDevice::DISPLAY_VIRTUAL) { |
| hw->setActiveConfig(getHwComposer().getActiveConfigIndex(state.type)); |
| } |
| hw->setLayerStack(state.layerStack); |
| hw->setProjection(state.orientation, state.viewport, state.frame); |
| hw->setDisplayName(state.displayName); |
| |
| return hw; |
| } |
| |
| void SurfaceFlinger::processDisplayChangesLocked() { |
| // here we take advantage of Vector's copy-on-write semantics to |
| // improve performance by skipping the transaction entirely when |
| // know that the lists are identical |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays); |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays); |
| if (!curr.isIdenticalTo(draw)) { |
| mVisibleRegionsDirty = true; |
| const size_t cc = curr.size(); |
| size_t dc = draw.size(); |
| |
| // find the displays that were removed |
| // (ie: in drawing state but not in current state) |
| // also handle displays that changed |
| // (ie: displays that are in both lists) |
| for (size_t i = 0; i < dc;) { |
| const ssize_t j = curr.indexOfKey(draw.keyAt(i)); |
| if (j < 0) { |
| // in drawing state but not in current state |
| // Call makeCurrent() on the primary display so we can |
| // be sure that nothing associated with this display |
| // is current. |
| const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked()); |
| if (defaultDisplay != nullptr) defaultDisplay->makeCurrent(); |
| sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i))); |
| if (hw != nullptr) hw->disconnect(getHwComposer()); |
| if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) |
| mEventThread->onHotplugReceived(draw[i].type, false); |
| mDisplays.removeItem(draw.keyAt(i)); |
| } else { |
| // this display is in both lists. see if something changed. |
| const DisplayDeviceState& state(curr[j]); |
| const wp<IBinder>& display(curr.keyAt(j)); |
| const sp<IBinder> state_binder = IInterface::asBinder(state.surface); |
| const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface); |
| if (state_binder != draw_binder) { |
| // changing the surface is like destroying and |
| // recreating the DisplayDevice, so we just remove it |
| // from the drawing state, so that it get re-added |
| // below. |
| sp<DisplayDevice> hw(getDisplayDeviceLocked(display)); |
| if (hw != nullptr) hw->disconnect(getHwComposer()); |
| mDisplays.removeItem(display); |
| mDrawingState.displays.removeItemsAt(i); |
| dc--; |
| // at this point we must loop to the next item |
| continue; |
| } |
| |
| const sp<DisplayDevice> disp(getDisplayDeviceLocked(display)); |
| if (disp != nullptr) { |
| if (state.layerStack != draw[i].layerStack) { |
| disp->setLayerStack(state.layerStack); |
| } |
| if ((state.orientation != draw[i].orientation) || |
| (state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) { |
| disp->setProjection(state.orientation, state.viewport, state.frame); |
| } |
| if (state.width != draw[i].width || state.height != draw[i].height) { |
| disp->setDisplaySize(state.width, state.height); |
| } |
| } |
| } |
| ++i; |
| } |
| |
| // find displays that were added |
| // (ie: in current state but not in drawing state) |
| for (size_t i = 0; i < cc; i++) { |
| if (draw.indexOfKey(curr.keyAt(i)) < 0) { |
| const DisplayDeviceState& state(curr[i]); |
| |
| sp<DisplaySurface> dispSurface; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferProducer> bqProducer; |
| sp<IGraphicBufferConsumer> bqConsumer; |
| mCreateBufferQueue(&bqProducer, &bqConsumer, false); |
| |
| int32_t hwcId = -1; |
| if (state.isVirtualDisplay()) { |
| // Virtual displays without a surface are dormant: |
| // they have external state (layer stack, projection, |
| // etc.) but no internal state (i.e. a DisplayDevice). |
| if (state.surface != nullptr) { |
| // Allow VR composer to use virtual displays. |
| if (mUseHwcVirtualDisplays || getBE().mHwc->isUsingVrComposer()) { |
| int width = 0; |
| int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width); |
| ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); |
| int height = 0; |
| status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height); |
| ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); |
| int intFormat = 0; |
| status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat); |
| ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); |
| auto format = static_cast<ui::PixelFormat>(intFormat); |
| |
| getBE().mHwc->allocateVirtualDisplay(width, height, &format, &hwcId); |
| } |
| |
| // TODO: Plumb requested format back up to consumer |
| |
| sp<VirtualDisplaySurface> vds = |
| new VirtualDisplaySurface(*getBE().mHwc, hwcId, state.surface, |
| bqProducer, bqConsumer, |
| state.displayName); |
| |
| dispSurface = vds; |
| producer = vds; |
| } |
| } else { |
| ALOGE_IF(state.surface != nullptr, |
| "adding a supported display, but rendering " |
| "surface is provided (%p), ignoring it", |
| state.surface.get()); |
| |
| hwcId = state.type; |
| dispSurface = new FramebufferSurface(*getBE().mHwc, hwcId, bqConsumer); |
| producer = bqProducer; |
| } |
| |
| const wp<IBinder>& display(curr.keyAt(i)); |
| if (dispSurface != nullptr) { |
| mDisplays.add(display, |
| setupNewDisplayDeviceInternal(display, hwcId, state, dispSurface, |
| producer)); |
| if (!state.isVirtualDisplay()) { |
| mEventThread->onHotplugReceived(state.type, true); |
| } |
| } |
| } |
| } |
| } |
| |
| mDrawingState.displays = mCurrentState.displays; |
| } |
| |
| void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) |
| { |
| // Notify all layers of available frames |
| mCurrentState.traverseInZOrder([](Layer* layer) { |
| layer->notifyAvailableFrames(); |
| }); |
| |
| /* |
| * Traversal of the children |
| * (perform the transaction for each of them if needed) |
| */ |
| |
| if (transactionFlags & eTraversalNeeded) { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) return; |
| |
| const uint32_t flags = layer->doTransaction(0); |
| if (flags & Layer::eVisibleRegion) |
| mVisibleRegionsDirty = true; |
| }); |
| } |
| |
| /* |
| * Perform display own transactions if needed |
| */ |
| |
| if (transactionFlags & eDisplayTransactionNeeded) { |
| processDisplayChangesLocked(); |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) { |
| // The transform hint might have changed for some layers |
| // (either because a display has changed, or because a layer |
| // as changed). |
| // |
| // Walk through all the layers in currentLayers, |
| // and update their transform hint. |
| // |
| // If a layer is visible only on a single display, then that |
| // display is used to calculate the hint, otherwise we use the |
| // default display. |
| // |
| // NOTE: we do this here, rather than in rebuildLayerStacks() so that |
| // the hint is set before we acquire a buffer from the surface texture. |
| // |
| // NOTE: layer transactions have taken place already, so we use their |
| // drawing state. However, SurfaceFlinger's own transaction has not |
| // happened yet, so we must use the current state layer list |
| // (soon to become the drawing state list). |
| // |
| sp<const DisplayDevice> disp; |
| uint32_t currentlayerStack = 0; |
| bool first = true; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| // NOTE: we rely on the fact that layers are sorted by |
| // layerStack first (so we don't have to traverse the list |
| // of displays for every layer). |
| uint32_t layerStack = layer->getLayerStack(); |
| if (first || currentlayerStack != layerStack) { |
| currentlayerStack = layerStack; |
| // figure out if this layerstack is mirrored |
| // (more than one display) if so, pick the default display, |
| // if not, pick the only display it's on. |
| disp.clear(); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) { |
| if (disp == nullptr) { |
| disp = std::move(hw); |
| } else { |
| disp = nullptr; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (disp == nullptr) { |
| // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to |
| // redraw after transform hint changes. See bug 8508397. |
| |
| // could be null when this layer is using a layerStack |
| // that is not visible on any display. Also can occur at |
| // screen off/on times. |
| disp = getDefaultDisplayDeviceLocked(); |
| } |
| |
| // disp can be null if there is no display available at all to get |
| // the transform hint from. |
| if (disp != nullptr) { |
| layer->updateTransformHint(disp); |
| } |
| |
| first = false; |
| }); |
| } |
| |
| |
| /* |
| * Perform our own transaction if needed |
| */ |
| |
| if (mLayersAdded) { |
| mLayersAdded = false; |
| // Layers have been added. |
| mVisibleRegionsDirty = true; |
| } |
| |
| // some layers might have been removed, so |
| // we need to update the regions they're exposing. |
| if (mLayersRemoved) { |
| mLayersRemoved = false; |
| mVisibleRegionsDirty = true; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (mLayersPendingRemoval.indexOf(layer) >= 0) { |
| // this layer is not visible anymore |
| // TODO: we could traverse the tree from front to back and |
| // compute the actual visible region |
| // TODO: we could cache the transformed region |
| Region visibleReg; |
| visibleReg.set(layer->computeScreenBounds()); |
| invalidateLayerStack(layer, visibleReg); |
| } |
| }); |
| } |
| |
| commitTransaction(); |
| |
| updateCursorAsync(); |
| } |
| |
| void SurfaceFlinger::updateCursorAsync() |
| { |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (displayDevice->getHwcDisplayId() < 0) { |
| continue; |
| } |
| |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| layer->updateCursorPosition(displayDevice); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::commitTransaction() |
| { |
| if (!mLayersPendingRemoval.isEmpty()) { |
| // Notify removed layers now that they can't be drawn from |
| for (const auto& l : mLayersPendingRemoval) { |
| recordBufferingStats(l->getName().string(), |
| l->getOccupancyHistory(true)); |
| l->onRemoved(); |
| } |
| mLayersPendingRemoval.clear(); |
| } |
| |
| // If this transaction is part of a window animation then the next frame |
| // we composite should be considered an animation as well. |
| mAnimCompositionPending = mAnimTransactionPending; |
| |
| mDrawingState = mCurrentState; |
| // clear the "changed" flags in current state |
| mCurrentState.colorMatrixChanged = false; |
| |
| mDrawingState.traverseInZOrder([](Layer* layer) { |
| layer->commitChildList(); |
| }); |
| mTransactionPending = false; |
| mAnimTransactionPending = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice, |
| Region& outDirtyRegion, Region& outOpaqueRegion) |
| { |
| ATRACE_CALL(); |
| ALOGV("computeVisibleRegions"); |
| |
| Region aboveOpaqueLayers; |
| Region aboveCoveredLayers; |
| Region dirty; |
| |
| outDirtyRegion.clear(); |
| |
| mDrawingState.traverseInReverseZOrder([&](Layer* layer) { |
| // start with the whole surface at its current location |
| const Layer::State& s(layer->getDrawingState()); |
| |
| // only consider the layers on the given layer stack |
| if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary())) |
| return; |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen |
| * and not fully transparent. This is essentially the layer's |
| * footprint minus the opaque regions above it. |
| * Areas covered by a translucent surface are considered visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all |
| * visible regions above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible |
| * non-transparent regions and can be removed from the layer list. It |
| * does not affect the visibleRegion of this layer or any layers |
| * beneath it. The hint may not be correct if apps don't respect the |
| * SurfaceView restrictions (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_LIKELY(layer->isVisible())) { |
| const bool translucent = !layer->isOpaque(s); |
| Rect bounds(layer->computeScreenBounds()); |
| visibleRegion.set(bounds); |
| Transform tr = layer->getTransform(); |
| if (!visibleRegion.isEmpty()) { |
| // Remove the transparent area from the visible region |
| if (translucent) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(s.activeTransparentRegion); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } |
| |
| // compute the opaque region |
| const int32_t layerOrientation = tr.getOrientation(); |
| if (layer->getAlpha() == 1.0f && !translucent && |
| ((layerOrientation & Transform::ROT_INVALID) == false)) { |
| // the opaque region is the layer's footprint |
| opaqueRegion = visibleRegion; |
| } |
| } |
| } |
| |
| if (visibleRegion.isEmpty()) { |
| layer->clearVisibilityRegions(); |
| return; |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update aboveCoveredLayers for next (lower) layer |
| aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(aboveOpaqueLayers); |
| |
| // compute this layer's dirty region |
| if (layer->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(layer->visibleRegion); |
| layer->contentDirty = false; |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole |
| * visible region but only keep what used to be covered by |
| * something -- which mean it may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got |
| * exposed because of a resize. |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldVisibleRegion = layer->visibleRegion; |
| const Region oldCoveredRegion = layer->coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed); |
| } |
| dirty.subtractSelf(aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| outDirtyRegion.orSelf(dirty); |
| |
| // Update aboveOpaqueLayers for next (lower) layer |
| aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Store the visible region in screen space |
| layer->setVisibleRegion(visibleRegion); |
| layer->setCoveredRegion(coveredRegion); |
| layer->setVisibleNonTransparentRegion( |
| visibleRegion.subtract(transparentRegion)); |
| }); |
| |
| outOpaqueRegion = aboveOpaqueLayers; |
| } |
| |
| void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) { |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) { |
| hw->dirtyRegion.orSelf(dirty); |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handlePageFlip() |
| { |
| ALOGV("handlePageFlip"); |
| |
| nsecs_t latchTime = systemTime(); |
| |
| bool visibleRegions = false; |
| bool frameQueued = false; |
| bool newDataLatched = false; |
| |
| // Store the set of layers that need updates. This set must not change as |
| // buffers are being latched, as this could result in a deadlock. |
| // Example: Two producers share the same command stream and: |
| // 1.) Layer 0 is latched |
| // 2.) Layer 0 gets a new frame |
| // 2.) Layer 1 gets a new frame |
| // 3.) Layer 1 is latched. |
| // Display is now waiting on Layer 1's frame, which is behind layer 0's |
| // second frame. But layer 0's second frame could be waiting on display. |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->hasQueuedFrame()) { |
| frameQueued = true; |
| if (layer->shouldPresentNow(mPrimaryDispSync)) { |
| mLayersWithQueuedFrames.push_back(layer); |
| } else { |
| layer->useEmptyDamage(); |
| } |
| } else { |
| layer->useEmptyDamage(); |
| } |
| }); |
| |
| for (auto& layer : mLayersWithQueuedFrames) { |
| const Region dirty(layer->latchBuffer(visibleRegions, latchTime)); |
| layer->useSurfaceDamage(); |
| invalidateLayerStack(layer, dirty); |
| if (layer->isBufferLatched()) { |
| newDataLatched = true; |
| } |
| } |
| |
| mVisibleRegionsDirty |= visibleRegions; |
| |
| // If we will need to wake up at some time in the future to deal with a |
| // queued frame that shouldn't be displayed during this vsync period, wake |
| // up during the next vsync period to check again. |
| if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { |
| signalLayerUpdate(); |
| } |
| |
| // Only continue with the refresh if there is actually new work to do |
| return !mLayersWithQueuedFrames.empty() && newDataLatched; |
| } |
| |
| void SurfaceFlinger::invalidateHwcGeometry() |
| { |
| mGeometryInvalid = true; |
| } |
| |
| |
| void SurfaceFlinger::doDisplayComposition( |
| const sp<const DisplayDevice>& displayDevice, |
| const Region& inDirtyRegion) |
| { |
| // We only need to actually compose the display if: |
| // 1) It is being handled by hardware composer, which may need this to |
| // keep its virtual display state machine in sync, or |
| // 2) There is work to be done (the dirty region isn't empty) |
| bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0; |
| if (!isHwcDisplay && inDirtyRegion.isEmpty()) { |
| ALOGV("Skipping display composition"); |
| return; |
| } |
| |
| ALOGV("doDisplayComposition"); |
| if (!doComposeSurfaces(displayDevice)) return; |
| |
| // swap buffers (presentation) |
| displayDevice->swapBuffers(getHwComposer()); |
| } |
| |
| bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& displayDevice) |
| { |
| ALOGV("doComposeSurfaces"); |
| |
| const Region bounds(displayDevice->bounds()); |
| const DisplayRenderArea renderArea(displayDevice); |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| const bool hasClientComposition = getBE().mHwc->hasClientComposition(hwcId); |
| ATRACE_INT("hasClientComposition", hasClientComposition); |
| |
| bool applyColorMatrix = false; |
| bool needsLegacyColorMatrix = false; |
| bool legacyColorMatrixApplied = false; |
| |
| if (hasClientComposition) { |
| ALOGV("hasClientComposition"); |
| |
| Dataspace outputDataspace = Dataspace::UNKNOWN; |
| if (displayDevice->hasWideColorGamut()) { |
| outputDataspace = displayDevice->getCompositionDataSpace(); |
| } |
| getBE().mRenderEngine->setOutputDataSpace(outputDataspace); |
| getBE().mRenderEngine->setDisplayMaxLuminance( |
| displayDevice->getHdrCapabilities().getDesiredMaxLuminance()); |
| |
| const bool hasDeviceComposition = getBE().mHwc->hasDeviceComposition(hwcId); |
| const bool skipClientColorTransform = getBE().mHwc->hasCapability( |
| HWC2::Capability::SkipClientColorTransform); |
| |
| applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform; |
| if (applyColorMatrix) { |
| getRenderEngine().setupColorTransform(mDrawingState.colorMatrix); |
| } |
| |
| needsLegacyColorMatrix = |
| (displayDevice->getActiveRenderIntent() >= RenderIntent::ENHANCE && |
| outputDataspace != Dataspace::UNKNOWN && |
| outputDataspace != Dataspace::SRGB); |
| |
| if (!displayDevice->makeCurrent()) { |
| ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s", |
| displayDevice->getDisplayName().string()); |
| getRenderEngine().resetCurrentSurface(); |
| |
| // |mStateLock| not needed as we are on the main thread |
| if(!getDefaultDisplayDeviceLocked()->makeCurrent()) { |
| ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting."); |
| } |
| return false; |
| } |
| |
| // Never touch the framebuffer if we don't have any framebuffer layers |
| if (hasDeviceComposition) { |
| // when using overlays, we assume a fully transparent framebuffer |
| // NOTE: we could reduce how much we need to clear, for instance |
| <
|