blob: b921d954dc59ec8fc19ac7a904d1a80bcb78dc27 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
#define LOG_NDEBUG 0
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input focus tracking.
#define DEBUG_FOCUS 0
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
// Log debug messages about hover events.
#define DEBUG_HOVER 0
#include "InputDispatcher.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <sstream>
#include <stddef.h>
#include <time.h>
#include <unistd.h>
#include <android-base/chrono_utils.h>
#include <android-base/stringprintf.h>
#include <log/log.h>
#include <utils/Trace.h>
#include <powermanager/PowerManager.h>
#include <binder/Binder.h>
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
using android::base::StringPrintf;
namespace android {
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
constexpr nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
constexpr nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Amount of time to allow for an event to be dispatched (measured since its eventTime)
// before considering it stale and dropping it.
constexpr nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec
// Amount of time to allow touch events to be streamed out to a connection before requiring
// that the first event be finished. This value extends the ANR timeout by the specified
// amount. For example, if streaming is allowed to get ahead by one second relative to the
// queue of waiting unfinished events, then ANRs will similarly be delayed by one second.
constexpr nsecs_t STREAM_AHEAD_EVENT_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Log a warning when an interception call takes longer than this to process.
constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms;
// Number of recent events to keep for debugging purposes.
constexpr size_t RECENT_QUEUE_MAX_SIZE = 10;
// Sequence number for synthesized or injected events.
constexpr uint32_t SYNTHESIZED_EVENT_SEQUENCE_NUM = 0;
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static std::string dispatchModeToString(int32_t dispatchMode) {
switch (dispatchMode) {
case InputTarget::FLAG_DISPATCH_AS_IS:
return "DISPATCH_AS_IS";
case InputTarget::FLAG_DISPATCH_AS_OUTSIDE:
return "DISPATCH_AS_OUTSIDE";
case InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER:
return "DISPATCH_AS_HOVER_ENTER";
case InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT:
return "DISPATCH_AS_HOVER_EXIT";
case InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT:
return "DISPATCH_AS_SLIPPERY_EXIT";
case InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER:
return "DISPATCH_AS_SLIPPERY_ENTER";
}
return StringPrintf("%" PRId32, dispatchMode);
}
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
>> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool validateKeyEvent(int32_t action) {
if (! isValidKeyAction(action)) {
ALOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
static bool isValidMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT:
case AMOTION_EVENT_ACTION_SCROLL:
return true;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
int32_t index = getMotionEventActionPointerIndex(action);
return index >= 0 && index < pointerCount;
}
case AMOTION_EVENT_ACTION_BUTTON_PRESS:
case AMOTION_EVENT_ACTION_BUTTON_RELEASE:
return actionButton != 0;
default:
return false;
}
}
static bool validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount,
const PointerProperties* pointerProperties) {
if (! isValidMotionAction(action, actionButton, pointerCount)) {
ALOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
ALOGE("Motion event has invalid pointer count %zu; value must be between 1 and %d.",
pointerCount, MAX_POINTERS);
return false;
}
BitSet32 pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
ALOGE("Motion event has invalid pointer id %d; value must be between 0 and %d",
id, MAX_POINTER_ID);
return false;
}
if (pointerIdBits.hasBit(id)) {
ALOGE("Motion event has duplicate pointer id %d", id);
return false;
}
pointerIdBits.markBit(id);
}
return true;
}
static void dumpRegion(std::string& dump, const Region& region) {
if (region.isEmpty()) {
dump += "<empty>";
return;
}
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump += "|";
}
dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
}
template<typename T, typename U>
static T getValueByKey(std::unordered_map<U, T>& map, U key) {
typename std::unordered_map<U, T>::const_iterator it = map.find(key);
return it != map.end() ? it->second : T{};
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
mPolicy(policy),
mPendingEvent(nullptr), mLastDropReason(DROP_REASON_NOT_DROPPED),
mAppSwitchSawKeyDown(false), mAppSwitchDueTime(LONG_LONG_MAX),
mNextUnblockedEvent(nullptr),
mDispatchEnabled(false), mDispatchFrozen(false), mInputFilterEnabled(false),
mFocusedDisplayId(ADISPLAY_ID_DEFAULT),
mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
mLooper = new Looper(false);
mReporter = createInputReporter();
mKeyRepeatState.lastKeyEntry = nullptr;
policy->getDispatcherConfiguration(&mConfig);
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
std::scoped_lock _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
}
while (mConnectionsByFd.size() != 0) {
unregisterInputChannel(mConnectionsByFd.valueAt(0)->inputChannel);
}
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN;
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
#if DEBUG_FOCUS
ALOGD("Dispatch frozen. Waiting some more.");
#endif
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (! mPendingEvent) {
if (mInboundQueue.isEmpty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.dequeueAtHead();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(mPendingEvent);
}
// Get ready to dispatch the event.
resetANRTimeoutsLocked();
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != nullptr);
bool done = false;
DropReason dropReason = DROP_REASON_NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DROP_REASON_POLICY;
} else if (!mDispatchEnabled) {
dropReason = DROP_REASON_DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = nullptr;
}
switch (mPendingEvent->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::TYPE_DEVICE_RESET: {
DeviceResetEntry* typedEntry =
static_cast<DeviceResetEntry*>(mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DROP_REASON_NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::TYPE_KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEvent(typedEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DROP_REASON_NOT_DROPPED) {
dropReason = DROP_REASON_APP_SWITCH;
}
}
if (dropReason == DROP_REASON_NOT_DROPPED
&& isStaleEvent(currentTime, typedEntry)) {
dropReason = DROP_REASON_STALE;
}
if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DROP_REASON_BLOCKED;
}
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) {
dropReason = DROP_REASON_APP_SWITCH;
}
if (dropReason == DROP_REASON_NOT_DROPPED
&& isStaleEvent(currentTime, typedEntry)) {
dropReason = DROP_REASON_STALE;
}
if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DROP_REASON_BLOCKED;
}
done = dispatchMotionLocked(currentTime, typedEntry,
&dropReason, nextWakeupTime);
break;
}
default:
ALOG_ASSERT(false);
break;
}
if (done) {
if (dropReason != DROP_REASON_NOT_DROPPED) {
dropInboundEventLocked(mPendingEvent, dropReason);
}
mLastDropReason = dropReason;
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.isEmpty();
mInboundQueue.enqueueAtTail(entry);
traceInboundQueueLengthLocked();
switch (entry->type) {
case EventEntry::TYPE_KEY: {
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
KeyEntry* keyEntry = static_cast<KeyEntry*>(entry);
if (isAppSwitchKeyEvent(keyEntry)) {
if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
#if DEBUG_APP_SWITCH
ALOGD("App switch is pending!");
#endif
mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
break;
}
case EventEntry::TYPE_MOTION: {
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->action == AMOTION_EVENT_ACTION_DOWN
&& (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY
&& mInputTargetWaitApplicationToken != nullptr) {
int32_t displayId = motionEntry->displayId;
int32_t x = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> touchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y);
if (touchedWindowHandle != nullptr
&& touchedWindowHandle->getApplicationToken()
!= mInputTargetWaitApplicationToken) {
// User touched a different application than the one we are waiting on.
// Flag the event, and start pruning the input queue.
mNextUnblockedEvent = motionEntry;
needWake = true;
}
}
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(EventEntry* entry) {
entry->refCount += 1;
mRecentQueue.enqueueAtTail(entry);
if (mRecentQueue.count() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.dequeueAtHead()->release();
}
}
sp<InputWindowHandle> InputDispatcher::findTouchedWindowAtLocked(int32_t displayId,
int32_t x, int32_t y, bool addOutsideTargets, bool addPortalWindows) {
// Traverse windows from front to back to find touched window.
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo->displayId == displayId) {
int32_t flags = windowInfo->layoutParamsFlags;
if (windowInfo->visible) {
if (!(flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags & (InputWindowInfo::FLAG_NOT_FOCUSABLE
| InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
int32_t portalToDisplayId = windowInfo->portalToDisplayId;
if (portalToDisplayId != ADISPLAY_ID_NONE
&& portalToDisplayId != displayId) {
if (addPortalWindows) {
// For the monitoring channels of the display.
mTempTouchState.addPortalWindow(windowHandle);
}
return findTouchedWindowAtLocked(
portalToDisplayId, x, y, addOutsideTargets, addPortalWindows);
}
// Found window.
return windowHandle;
}
}
if (addOutsideTargets && (flags & InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH)) {
mTempTouchState.addOrUpdateWindow(
windowHandle, InputTarget::FLAG_DISPATCH_AS_OUTSIDE, BitSet32(0));
}
}
}
}
return nullptr;
}
std::vector<InputDispatcher::TouchedMonitor> InputDispatcher::findTouchedGestureMonitorsLocked(
int32_t displayId, const std::vector<sp<InputWindowHandle>>& portalWindows) {
std::vector<TouchedMonitor> touchedMonitors;
std::vector<Monitor> monitors = getValueByKey(mGestureMonitorsByDisplay, displayId);
addGestureMonitors(monitors, touchedMonitors);
for (const sp<InputWindowHandle>& portalWindow : portalWindows) {
const InputWindowInfo* windowInfo = portalWindow->getInfo();
monitors = getValueByKey(mGestureMonitorsByDisplay, windowInfo->portalToDisplayId);
addGestureMonitors(monitors, touchedMonitors,
-windowInfo->frameLeft, -windowInfo->frameTop);
}
return touchedMonitors;
}
void InputDispatcher::addGestureMonitors(const std::vector<Monitor>& monitors,
std::vector<TouchedMonitor>& outTouchedMonitors, float xOffset, float yOffset) {
if (monitors.empty()) {
return;
}
outTouchedMonitors.reserve(monitors.size() + outTouchedMonitors.size());
for (const Monitor& monitor : monitors) {
outTouchedMonitors.emplace_back(monitor, xOffset, yOffset);
}
}
void InputDispatcher::dropInboundEventLocked(EventEntry* entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DROP_REASON_POLICY:
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("Dropped event because policy consumed it.");
#endif
reason = "inbound event was dropped because the policy consumed it";
break;
case DROP_REASON_DISABLED:
if (mLastDropReason != DROP_REASON_DISABLED) {
ALOGI("Dropped event because input dispatch is disabled.");
}
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DROP_REASON_APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DROP_REASON_BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DROP_REASON_STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
default:
ALOG_ASSERT(false);
return;
}
switch (entry->type) {
case EventEntry::TYPE_KEY: {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
}
}
static bool isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME
|| keyCode == AKEYCODE_ENDCALL
|| keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEvent(KeyEntry* keyEntry) {
return ! (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
&& isAppSwitchKeyCode(keyEntry->keyCode)
&& (keyEntry->policyFlags & POLICY_FLAG_TRUSTED)
&& (keyEntry->policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::isStaleEvent(nsecs_t currentTime, EventEntry* entry) {
return currentTime - entry->eventTime >= STALE_EVENT_TIMEOUT;
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.isEmpty();
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.isEmpty()) {
return false;
}
do {
CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
Command command = commandEntry->command;
(this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
delete commandEntry;
} while (! mCommandQueue.isEmpty());
return true;
}
InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
CommandEntry* commandEntry = new CommandEntry(command);
mCommandQueue.enqueueAtTail(commandEntry);
return commandEntry;
}
void InputDispatcher::drainInboundQueueLocked() {
while (! mInboundQueue.isEmpty()) {
EventEntry* entry = mInboundQueue.dequeueAtHead();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
resetANRTimeoutsLocked();
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = nullptr;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Injected inbound event was dropped.");
#endif
setInjectionResult(entry, INPUT_EVENT_INJECTION_FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = nullptr;
}
addRecentEventLocked(entry);
entry->release();
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry->release();
mKeyRepeatState.lastKeyEntry = nullptr;
}
}
InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = entry->policyFlags &
(POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED);
if (entry->refCount == 1) {
entry->recycle();
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry = new KeyEntry(SYNTHESIZED_EVENT_SEQUENCE_NUM, currentTime,
entry->deviceId, entry->source, entry->displayId, policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
entry->release();
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyConfigurationChangedLockedInterruptible);
commandEntry->eventTime = entry->eventTime;
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(
nsecs_t currentTime, DeviceResetEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry->eventTime,
entry->deviceId);
#endif
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"device was reset");
options.deviceId = entry->deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
return true;
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
if (entry->repeatCount == 0
&& entry->action == AKEY_EVENT_ACTION_DOWN
&& (entry->policyFlags & POLICY_FLAG_TRUSTED)
&& (!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (! entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetails("dispatchKey - ", entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, getTargetDisplayId(entry));
if (focusedWindowHandle != nullptr) {
commandEntry->inputChannel =
getInputChannelLocked(focusedWindowHandle->getToken());
}
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DROP_REASON_NOT_DROPPED) {
*dropReason = DROP_REASON_POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DROP_REASON_NOT_DROPPED) {
setInjectionResult(entry, *dropReason == DROP_REASON_POLICY
? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
mReporter->reportDroppedKey(entry->sequenceNum);
return true;
}
// Identify targets.
std::vector<InputTarget> inputTargets;
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(entry));
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32 ", "
"policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, "
"metaState=0x%x, repeatCount=%d, downTime=%" PRId64,
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->displayId, entry->policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
entry->repeatCount, entry->downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) {
ATRACE_CALL();
// Preprocessing.
if (! entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetails("dispatchMotion - ", entry);
}
// Clean up if dropping the event.
if (*dropReason != DROP_REASON_NOT_DROPPED) {
setInjectionResult(entry, *dropReason == DROP_REASON_POLICY
? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
return true;
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
std::vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult = findTouchedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime, &conflictingPointerActions);
} else {
// Non touch event. (eg. trackball)
injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResult(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
if (injectionResult != INPUT_EVENT_INJECTION_PERMISSION_DENIED) {
CancelationOptions::Mode mode(isPointerEvent ?
CancelationOptions::CANCEL_POINTER_EVENTS :
CancelationOptions::CANCEL_NON_POINTER_EVENTS);
CancelationOptions options(mode, "input event injection failed");
synthesizeCancelationEventsForMonitorsLocked(options);
}
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(entry));
if (isPointerEvent) {
ssize_t stateIndex = mTouchStatesByDisplay.indexOfKey(entry->displayId);
if (stateIndex >= 0) {
const TouchState& state = mTouchStatesByDisplay.valueAt(stateIndex);
if (!state.portalWindows.empty()) {
// The event has gone through these portal windows, so we add monitoring targets of
// the corresponding displays as well.
for (size_t i = 0; i < state.portalWindows.size(); i++) {
const InputWindowInfo* windowInfo = state.portalWindows[i]->getInfo();
addGlobalMonitoringTargetsLocked(inputTargets, windowInfo->portalToDisplayId,
-windowInfo->frameLeft, -windowInfo->frameTop);
}
}
}
}
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->displayId, entry->policyFlags,
entry->action, entry->actionButton, entry->flags,
entry->metaState, entry->buttonState,
entry->edgeFlags, entry->xPrecision, entry->yPrecision,
entry->downTime);
for (uint32_t i = 0; i < entry->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry->pointerProperties[i].id,
entry->pointerProperties[i].toolType,
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
EventEntry* eventEntry, const std::vector<InputTarget>& inputTargets) {
ATRACE_CALL();
#if DEBUG_DISPATCH_CYCLE
ALOGD("dispatchEventToCurrentInputTargets");
#endif
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(eventEntry);
for (const InputTarget& inputTarget : inputTargets) {
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
} else {
#if DEBUG_FOCUS
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().c_str());
#endif
}
}
}
int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
const EventEntry* entry,
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle,
nsecs_t* nextWakeupTime, const char* reason) {
if (applicationHandle == nullptr && windowHandle == nullptr) {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
#if DEBUG_FOCUS
ALOGD("Waiting for system to become ready for input. Reason: %s", reason);
#endif
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
mInputTargetWaitTimeoutExpired = false;
mInputTargetWaitApplicationToken.clear();
}
} else {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
#if DEBUG_FOCUS
ALOGD("Waiting for application to become ready for input: %s. Reason: %s",
getApplicationWindowLabel(applicationHandle, windowHandle).c_str(),
reason);
#endif
nsecs_t timeout;
if (windowHandle != nullptr) {
timeout = windowHandle->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
} else if (applicationHandle != nullptr) {
timeout = applicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT);
} else {
timeout = DEFAULT_INPUT_DISPATCHING_TIMEOUT;
}
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = currentTime + timeout;
mInputTargetWaitTimeoutExpired = false;
mInputTargetWaitApplicationToken.clear();
if (windowHandle != nullptr) {
mInputTargetWaitApplicationToken = windowHandle->getApplicationToken();
}
if (mInputTargetWaitApplicationToken == nullptr && applicationHandle != nullptr) {
mInputTargetWaitApplicationToken = applicationHandle->getApplicationToken();
}
}
}
if (mInputTargetWaitTimeoutExpired) {
return INPUT_EVENT_INJECTION_TIMED_OUT;
}
if (currentTime >= mInputTargetWaitTimeoutTime) {
onANRLocked(currentTime, applicationHandle, windowHandle,
entry->eventTime, mInputTargetWaitStartTime, reason);
// Force poll loop to wake up immediately on next iteration once we get the
// ANR response back from the policy.
*nextWakeupTime = LONG_LONG_MIN;
return INPUT_EVENT_INJECTION_PENDING;
} else {
// Force poll loop to wake up when timeout is due.
if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
*nextWakeupTime = mInputTargetWaitTimeoutTime;
}
return INPUT_EVENT_INJECTION_PENDING;
}
}
void InputDispatcher::removeWindowByTokenLocked(const sp<IBinder>& token) {
for (size_t d = 0; d < mTouchStatesByDisplay.size(); d++) {
TouchState& state = mTouchStatesByDisplay.editValueAt(d);
state.removeWindowByToken(token);
}
}
void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
const sp<InputChannel>& inputChannel) {
if (newTimeout > 0) {
// Extend the timeout.
mInputTargetWaitTimeoutTime = now() + newTimeout;
} else {
// Give up.
mInputTargetWaitTimeoutExpired = true;
// Input state will not be realistic. Mark it out of sync.
if (inputChannel.get()) {
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
sp<IBinder> token = connection->inputChannel->getToken();
if (token != nullptr) {
removeWindowByTokenLocked(token);
}
if (connection->status == Connection::STATUS_NORMAL) {
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
}
}
}
nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked(
nsecs_t currentTime) {
if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
return currentTime - mInputTargetWaitStartTime;
}
return 0;
}
void InputDispatcher::resetANRTimeoutsLocked() {
#if DEBUG_FOCUS
ALOGD("Resetting ANR timeouts.");
#endif
// Reset input target wait timeout.
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
mInputTargetWaitApplicationToken.clear();
}
/**
* Get the display id that the given event should go to. If this event specifies a valid display id,
* then it should be dispatched to that display. Otherwise, the event goes to the focused display.
* Focused display is the display that the user most recently interacted with.
*/
int32_t InputDispatcher::getTargetDisplayId(const EventEntry* entry) {
int32_t displayId;
switch (entry->type) {
case EventEntry::TYPE_KEY: {
const KeyEntry* typedEntry = static_cast<const KeyEntry*>(entry);
displayId = typedEntry->displayId;
break;
}
case EventEntry::TYPE_MOTION: {
const MotionEntry* typedEntry = static_cast<const MotionEntry*>(entry);
displayId = typedEntry->displayId;
break;
}
default: {
ALOGE("Unsupported event type '%" PRId32 "' for target display.", entry->type);
return ADISPLAY_ID_NONE;
}
}
return displayId == ADISPLAY_ID_NONE ? mFocusedDisplayId : displayId;
}
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
const EventEntry* entry, std::vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime) {
int32_t injectionResult;
std::string reason;
int32_t displayId = getTargetDisplayId(entry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
sp<InputApplicationHandle> focusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
// If there is no currently focused window and no focused application
// then drop the event.
if (focusedWindowHandle == nullptr) {
if (focusedApplicationHandle != nullptr) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
focusedApplicationHandle, nullptr, nextWakeupTime,
"Waiting because no window has focus but there is a "
"focused application that may eventually add a window "
"when it finishes starting up.");
goto Unresponsive;
}
ALOGI("Dropping event because there is no focused window or focused application in display "
"%" PRId32 ".", displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check permissions.
if (!checkInjectionPermission(focusedWindowHandle, entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
goto Failed;
}
// Check whether the window is ready for more input.
reason = checkWindowReadyForMoreInputLocked(currentTime,
focusedWindowHandle, entry, "focused");
if (!reason.empty()) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
focusedApplicationHandle, focusedWindowHandle, nextWakeupTime, reason.c_str());
goto Unresponsive;
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
addWindowTargetLocked(focusedWindowHandle,
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS, BitSet32(0),
inputTargets);
// Done.
Failed:
Unresponsive:
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatistics(currentTime, entry, injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
ALOGD("findFocusedWindow finished: injectionResult=%d, "
"timeSpentWaitingForApplication=%0.1fms",
injectionResult, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
const MotionEntry* entry, std::vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime,
bool* outConflictingPointerActions) {
ATRACE_CALL();
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
int32_t displayId = entry->displayId;
int32_t action = entry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
sp<InputWindowHandle> newHoverWindowHandle;
// Copy current touch state into mTempTouchState.
// This state is always reset at the end of this function, so if we don't find state
// for the specified display then our initial state will be empty.
const TouchState* oldState = nullptr;
ssize_t oldStateIndex = mTouchStatesByDisplay.indexOfKey(displayId);
if (oldStateIndex >= 0) {
oldState = &mTouchStatesByDisplay.valueAt(oldStateIndex);
mTempTouchState.copyFrom(*oldState);
}
bool isSplit = mTempTouchState.split;
bool switchedDevice = mTempTouchState.deviceId >= 0 && mTempTouchState.displayId >= 0
&& (mTempTouchState.deviceId != entry->deviceId
|| mTempTouchState.source != entry->source
|| mTempTouchState.displayId != displayId);
bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
bool newGesture = (maskedAction == AMOTION_EVENT_ACTION_DOWN
|| maskedAction == AMOTION_EVENT_ACTION_SCROLL
|| isHoverAction);
bool wrongDevice = false;
if (newGesture) {
bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
if (switchedDevice && mTempTouchState.down && !down && !isHoverAction) {
#if DEBUG_FOCUS
ALOGD("Dropping event because a pointer for a different device is already down "
"in display %" PRId32, displayId);
#endif
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
mTempTouchState.reset();
mTempTouchState.down = down;
mTempTouchState.deviceId = entry->deviceId;
mTempTouchState.source = entry->source;
mTempTouchState.displayId = displayId;
isSplit = false;
} else if (switchedDevice && maskedAction == AMOTION_EVENT_ACTION_MOVE) {
#if DEBUG_FOCUS
ALOGI("Dropping move event because a pointer for a different device is already active "
"in display %" PRId32, displayId);
#endif
// TODO: test multiple simultaneous input streams.
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
int32_t x = int32_t(entry->pointerCoords[pointerIndex].
getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry->pointerCoords[pointerIndex].
getAxisValue(AMOTION_EVENT_AXIS_Y));
bool isDown = maskedAction == AMOTION_EVENT_ACTION_DOWN;
sp<InputWindowHandle> newTouchedWindowHandle = findTouchedWindowAtLocked(
displayId, x, y, isDown /*addOutsideTargets*/, true /*addPortalWindows*/);
std::vector<TouchedMonitor> newGestureMonitors = isDown
? findTouchedGestureMonitorsLocked(displayId, mTempTouchState.portalWindows)
: std::vector<TouchedMonitor>{};
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != nullptr
&& newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting.
isSplit = true;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = nullptr;
}
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == nullptr) {
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = mTempTouchState.getFirstForegroundWindowHandle();
}
if (newTouchedWindowHandle == nullptr && newGestureMonitors.empty()) {
ALOGI("Dropping event because there is no touchable window or gesture monitor at "
"(%d, %d) in display %" PRId32 ".", x, y, displayId);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
if (newTouchedWindowHandle != nullptr) {
// Set target flags.
int32_t targetFlags = InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(newTouchedWindowHandle)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
// Update hover state.
if (isHoverAction) {
newHoverWindowHandle = newTouchedWindowHandle;
} else if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
newHoverWindowHandle = mLastHoverWindowHandle;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry->pointerProperties[pointerIndex].id;
pointerIds.markBit(pointerId);
}
mTempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
mTempTouchState.addGestureMonitors(newGestureMonitors);
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (! mTempTouchState.down) {
#if DEBUG_FOCUS
ALOGD("Dropping event because the pointer is not down or we previously "
"dropped the pointer down event in display %" PRId32, displayId);
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE
&& entry->pointerCount == 1
&& mTempTouchState.isSlippery()) {
int32_t x = int32_t(entry->pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry->pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> oldTouchedWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y);
if (oldTouchedWindowHandle != newTouchedWindowHandle
&& oldTouchedWindowHandle != nullptr
&& newTouchedWindowHandle != nullptr) {
#if DEBUG_FOCUS
ALOGD("Touch is slipping out of window %s into window %s in display %" PRId32,
oldTouchedWindowHandle->getName().c_str(),
newTouchedWindowHandle->getName().c_str(),
displayId);
#endif
// Make a slippery exit from the old window.
mTempTouchState.addOrUpdateWindow(oldTouchedWindowHandle,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT, BitSet32(0));
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = true;
}
int32_t targetFlags = InputTarget::FLAG_FOREGROUND
| InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
BitSet32 pointerIds;
if (isSplit) {
pointerIds.markBit(entry->pointerProperties[0].id);
}
mTempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
}
}
if (newHoverWindowHandle != mLastHoverWindowHandle) {
// Let the previous window know that the hover sequence is over.
if (mLastHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover exit event to window %s.",
mLastHoverWindowHandle->getName().c_str());
#endif
mTempTouchState.addOrUpdateWindow(mLastHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT, BitSet32(0));
}
// Let the new window know that the hover sequence is starting.
if (newHoverWindowHandle != nullptr) {
#if DEBUG_HOVER
ALOGD("Sending hover enter event to window %s.",
newHoverWindowHandle->getName().c_str());
#endif
mTempTouchState.addOrUpdateWindow(newHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER, BitSet32(0));
}
}
// Check permission to inject into all touched foreground windows and ensure there
// is at least one touched foreground window.
{
bool haveForegroundWindow = false;
for (const TouchedWindow& touchedWindow : mTempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
haveForegroundWindow = true;
if (! checkInjectionPermission(touchedWindow.windowHandle,
entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
}
}
bool hasGestureMonitor = !mTempTouchState.gestureMonitors.empty();
if (!haveForegroundWindow && !hasGestureMonitor) {
#if DEBUG_FOCUS
ALOGD("Dropping event because there is no touched foreground window in display %"
PRId32 " or gesture monitor to receive it.", displayId);
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Permission granted to injection into all touched foreground windows.
injectionPermission = INJECTION_PERMISSION_GRANTED;
}
// Check whether windows listening for outside touches are owned by the same UID. If it is
// set the policy flag that we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle) {
const int32_t foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (const TouchedWindow& touchedWindow : mTempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
sp<InputWindowHandle> inputWindowHandle = touchedWindow.windowHandle;
if (inputWindowHandle->getInfo()->ownerUid != foregroundWindowUid) {
mTempTouchState.addOrUpdateWindow(inputWindowHandle,
InputTarget::FLAG_ZERO_COORDS, BitSet32(0));
}
}
}
}
}
// Ensure all touched foreground windows are ready for new input.
for (const TouchedWindow& touchedWindow : mTempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
// Check whether the window is ready for more input.
std::string reason = checkWindowReadyForMoreInputLocked(currentTime,
touchedWindow.windowHandle, entry, "touched");
if (!reason.empty()) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
nullptr, touchedWindow.windowHandle, nextWakeupTime, reason.c_str());
goto Unresponsive;
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle && foregroundWindowHandle->getInfo()->hasWallpaper) {
const std::vector<sp<InputWindowHandle>> windowHandles =
getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& windowHandle : windowHandles) {
const InputWindowInfo* info = windowHandle->getInfo();
if (info->displayId == displayId
&& windowHandle->getInfo()->layoutParamsType
== InputWindowInfo::TYPE_WALLPAPER) {
mTempTouchState.addOrUpdateWindow(windowHandle,
InputTarget::FLAG_WINDOW_IS_OBSCURED
| InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED
| InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0));
}
}
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
for (const TouchedWindow& touchedWindow : mTempTouchState.windows) {
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.pointerIds, inputTargets);
}
for (const TouchedMonitor& touchedMonitor : mTempTouchState.gestureMonitors) {
addMonitoringTargetLocked(touchedMonitor.monitor, touchedMonitor.xOffset,
touchedMonitor.yOffset, inputTargets);
}
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
mTempTouchState.filterNonAsIsTouchWindows();
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(nullptr, entry->injectionState)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
// Update final pieces of touch state if the injector had permission.
if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
if (!wrongDevice) {
if (switchedDevice) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Switched to a different device.");
#endif
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->down) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Hover received while pointer was down.");
#endif
*outConflictingPointerActions = true;
}
mTempTouchState.reset();
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
mTempTouchState.deviceId = entry->deviceId;
mTempTouchState.source = entry->source;
mTempTouchState.displayId = displayId;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP
|| maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
mTempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && oldState->down) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Down received while already down.");
#endif
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry->pointerProperties[pointerIndex].id;
for (size_t i = 0; i < mTempTouchState.windows.size(); ) {
TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
mTempTouchState.windows.erase(mTempTouchState.windows.begin() + i);
continue;
}
}
i += 1;
}
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (mTempTouchState.displayId >= 0) {
if (oldStateIndex >= 0) {
mTouchStatesByDisplay.editValueAt(oldStateIndex).copyFrom(mTempTouchState);
} else {
mTouchStatesByDisplay.add(displayId, mTempTouchState);
}
} else if (oldStateIndex >= 0) {
mTouchStatesByDisplay.removeItemsAt(oldStateIndex);
}
}
// Update hover state.
mLastHoverWindowHandle = newHoverWindowHandle;
}
} else {
#if DEBUG_FOCUS
ALOGD("Not updating touch focus because injection was denied.");
#endif
}
Unresponsive:
// Reset temporary touch state to ensure we release unnecessary references to input channels.
mTempTouchState.reset();
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatistics(currentTime, entry, injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
ALOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, "
"timeSpentWaitingForApplication=%0.1fms",
injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
void InputDispatcher::addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds, std::vector<InputTarget>& inputTargets) {
sp<InputChannel> inputChannel = getInputChannelLocked(windowHandle->getToken());
if (inputChannel == nullptr) {
ALOGW("Window %s already unregistered input channel", windowHandle->getName().c_str());
return;
}
const InputWindowInfo* windowInfo = windowHandle->getInfo();
InputTarget target;
target.inputChannel = inputChannel;
target.flags = targetFlags;
target.xOffset = - windowInfo->frameLeft;
target.yOffset = - windowInfo->frameTop;
target.globalScaleFactor = windowInfo->globalScaleFactor;
target.windowXScale = windowInfo->windowXScale;
target.windowYScale = windowInfo->windowYScale;
target.pointerIds = pointerIds;
inputTargets.push_back(target);
}
void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector<InputTarget>& inputTargets,
int32_t displayId, float xOffset, float yOffset) {
std::unordered_map<int32_t, std::vector<Monitor>>::const_iterator it =
mGlobalMonitorsByDisplay.find(displayId);
if (it != mGlobalMonitorsByDisplay.end()) {
const std::vector<Monitor>& monitors = it->second;
for (const Monitor& monitor : monitors) {
addMonitoringTargetLocked(monitor, xOffset, yOffset, inputTargets);
}
}
}
void InputDispatcher::addMonitoringTargetLocked(const Monitor& monitor,
float xOffset, float yOffset, std::vector<InputTarget>& inputTargets) {
InputTarget target;
target.inputChannel = monitor.inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
target.xOffset = xOffset;
target.yOffset = yOffset;
target.pointerIds.clear();
target.globalScaleFactor = 1.0f;
inputTargets.push_back(target);
}
bool InputDispatcher::checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
const InjectionState* injectionState) {
if (injectionState
&& (windowHandle == nullptr
|| windowHandle->getInfo()->ownerUid != injectionState->injectorUid)
&& !hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) {
if (windowHandle != nullptr) {
ALOGW("Permission denied: injecting event from pid %d uid %d to window %s "
"owned by uid %d",
injectionState->injectorPid, injectionState->injectorUid,
windowHandle->getName().c_str(),
windowHandle->getInfo()->ownerUid);
} else {
ALOGW("Permission denied: injecting event from pid %d uid %d",
injectionState->injectorPid, injectionState->injectorUid);
}
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(
const sp<InputWindowHandle>& windowHandle, int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (otherHandle == windowHandle) {
break;
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (otherInfo->displayId == displayId
&& otherInfo->visible && !otherInfo->isTrustedOverlay()
&& otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowObscuredLocked(const sp<InputWindowHandle>& windowHandle) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<InputWindowHandle>> windowHandles = getWindowHandlesLocked(displayId);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
for (const sp<InputWindowHandle>& otherHandle : windowHandles) {
if (otherHandle == windowHandle) {
break;
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (otherInfo->displayId == displayId
&& otherInfo->visible && !otherInfo->isTrustedOverlay()
&& otherInfo->overlaps(windowInfo)) {
return true;
}
}
return false;
}
std::string InputDispatcher::checkWindowReadyForMoreInputLocked(nsecs_t currentTime,
const sp<InputWindowHandle>& windowHandle, const EventEntry* eventEntry,
const char* targetType) {
// If the window is paused then keep waiting.
if (windowHandle->getInfo()->paused) {
return StringPrintf("Waiting because the %s window is paused.", targetType);
}
// If the window's connection is not registered then keep waiting.
ssize_t connectionIndex = getConnectionIndexLocked(
getInputChannelLocked(windowHandle->getToken()));
if (connectionIndex < 0) {
return StringPrintf("Waiting because the %s window's input channel is not "
"registered with the input dispatcher. The window may be in the process "
"of being removed.", targetType);
}
// If the connection is dead then keep waiting.
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
if (connection->status != Connection::STATUS_NORMAL) {
return StringPrintf("Waiting because the %s window's input connection is %s."
"The window may be in the process of being removed.", targetType,
connection->getStatusLabel());
}
// If the connection is backed up then keep waiting.
if (connection->inputPublisherBlocked) {
return StringPrintf("Waiting because the %s window's input channel is full. "
"Outbound queue length: %d. Wait queue length: %d.",
targetType, connection->outboundQueue.count(), connection->waitQueue.count());
}
// Ensure that the dispatch queues aren't too far backed up for this event.
if (eventEntry->type == EventEntry::TYPE_KEY) {
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
if (!connection->outboundQueue.isEmpty() || !connection->waitQueue.isEmpty()) {
return StringPrintf("Waiting to send key event because the %s window has not "
"finished processing all of the input events that were previously "
"delivered to it. Outbound queue length: %d. Wait queue length: %d.",
targetType, connection->outboundQueue.count(), connection->waitQueue.count());
}
} else {
// Touch events can always be sent to a window immediately because the user intended
// to touch whatever was visible at the time. Even if focus changes or a new
// window appears moments later, the touch event was meant to be delivered to
// whatever window happened to be on screen at the time.
//
// Generic motion events, such as trackball or joystick events are a little trickier.
// Like key events, generic motion events are delivered to the focused window.
// Unlike key events, generic motion events don't tend to transfer focus to other
// windows and it is not important for them to be serialized. So we prefer to deliver
// generic motion events as soon as possible to improve efficiency and reduce lag
// through batching.
//
// The one case where we pause input event delivery is when the wait queue is piling
// up with lots of events because the application is not responding.
// This condition ensures that ANRs are detected reliably.
if (!connection->waitQueue.isEmpty()
&& currentTime >= connection->waitQueue.head->deliveryTime
+ STREAM_AHEAD_EVENT_TIMEOUT) {
return StringPrintf("Waiting to send non-key event because the %s window has not "
"finished processing certain input events that were delivered to it over "
"%0.1fms ago. Wait queue length: %d. Wait queue head age: %0.1fms.",
targetType, STREAM_AHEAD_EVENT_TIMEOUT * 0.000001f,
connection->waitQueue.count(),
(currentTime - connection->waitQueue.head->deliveryTime) * 0.000001f);
}
}
return "";
}
std::string InputDispatcher::getApplicationWindowLabel(
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle) {
if (applicationHandle != nullptr) {
if (windowHandle != nullptr) {
std::string label(applicationHandle->getName());
label += " - ";
label += windowHandle->getName();
return label;
} else {
return applicationHandle->getName();
}
} else if (windowHandle != nullptr) {
return windowHandle->getName();
} else {
return "<unknown application or window>";
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry* eventEntry) {
int32_t displayId = getTargetDisplayId(eventEntry);
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, displayId);
if (focusedWindowHandle != nullptr) {
const InputWindowInfo* info = focusedWindowHandle->getInfo();
if (info->inputFeatures & InputWindowInfo::INPUT_FEATURE_DISABLE_USER_ACTIVITY) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Not poking user activity: disabled by window '%s'.", info->name.c_str());
#endif
return;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry->type) {
case EventEntry::TYPE_MOTION: {
const MotionEntry* motionEntry = static_cast<const MotionEntry*>(eventEntry);
if (motionEntry->action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (MotionEvent::isTouchEvent(motionEntry->source, motionEntry->action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::TYPE_KEY: {
const KeyEntry* keyEntry = static_cast<const KeyEntry*>(eventEntry);
if (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
}
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventEntry->eventTime;
commandEntry->userActivityEventType = eventType;
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf(
"prepareDispatchCycleLocked(inputChannel=%s, sequenceNum=%" PRIu32 ")",
connection->getInputChannelName().c_str(), eventEntry->sequenceNum);
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"xOffset=%f, yOffset=%f, globalScaleFactor=%f, "
"windowScaleFactor=(%f, %f), pointerIds=0x%x",
connection->getInputChannelName().c_str(), inputTarget->flags,
inputTarget->xOffset, inputTarget->yOffset,
inputTarget->globalScaleFactor,
inputTarget->windowXScale, inputTarget->windowYScale,
inputTarget->pointerIds.value);
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName().c_str(), connection->getStatusLabel());
#endif
return;
}
// Split a motion event if needed.
if (inputTarget->flags & InputTarget::FLAG_SPLIT) {
ALOG_ASSERT(eventEntry->type == EventEntry::TYPE_MOTION);
MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry);
if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
MotionEntry* splitMotionEntry = splitMotionEvent(
originalMotionEntry, inputTarget->pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
#if DEBUG_FOCUS
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName().c_str());
logOutboundMotionDetails(" ", splitMotionEntry);
#endif
enqueueDispatchEntriesLocked(currentTime, connection,
splitMotionEntry, inputTarget);
splitMotionEntry->release();
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf(
"enqueueDispatchEntriesLocked(inputChannel=%s, sequenceNum=%" PRIu32 ")",
connection->getInputChannelName().c_str(), eventEntry->sequenceNum);
ATRACE_NAME(message.c_str());
}
bool wasEmpty = connection->outboundQueue.isEmpty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.isEmpty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
int32_t dispatchMode) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf(
"enqueueDispatchEntry(inputChannel=%s, dispatchMode=%s)",
connection->getInputChannelName().c_str(),
dispatchModeToString(dispatchMode).c_str());
ATRACE_NAME(message.c_str());
}
int32_t inputTargetFlags = inputTarget->flags;
if (!(inputTargetFlags & dispatchMode)) {
return;
}
inputTargetFlags = (inputTargetFlags & ~InputTarget::FLAG_DISPATCH_MASK) | dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
DispatchEntry* dispatchEntry = new DispatchEntry(eventEntry, // increments ref
inputTargetFlags, inputTarget->xOffset, inputTarget->yOffset,
inputTarget->globalScaleFactor, inputTarget->windowXScale,
inputTarget->windowYScale);
// Apply target flags and update the connection's input state.
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
dispatchEntry->resolvedAction = keyEntry->action;
dispatchEntry->resolvedFlags = keyEntry->flags;
if (!connection->inputState.trackKey(keyEntry,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent key event",
connection->getInputChannelName().c_str());
#endif
delete dispatchEntry;
return; // skip the inconsistent event
}
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry->action;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
&& !connection->inputState.isHovering(
motionEntry->deviceId, motionEntry->source, motionEntry->displayId)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover enter event",
connection->getInputChannelName().c_str());
#endif
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry->flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent motion event",
connection->getInputChannelName().c_str());
#endif
delete dispatchEntry;
return; // skip the inconsistent event
}
dispatchPointerDownOutsideFocus(motionEntry->source,
dispatchEntry->resolvedAction, inputTarget->inputChannel->getToken());
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatches(eventEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
traceOutboundQueueLength(connection);
}
void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action,
const sp<IBinder>& newToken) {
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK;
if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) {
return;
}
sp<InputWindowHandle> inputWindowHandle = getWindowHandleLocked(newToken);
if (inputWindowHandle == nullptr) {
return;
}
sp<InputWindowHandle> focusedWindowHandle =
getValueByKey(mFocusedWindowHandlesByDisplay, mFocusedDisplayId);
bool hasFocusChanged = !focusedWindowHandle || focusedWindowHandle->getToken() != newToken;
if (!hasFocusChanged) {
return;
}
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doOnPointerDownOutsideFocusLockedInterruptible);
commandEntry->newToken = newToken;
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("startDispatchCycleLocked(inputChannel=%s)",
connection->getInputChannelName().c_str());
ATRACE_NAME(message.c_str());
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ startDispatchCycle",
connection->getInputChannelName().c_str());
#endif
while (connection->status == Connection::STATUS_NORMAL
&& !connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.head;
dispatchEntry->deliveryTime = currentTime;
// Publish the event.
status_t status;
EventEntry* eventEntry = dispatchEntry->eventEntry;
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(dispatchEntry->seq,
keyEntry->deviceId, keyEntry->source, keyEntry->displayId,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry->pointerCoords;
// Set the X and Y offset depending on the input source.
float xOffset, yOffset;
if ((motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& !(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
float globalScaleFactor = dispatchEntry->globalScaleFactor;
float wxs = dispatchEntry->windowXScale;
float wys = dispatchEntry->windowYScale;
xOffset = dispatchEntry->xOffset * wxs;
yOffset = dispatchEntry->yOffset * wys;
if (wxs != 1.0f || wys != 1.0f || globalScaleFactor != 1.0f) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i] = motionEntry->pointerCoords[i];
scaledCoords[i].scale(globalScaleFactor, wxs, wys);
}
usingCoords = scaledCoords;
}
} else {
xOffset = 0.0f;
yOffset = 0.0f;
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (uint32_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
// Publish the motion event.
status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq,
motionEntry->deviceId, motionEntry->source, motionEntry->displayId,
dispatchEntry->resolvedAction, motionEntry->actionButton,
dispatchEntry->resolvedFlags, motionEntry->edgeFlags,
motionEntry->metaState, motionEntry->buttonState, motionEntry->classification,
xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision,
motionEntry->downTime, motionEntry->eventTime,
motionEntry->pointerCount, motionEntry->pointerProperties,
usingCoords);
break;
}
default:
ALOG_ASSERT(false);
return;
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.isEmpty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%d", connection->getInputChannelName().c_str(),
status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName().c_str());
#endif
connection->inputPublisherBlocked = true;
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%d", connection->getInputChannelName().c_str(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.dequeue(dispatchEntry);
traceOutboundQueueLength(connection);
connection->waitQueue.enqueueAtTail(dispatchEntry);
traceWaitQueueLength(connection);
}
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq, bool handled) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName().c_str(), seq, toString(handled));
#endif
connection->inputPublisherBlocked = false;
if (connection->status == Connection::STATUS_BROKEN
|| connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}
void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, bool notify) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ abortBrokenDispatchCycle - notify=%s",
connection->getInputChannelName().c_str(), toString(notify));
#endif
// Clear the dispatch queues.
drainDispatchQueue(&connection->outboundQueue);
traceOutboundQueueLength(connection);
drainDispatchQueue(&connection->waitQueue);
traceWaitQueueLength(connection);
// The connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (connection->status == Connection::STATUS_NORMAL) {
connection->status = Connection::STATUS_BROKEN;
if (notify) {
// Notify other system components.
onDispatchCycleBrokenLocked(currentTime, connection);
}
}
}
void InputDispatcher::drainDispatchQueue(Queue<DispatchEntry>* queue) {
while (!queue->isEmpty()) {
DispatchEntry* dispatchEntry = queue->dequeueAtHead();
releaseDispatchEntry(dispatchEntry);
}
}
void InputDispatcher::releaseDispatchEntry(DispatchEntry* dispatchEntry) {
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatches(dispatchEntry->eventEntry);
}
delete dispatchEntry;
}
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
InputDispatcher* d = static_cast<InputDispatcher*>(data);
{ // acquire lock
std::scoped_lock _l(d->mLock);
ssize_t connectionIndex = d->mConnectionsByFd.indexOfKey(fd);
if (connectionIndex < 0) {
ALOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x", fd, events);
return 0; // remove the callback
}
bool notify;
sp<Connection> connection = d->mConnectionsByFd.valueAt(connectionIndex);
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", connection->getInputChannelName().c_str(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status;
for (;;) {
uint32_t seq;
bool handled;
status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
if (status) {
break;
}
d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
gotOne = true;
}
if (gotOne) {
d->runCommandsLockedInterruptible();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName().c_str(), status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn
// about them.
notify = !connection->monitor;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x", connection->getInputChannelName().c_str(), events);
}
}
// Unregister the channel.
d->unregisterInputChannelLocked(connection->inputChannel, notify);
return 0; // remove the callback
} // release lock
}
void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked (
const CancelationOptions& options) {
for (size_t i = 0; i < mConnectionsByFd.size(); i++) {
synthesizeCancelationEventsForConnectionLocked(
mConnectionsByFd.valueAt(i), options);
}
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked (
const CancelationOptions& options) {
synthesizeCancelationEventsForMonitorsLocked(options, mGlobalMonitorsByDisplay);
synthesizeCancelationEventsForMonitorsLocked(options, mGestureMonitorsByDisplay);
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked(
const CancelationOptions& options,
std::unordered_map<int32_t, std::vector<Monitor>>& monitorsByDisplay) {
for (const auto& it : monitorsByDisplay) {
const std::vector<Monitor>& monitors = it.second;
for (const Monitor& monitor : monitors) {
synthesizeCancelationEventsForInputChannelLocked(monitor.inputChannel, options);
}
}
}
void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
const sp<InputChannel>& channel, const CancelationOptions& options) {
ssize_t index = getConnectionIndexLocked(channel);
if (index >= 0) {
synthesizeCancelationEventsForConnectionLocked(
mConnectionsByFd.valueAt(index), options);
}
}
void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
const sp<Connection>& connection, const CancelationOptions& options) {
if (connection->status == Connection::STATUS_BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<EventEntry*> cancelationEvents;
connection->inputState.synthesizeCancelationEvents(currentTime,
cancelationEvents, options);
if (!cancelationEvents.empty()) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("channel '%s' ~ Synthesized %zu cancelation events to bring channel back in sync "
"with reality: %s, mode=%d.",
connection->getInputChannelName().c_str(), cancelationEvents.size(),
options.reason, options.mode);
#endif
for (size_t i = 0; i < cancelationEvents.size(); i++) {
EventEntry* cancelationEventEntry = cancelationEvents[i];
switch (cancelationEventEntry->type) {
case EventEntry::TYPE_KEY:
logOutboundKeyDetails("cancel - ",
static_cast<KeyEntry*>(cancelationEventEntry));
break;
case EventEntry::TYPE_MOTION:
logOutboundMotionDetails("cancel - ",
static_cast<MotionEntry*>(cancelationEventEntry));
break;
}
InputTarget target;
sp<InputWindowHandle> windowHandle = getWindowHandleLocked(
connection->inputChannel->getToken());
if (windowHandle != nullptr) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
target.xOffset = -windowInfo->frameLeft;
target.yOffset = -windowInfo->frameTop;
target.globalScaleFactor = windowInfo->globalScaleFactor;
target.windowXScale = windowInfo->windowXScale;
target.windowYScale = windowInfo->windowYScale;
} else {
target.xOffset = 0;
target.yOffset = 0;
target.globalScaleFactor = 1.0f;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
enqueueDispatchEntryLocked(connection, cancelationEventEntry, // increments ref
&target, InputTarget::FLAG_DISPATCH_AS_IS);
cancelationEventEntry->release();
}
startDispatchCycleLocked(currentTime, connection);
}
}
InputDispatcher::MotionEntry*
InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) {
ALOG_ASSERT(pointerIds.value != 0);
uint32_t splitPointerIndexMap[MAX_POINTERS];
PointerProperties splitPointerProperties[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry->pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
const PointerProperties& pointerProperties =
originalMotionEntry->pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerProperties[splitPointerCount].copyFrom(pointerProperties);
splitPointerCoords[splitPointerCount].copyFrom(
originalMotionEntry->pointerCoords[originalPointerIndex]);
splitPointerCount += 1;
}
}
if (splitPointerCount != pointerIds.count()) {
// This is bad. We are missing some of the pointers that we expected to deliver.
// Most likely this indicates that we received an ACTION_MOVE events that has
// different pointer ids than we expected based on the previous ACTION_DOWN
// or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
// in this way.
ALOGW("Dropping split motion event because the pointer count is %d but "
"we expected there to be %d pointers. This probably means we received "
"a broken sequence of pointer ids from the input device.",
splitPointerCount, pointerIds.count());
return nullptr;
}
int32_t action = originalMotionEntry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
|| maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
const PointerProperties& pointerProperties =
originalMotionEntry->pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != uint32_t(splitPointerProperties[splitPointerIndex].id)) {
splitPointerIndex += 1;
}
action = maskedAction | (splitPointerIndex
<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
MotionEntry* splitMotionEntry = new MotionEntry(
originalMotionEntry->sequenceNum,
originalMotionEntry->eventTime,
originalMotionEntry->deviceId,
originalMotionEntry->source,
originalMotionEntry->displayId,
originalMotionEntry->policyFlags,
action,
originalMotionEntry->actionButton,
originalMotionEntry->flags,
originalMotionEntry->metaState,
originalMotionEntry->buttonState,
originalMotionEntry->classification,
originalMotionEntry->edgeFlags,
originalMotionEntry->xPrecision,
originalMotionEntry->yPrecision,
originalMotionEntry->downTime,
splitPointerCount, splitPointerProperties, splitPointerCoords, 0, 0);
if (originalMotionEntry->injectionState) {
splitMotionEntry->injectionState = originalMotionEntry->injectionState;
splitMotionEntry->injectionState->refCount += 1;
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyConfigurationChanged - eventTime=%" PRId64, args->eventTime);
#endif
bool needWake;
{ // acquire lock
std::scoped_lock _l(mLock);
ConfigurationChangedEntry* newEntry =
new ConfigurationChangedEntry(args->sequenceNum, args->eventTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
/**
* If one of the meta shortcuts is detected, process them here:
* Meta + Backspace -> generate BACK
* Meta + Enter -> generate HOME
* This will potentially overwrite keyCode and metaState.
*/
void InputDispatcher::accelerateMetaShortcuts(const int32_t deviceId, const int32_t action,
int32_t& keyCode, int32_t& metaState) {
if (metaState & AMETA_META_ON && action == AKEY_EVENT_ACTION_DOWN) {
int32_t newKeyCode = AKEYCODE_UNKNOWN;
if (keyCode == AKEYCODE_DEL) {
newKeyCode = AKEYCODE_BACK;
} else if (keyCode == AKEYCODE_ENTER) {
newKeyCode = AKEYCODE_HOME;
}
if (newKeyCode != AKEYCODE_UNKNOWN) {
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
mReplacedKeys.add(replacement, newKeyCode);
keyCode = newKeyCode;
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
} else if (action == AKEY_EVENT_ACTION_UP) {
// In order to maintain a consistent stream of up and down events, check to see if the key
// going up is one we've replaced in a down event and haven't yet replaced in an up event,
// even if the modifier was released between the down and the up events.
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
ssize_t index = mReplacedKeys.indexOfKey(replacement);
if (index >= 0) {
keyCode = mReplacedKeys.valueAt(index);
mReplacedKeys.removeItemsAt(index);
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
}
}
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyKey - eventTime=%" PRId64
", deviceId=%d, source=0x%x, displayId=%" PRId32 "policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%" PRId64,
args->eventTime, args->deviceId, args->source, args->displayId, args->policyFlags,
args->action, args->flags, args->keyCode, args->scanCode,
args->metaState, args->downTime);
#endif
if (!validateKeyEvent(args->action)) {
return;
}
uint32_t policyFlags = args->policyFlags;
int32_t flags = args->flags;
int32_t metaState = args->metaState;
// InputDispatcher tracks and generates key repeats on behalf of
// whatever notifies it, so repeatCount should always be set to 0
constexpr int32_t repeatCount = 0;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
int32_t keyCode = args->keyCode;
accelerateMetaShortcuts(args->deviceId, args->action, keyCode, metaState);
KeyEvent event;
event.initialize(args->deviceId, args->source, args->displayId, args->action,
flags, keyCode, args->scanCode, metaState, repeatCount,
args->downTime, args->eventTime);
android::base::Timer t;
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
KeyEntry* newEntry = new KeyEntry(args->sequenceNum, args->eventTime,
args->deviceId, args->source, args->displayId, policyFlags,
args->action, flags, keyCode, args->scanCode,
metaState, repeatCount, args->downTime);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyMotion - eventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
args->eventTime, args->deviceId, args->source, args->displayId, args->policyFlags,
args->action, args->actionButton, args->flags, args->metaState, args->buttonState,
args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime);
for (uint32_t i = 0; i < args->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, args->pointerProperties[i].id,
args->pointerProperties[i].toolType,
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
if (!validateMotionEvent(args->action, args->actionButton,
args->pointerCount, args->pointerProperties)) {
return;
}
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
android::base::Timer t;
mPolicy->interceptMotionBeforeQueueing(args->displayId, args->eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendMotionToInputFilterLocked(args)) {
mLock.unlock();
MotionEvent event;
event.initialize(args->deviceId, args->source, args->displayId,
args->action, args->actionButton,
args->flags, args->edgeFlags, args->metaState, args->buttonState,
args->classification, 0, 0, args->xPrecision, args->yPrecision,
args->downTime, args->eventTime,
args->pointerCount, args->pointerProperties, args->pointerCoords);
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
// Just enqueue a new motion event.
MotionEntry* newEntry = new MotionEntry(args->sequenceNum, args->eventTime,
args->deviceId, args->source, args->displayId, policyFlags,
args->action, args->actionButton, args->flags,
args->metaState, args->buttonState, args->classification,
args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime,
args->pointerCount, args->pointerProperties, args->pointerCoords, 0, 0);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifySwitch(const NotifySwitchArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifySwitch - eventTime=%" PRId64 ", policyFlags=0x%x, switchValues=0x%08x, "
"switchMask=0x%08x",
args->eventTime, args->policyFlags, args->switchValues, args->switchMask);
#endif
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy->notifySwitch(args->eventTime,
args->switchValues, args->switchMask, policyFlags);
}
void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyDeviceReset - eventTime=%" PRId64 ", deviceId=%d",
args->eventTime, args->deviceId);
#endif
bool needWake;
{ // acquire lock
std::scoped_lock _l(mLock);
DeviceResetEntry* newEntry =
new DeviceResetEntry(args->sequenceNum, args->eventTime, args->deviceId);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
int32_t InputDispatcher::injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
uint32_t policyFlags) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
"syncMode=%d, timeoutMillis=%d, policyFlags=0x%08x",
event->getType(), injectorPid