blob: aaf2bbdb9ab399f73d6b92a9f88abd3d3ad97121 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBuilder"
#include "ExecutionBuilder.h"
#include <algorithm>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
#include "CompilationBuilder.h"
#include "ControlFlow.h"
#include "CpuExecutor.h"
#include "ExecutionBurstController.h"
#include "HalInterfaces.h"
#include "Manager.h"
#include "ModelArgumentInfo.h"
#include "ModelBuilder.h"
#include "Tracing.h"
#include "TypeManager.h"
#include "Utils.h"
namespace android {
namespace nn {
// Partial validation of output shapes returned from driver, to ensure they
// conform to a very specific set of rules.
static bool validateOutputShapesFromDriver(ErrorStatus executionStatus, const ModelBuilder* model,
const std::vector<OutputShape>& shapes) {
// Enforces the following rules (some of which are from b/154054474):
// - shapes vector is empty except in the case of NONE or OUTPUT_INSUFFICIENT_SIZE.
// If the vector is not empty, it must have as many entries as the step model has outputs.
// - If NONE, then either shapes vector is empty, or every shape is
// marked isSufficient and, if a tensor, has known rank.
// - If OUTPUT_INSUFFICIENT_SIZE, then the vector is not empty. At least one entry
// is marked !isSufficient.
switch (executionStatus) {
case ErrorStatus::NONE: {
NN_RET_CHECK(shapes.size() == 0 || shapes.size() == model->outputCount())
<< "With execution ErrorStatus " << executionStatus
<< " output shapes vector must be empty or of length " << model->outputCount()
<< " but has length " << shapes.size();
NN_RET_CHECK(std::all_of(shapes.begin(), shapes.end(),
[](const OutputShape& shape) { return shape.isSufficient; }))
<< "With execution ErrorStatus " << executionStatus
<< " at least one output shape is unexpectedly marked !isSufficient";
const TypeManager* tm = TypeManager::get();
for (uint32_t outputIndex = 0, outputCount = shapes.size(); outputIndex < outputCount;
++outputIndex) {
const Operand& outputOperand = model->getOutputOperand(outputIndex);
NN_RET_CHECK(!tm->isTensorType(outputOperand.type) ||
(shapes[outputIndex].dimensions.size() != 0))
<< "With execution ErrorStatus " << executionStatus << " output#"
<< outputIndex << " shape unexpectedly has zero rank";
}
break;
}
case ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: {
NN_RET_CHECK(shapes.size() == model->outputCount())
<< "With execution ErrorStatus " << executionStatus
<< " output shapes vector must be of length " << model->outputCount()
<< " but has length " << shapes.size();
NN_RET_CHECK(std::any_of(shapes.begin(), shapes.end(),
[](const OutputShape& shape) { return !shape.isSufficient; }))
<< "With execution ErrorStatus " << executionStatus
<< " at least one output shape must have been marked !isSufficient";
break;
}
default: {
NN_RET_CHECK(shapes.size() == 0)
<< "With execution ErrorStatus " << executionStatus
<< " output shapes vector must be empty but has length " << shapes.size();
break;
}
}
return true;
}
static bool validateOutputShapesFromDriver(int executionResultCode, const ModelBuilder* model,
const std::vector<OutputShape>& shapes) {
return validateOutputShapesFromDriver(convertResultCodeToErrorStatus(executionResultCode),
model, shapes);
}
static MeasureTiming measureTiming(const ExecutionBuilder* execution) {
return execution->measureTiming() ? MeasureTiming::YES : MeasureTiming::NO;
}
static bool checkDimensionInfo(const Operand& operand, const ANeuralNetworksOperandType* newType,
const char* tag, bool allowUnspecified) {
if (newType != nullptr) {
const Extension::OperandTypeInformation* info = nullptr;
if (isExtension(operand.type)) {
NN_RET_CHECK(TypeManager::get()->getExtensionOperandTypeInfo(operand.type, &info));
}
if (validateOperandType(*newType, info, tag, allowUnspecified) !=
ANEURALNETWORKS_NO_ERROR) {
LOG(ERROR) << tag << ": Invalid newType";
return false;
}
if (operand.dimensions.size() == 0) {
return true;
}
if (operand.dimensions.size() != newType->dimensionCount) {
LOG(ERROR) << tag << ": Setting with incompatible dimension count";
return false;
}
for (uint32_t i = 0; i < newType->dimensionCount; i++) {
if (operand.dimensions[i] != newType->dimensions[i] && operand.dimensions[i] != 0) {
LOG(ERROR) << tag << ": Overriding a fully specified dimension is disallowed";
return false;
}
}
} else {
if (!allowUnspecified && TypeManager::get()->isTensorType(operand.type) &&
tensorHasUnspecifiedDimensions(operand)) {
LOG(ERROR) << tag << ": Setting with operand type that is not fully specified";
return false;
}
}
return true;
}
ExecutionBuilder::ExecutionBuilder(const CompilationBuilder* compilation)
: mCompilation(compilation),
mModel(compilation->mModel),
mPlan(&compilation->mPlan),
mPartitioning(compilation->mPartitioning),
mInputs(mModel->inputCount()),
mOutputs(mModel->outputCount()) {
VLOG(EXECUTION) << "ExecutionBuilder::ExecutionBuilder with " << mInputs.size()
<< " inputs and " << mOutputs.size() << " outputs";
}
const ModelBuilder* ExecutionBuilder::getSourceModel(uint32_t index) const {
return mPlan->getSourceModels().getModel(index);
}
bool ExecutionBuilder::isFinished() const {
CHECK(!(mFinishedWithoutSyncFence && hasSyncFence()));
if (mFinishedWithoutSyncFence) {
return true;
}
if (hasSyncFence()) {
auto r = syncWait(mSyncFenceFd, 0);
CHECK(r != FenceState::UNKNOWN);
return r != FenceState::ACTIVE;
}
return false;
}
ExecutionBuilder::Completion ExecutionBuilder::completedWith() const {
CHECK(isFinished());
if (hasSyncFence()) {
auto r = syncWait(mSyncFenceFd, 0);
CHECK(r == FenceState::SIGNALED || r == FenceState::ERROR);
return (r == FenceState::SIGNALED) ? Completion::NO_ERROR : Completion::OTHER_ERROR;
} else {
return mCompletionWithoutSyncFence;
}
}
int ExecutionBuilder::setInput(uint32_t index, const ANeuralNetworksOperandType* type,
const void* buffer, size_t length) {
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setInput called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mInputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_setInput bad index " << index << " " << count;
return ANEURALNETWORKS_BAD_DATA;
}
if (!checkDimensionInfo(mModel->getInputOperand(index), type,
"ANeuralNetworksExecution_setInput", buffer == nullptr)) {
return ANEURALNETWORKS_BAD_DATA;
}
if (length > 0xFFFFFFFF) {
LOG(ERROR) << "ANeuralNetworksExecution_setInput input exceeds max length " << length;
return ANEURALNETWORKS_BAD_DATA;
}
uint32_t l = static_cast<uint32_t>(length);
if (!mInputs[index].unspecified()) {
LOG(ERROR) << "ANeuralNetworksExecution_setInput called when an input has already been "
"provided";
return ANEURALNETWORKS_BAD_STATE;
}
int n;
std::tie(n, mInputs[index]) = ModelArgumentInfo::createFromPointer(
mModel->getInputOperand(index), type, const_cast<void*>(buffer), l);
return n;
}
int ExecutionBuilder::setInputFromMemory(uint32_t index, const ANeuralNetworksOperandType* type,
const RuntimeMemory* memory, size_t offset,
size_t length) {
// Should be similar to StepExecutor::setInputOrOutputFromMemory()
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setInputFromMemory called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mInputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_setInputFromMemory bad index " << index << " "
<< count;
return ANEURALNETWORKS_BAD_DATA;
}
if (!checkDimensionInfo(mModel->getInputOperand(index), type,
"ANeuralNetworksExecution_setInputFromMemory", false)) {
return ANEURALNETWORKS_BAD_DATA;
}
if (!memory->getValidator().validate(mCompilation, IOType::INPUT, index, type, offset,
length)) {
return ANEURALNETWORKS_BAD_DATA;
}
// For some types of memory, e.g. MemoryRuntimeAHWB allocated from ANNMemory_createFromDesc, we
// allow the client to specify offset == 0 && length == 0 indicating that the entire memory
// region is used. We update the length here because the drivers are still expecting a real
// length. For other memories that do not allow this semantic, it is checked in
// MemoryValidatorBase::validate before reaching here.
if (memory->getHidlMemory().valid() && offset == 0 && length == 0) {
length = memory->getHidlMemory().size();
}
// TODO validate the rest
uint32_t poolIndex = mMemories.add(memory);
if (!mInputs[index].unspecified()) {
LOG(ERROR)
<< "ANeuralNetworksExecution_setInputFromMemory called when an input has already "
"been provided";
return ANEURALNETWORKS_BAD_STATE;
}
int n;
std::tie(n, mInputs[index]) = ModelArgumentInfo::createFromMemory(
mModel->getInputOperand(index), type, poolIndex, offset, length);
return n;
}
int ExecutionBuilder::setOutput(uint32_t index, const ANeuralNetworksOperandType* type,
void* buffer, size_t length) {
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutput called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mOutputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutput bad index " << index << " " << count;
return ANEURALNETWORKS_BAD_DATA;
}
if (!checkDimensionInfo(mModel->getOutputOperand(index), type,
"ANeuralNetworksExecution_setOutput", true)) {
return ANEURALNETWORKS_BAD_DATA;
}
if (length > 0xFFFFFFFF) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutput input exceeds max length " << length;
return ANEURALNETWORKS_BAD_DATA;
}
uint32_t l = static_cast<uint32_t>(length);
if (!mOutputs[index].unspecified()) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutput called when an output has already been "
"provided";
return ANEURALNETWORKS_BAD_STATE;
}
int n;
std::tie(n, mOutputs[index]) =
ModelArgumentInfo::createFromPointer(mModel->getOutputOperand(index), type, buffer, l);
return n;
}
int ExecutionBuilder::setOutputFromMemory(uint32_t index, const ANeuralNetworksOperandType* type,
const RuntimeMemory* memory, size_t offset,
size_t length) {
// Should be similar to StepExecutor::setInputOrOutputFromMemory()
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mOutputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory bad index " << index << " "
<< count;
return ANEURALNETWORKS_BAD_DATA;
}
if (!checkDimensionInfo(mModel->getOutputOperand(index), type,
"ANeuralNetworksExecution_setOutputFromMemory", true)) {
return ANEURALNETWORKS_BAD_DATA;
}
if (!memory->getValidator().validate(mCompilation, IOType::OUTPUT, index, type, offset,
length)) {
return ANEURALNETWORKS_BAD_DATA;
}
// For some types of memory, e.g. MemoryRuntimeAHWB allocated from ANNMemory_createFromDesc, we
// allow the client to specify offset == 0 && length == 0 indicating that the entire memory
// region is used. We update the length here because the drivers are still expecting a real
// length. For other memories that do not allow this semantic, it is checked in
// MemoryValidatorBase::validate before reaching here.
if (memory->getHidlMemory().valid() && offset == 0 && length == 0) {
length = memory->getHidlMemory().size();
}
// TODO validate the rest
uint32_t poolIndex = mMemories.add(memory);
if (!mOutputs[index].unspecified()) {
LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory called when an output has "
"already been provided";
return ANEURALNETWORKS_BAD_STATE;
}
int n;
std::tie(n, mOutputs[index]) = ModelArgumentInfo::createFromMemory(
mModel->getOutputOperand(index), type, poolIndex, offset, length);
return n;
}
int ExecutionBuilder::setMeasureTiming(bool measure) {
if (!mCompilation->mExplicitDeviceList || (mCompilation->mDevices.size() != 1)) {
LOG(ERROR) << "ANeuralNetworksExecution_setMeasureTiming called on "
<< "an ANeuralNetworksExecution created from an ANeuralNetworksCompilation "
<< "that was not created by ANeuralNetworksCompilation_createForDevices "
<< "with numDevices = 1";
return ANEURALNETWORKS_BAD_DATA;
}
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setMeasureTiming called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
mMeasureTiming = measure;
return ANEURALNETWORKS_NO_ERROR;
}
int ExecutionBuilder::getDuration(int32_t durationCode, uint64_t* duration) const {
if (!isFinished()) {
LOG(ERROR) << "ANeuralNetworksExecution_getDuration called before the "
"execution has finished.";
*duration = UINT64_MAX;
return ANEURALNETWORKS_BAD_STATE;
}
if (completedWith() != Completion::NO_ERROR) {
LOG(ERROR) << "ANeuralNetworksExecution_getDuration called on an execution "
"that has encountered an error.";
*duration = UINT64_MAX;
return ANEURALNETWORKS_BAD_STATE;
}
// NOTE: At the HAL level, timing is in microseconds. At the NDK level, nanoseconds.
const uint64_t kNanoPerMicro = 1000;
if (!mMeasureTiming) {
*duration = UINT64_MAX;
return ANEURALNETWORKS_BAD_STATE;
}
Timing timingLaunched = mTimingWithoutFencedExecutionCallback;
Timing timingFenced = timingLaunched;
if (mFencedExecutionCallback != nullptr) {
ErrorStatus status;
const hardware::Return<void> ret = mFencedExecutionCallback->getExecutionInfo(
[&status, &timingLaunched, &timingFenced](
V1_3::ErrorStatus error, V1_2::Timing tLaunched, V1_2::Timing tFenced) {
status = uncheckedConvert(error);
timingLaunched = uncheckedConvert(tLaunched);
timingFenced = uncheckedConvert(tFenced);
});
if (!ret.isOk()) {
*duration = UINT64_MAX;
return ANEURALNETWORKS_OP_FAILED;
}
if (status != ErrorStatus::NONE) {
*duration = UINT64_MAX;
return ANEURALNETWORKS_BAD_STATE;
}
}
uint64_t microDuration = UINT64_MAX;
switch (durationCode) {
case ANEURALNETWORKS_DURATION_ON_HARDWARE:
microDuration = timingLaunched.timeOnDevice;
break;
case ANEURALNETWORKS_DURATION_IN_DRIVER:
microDuration = timingLaunched.timeInDriver;
break;
case ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE:
microDuration = timingFenced.timeOnDevice;
break;
case ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER:
microDuration = timingFenced.timeInDriver;
break;
default:
CHECK(!"unexpected");
}
*duration = (microDuration == UINT64_MAX) ? UINT64_MAX : kNanoPerMicro * microDuration;
VLOG(EXECUTION) << "getDuration(" << durationCode << "): " << *duration;
return ANEURALNETWORKS_NO_ERROR;
}
int ExecutionBuilder::setTimeoutDuration(uint64_t duration) {
if (!mCompilation->mExplicitDeviceList || (mCompilation->mDevices.size() != 1)) {
LOG(ERROR) << "ANeuralNetworksExecution_setTimeout called on an ANeuralNetworksExecution "
"created from an ANeuralNetworksCompilation that was not created by "
"ANeuralNetworksCompilation_createForDevices with numDevices = 1";
return ANEURALNETWORKS_BAD_DATA;
}
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setTimeout called after the execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
if (duration > 0) {
mTimeoutDuration = duration;
} else {
mTimeoutDuration.reset();
}
return ANEURALNETWORKS_NO_ERROR;
}
std::optional<uint64_t> ExecutionBuilder::getTimeoutDuration() const {
return mTimeoutDuration;
}
int ExecutionBuilder::setLoopTimeout(uint64_t duration) {
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_setLoopTimeout called after the "
"execution has started.";
return ANEURALNETWORKS_BAD_STATE;
}
if (duration > operation_while::kTimeoutNsMaximum) {
LOG(WARNING) << "ANeuralNetworksExecution_setLoopTimeout input exceeds the maximum allowed "
<< "duration: " << duration << " > " << operation_while::kTimeoutNsMaximum;
duration = operation_while::kTimeoutNsMaximum;
}
mLoopTimeoutDuration = duration;
return ANEURALNETWORKS_NO_ERROR;
}
int ExecutionBuilder::getOutputOperandDimensions(uint32_t index, uint32_t* dimensions) {
if (!isFinished()) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandDimensions called before the "
"execution has finished.";
return ANEURALNETWORKS_BAD_STATE;
}
if (completedWith() == Completion::OTHER_ERROR) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandDimensions called on an execution "
"that has encountered an error.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mOutputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandDimensions bad index " << index
<< " " << count;
return ANEURALNETWORKS_BAD_DATA;
}
const auto& dims = mOutputs[index].dimensions();
if (dims.empty()) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandDimensions can not query "
"dimensions of a scalar";
return ANEURALNETWORKS_BAD_DATA;
}
std::copy(dims.begin(), dims.end(), dimensions);
return mOutputs[index].isSufficient() ? ANEURALNETWORKS_NO_ERROR
: ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE;
}
int ExecutionBuilder::getOutputOperandRank(uint32_t index, uint32_t* rank) {
if (!isFinished()) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandRank called before the "
"execution has finished.";
return ANEURALNETWORKS_BAD_STATE;
}
if (completedWith() == Completion::OTHER_ERROR) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandRank called on an execution "
"that has encountered an error.";
return ANEURALNETWORKS_BAD_STATE;
}
uint32_t count = static_cast<uint32_t>(mOutputs.size());
if (index >= count) {
LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandRank bad index " << index << " "
<< count;
return ANEURALNETWORKS_BAD_DATA;
}
*rank = static_cast<uint32_t>(mOutputs[index].dimensions().size());
return mOutputs[index].isSufficient() ? ANEURALNETWORKS_NO_ERROR
: ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE;
}
// Attempt synchronous execution of full model on CPU.
// TODO: How should we handle timing in this case?
// For Q this is irrelevant: We only support timing in conjunction
// with an explicit device list; and we do not support CPU fallback
// with an explicit device list. See CompilationBuilder::mExplicitDeviceList.
static std::tuple<int, std::vector<OutputShape>, Timing> cpuFallbackFull(
ExecutionBuilder* executionBuilder) {
CHECK(executionBuilder != nullptr);
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "cpuFallbackFull");
VLOG(EXECUTION) << "cpuFallbackFull";
// Get fallback executor.
StepExecutor executor(executionBuilder, executionBuilder->getModel(),
DeviceManager::getCpuDevice(), /*preparedModel=*/nullptr);
executor.mapInputsAndOutputsTrivially();
// Attempt fallback execution.
return executor.computeOnCpuFallback();
}
// Attempt synchronous execution on CPU.
// TODO: How should we handle timing in this case?
// For Q this is irrelevant: We only support timing in conjunction
// with an explicit device list; and we do not support CPU fallback
// with an explicit device list. See CompilationBuilder::mExplicitDeviceList.
static std::tuple<int, std::vector<OutputShape>, Timing, std::shared_ptr<StepExecutor>>
cpuFallbackPartial(const ExecutionPlan& plan,
std::shared_ptr<ExecutionPlan::Controller> controller) {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "cpuFallbackPartial");
VLOG(EXECUTION) << "cpuFallbackPartial";
// Get fallback executor.
std::shared_ptr<StepExecutor> executor;
int n1 = plan.fallback(controller, &executor, nullptr, nullptr);
if (n1 != ANEURALNETWORKS_NO_ERROR) {
return {n1, {}, {}, nullptr};
}
CHECK(executor != nullptr);
// Attempt fallback execution.
auto [n2, outputShapes, timing] = executor->computeOnCpuFallback();
return {n2, std::move(outputShapes), timing, executor};
}
static void asyncStartComputePartitioned(ExecutionBuilder* executionBuilder,
const ExecutionPlan& plan,
std::shared_ptr<ExecutionPlan::Controller> controller,
bool allowCpuFallback,
const std::optional<Deadline>& deadline,
const sp<ExecutionCallback>& executionCallback) {
CHECK(executionBuilder != nullptr);
VLOG(EXECUTION) << "ExecutionBuilder::compute (from plan, iteratively)";
std::vector<OutputShape> outputShapes = executionBuilder->getInitialOutputShapes();
Timing timing;
// Disallow CPU fallback when the ExecutionPlan is simple on CPU.
allowCpuFallback &= !plan.isSimpleCpu();
// On this iteration, do I need to repeat the previous step because it
// reported insufficient size?
bool doInsufficientSizeFallback = false;
while (true) {
VLOG(EXECUTION) << "looking for next StepExecutor";
// Get the current step of the execution.
std::shared_ptr<StepExecutor> executor;
std::shared_ptr<ExecutionBurstController> burstController;
int n = doInsufficientSizeFallback
? plan.fallback(controller, &executor, &burstController, &outputShapes)
: plan.next(controller, &executor, &burstController, &outputShapes);
doInsufficientSizeFallback = false;
if (n != ANEURALNETWORKS_NO_ERROR) {
// During the interpreted execution of control flow, a loop timeout
// might occur in ExecutionPlan::next().
bool missedDeadline = n == ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT ||
n == ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT;
if (allowCpuFallback && !missedDeadline) break;
executionCallback->notify(convertResultCodeToErrorStatus(n), {}, {});
return;
}
// If the code reached the end of the plan without error, then return
// with no error.
if (executor == nullptr) {
executionCallback->notify(ErrorStatus::NONE, outputShapes, timing);
return;
}
const bool executorIsCpu = executor->isCpu();
// Attempt to execute a single step of the execution.
auto [stepN, stepOutputShapes, stepTiming] = executor->compute(deadline, burstController);
// Update global outputs and dynamic temporaries.
StepExecutor::UpdateOutputShapes updateOutputShapes = {};
if (!executor->updateOutputShapes(stepN, stepOutputShapes, &outputShapes,
&updateOutputShapes)) {
stepN = ANEURALNETWORKS_OP_FAILED;
}
// If execution was successful, continue to next step.
if (stepN == ANEURALNETWORKS_NO_ERROR) {
if (updateOutputShapes.zeroSizedInput) {
// We'll need to do full model CPU fallback
VLOG(EXECUTION) << "updateOutputShapes.zeroSizedInput";
stepN = ANEURALNETWORKS_OP_FAILED;
} else {
CHECK(executor->areDynamicTemporariesAllocated());
// We only support collection of timing information in the case
// of a single step, so it's safe to just keep track of the last
// step's timing information.
timing = stepTiming;
continue;
}
}
if (stepN == ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE) {
VLOG(EXECUTION) << "OUTPUT_INSUFFICIENT_SIZE: " << toString(updateOutputShapes);
if (updateOutputShapes.mainOutputInsufficient ||
!updateOutputShapes.updatedDynamicTemporary) {
// Either:
// - At least one main model output is not of sufficient size; or
// - we didn't learn anything new about dynamic temporaries.
// Neither of these is recoverable, so end execution.
const ErrorStatus stepStatus = convertResultCodeToErrorStatus(stepN);
executionCallback->notify(stepStatus, outputShapes, {});
return;
}
// Every main model output is of sufficient size. This implies that
// at least one dynamic temporary is not of sufficient size. This
// is recoverable.
doInsufficientSizeFallback = true;
continue;
}
// If CPU fallback is not allowed and there was an error, end execution.
if (!allowCpuFallback) {
const ErrorStatus stepStatus = convertResultCodeToErrorStatus(stepN);
executionCallback->notify(stepStatus, {}, {});
return;
}
// If CPU execution was already attempted, either:
// (1) perform a full CPU fallback if the plan is not simple, or
// (2) return from the function with an error
if (executorIsCpu) {
if (!plan.isSimple()) break;
executionCallback->notify(convertResultCodeToErrorStatus(stepN), {}, {});
return;
}
// If the code reaches this point, attempt a partial fallback to CPU.
CHECK(allowCpuFallback);
if (updateOutputShapes.zeroSizedInput) {
// Do not attempt a partial fallback.
break;
}
while (true) {
auto [fallbackN, fallbackOutputShapes, fallbackTiming, fallbackExecutor] =
cpuFallbackPartial(plan, controller);
// Update global outputs and dynamic temporaries.
StepExecutor::UpdateOutputShapes fallbackUpdateOutputShapes = {};
if (fallbackExecutor != nullptr &&
!fallbackExecutor->updateOutputShapes(fallbackN, fallbackOutputShapes,
&outputShapes, &fallbackUpdateOutputShapes)) {
fallbackN = ANEURALNETWORKS_OP_FAILED;
}
// If execution was successful, continue to next step.
if (fallbackN == ANEURALNETWORKS_NO_ERROR) {
if (fallbackUpdateOutputShapes.zeroSizedInput) {
// We'll need to do full model CPU fallback
VLOG(EXECUTION) << "fallbackUpdateOutputShapes.zeroSizedInput";
fallbackN = ANEURALNETWORKS_OP_FAILED;
break;
}
CHECK(fallbackExecutor->areDynamicTemporariesAllocated());
// We only support collection of timing information in the case of a
// single step, so it's safe to just keep track of the last step's
// timing information.
timing = fallbackTiming;
goto nextStep;
}
if (fallbackN == ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE) {
VLOG(EXECUTION) << "OUTPUT_INSUFFICIENT_SIZE: "
<< toString(fallbackUpdateOutputShapes);
if (fallbackUpdateOutputShapes.mainOutputInsufficient ||
!fallbackUpdateOutputShapes.updatedDynamicTemporary) {
// Either:
// - At least one main model output is not of sufficient size; or
// - we didn't learn anything new about dynamic temporaries.
// Neither of these is recoverable, so end execution.
const ErrorStatus fallbackStatus = convertResultCodeToErrorStatus(fallbackN);
executionCallback->notify(fallbackStatus, outputShapes, {});
return;
}
// Every main model output is of sufficient size. This implies
// that at least one dynamic temporary is not of sufficient
// size. This is recoverable.
continue;
}
// Do not fallback twice if the ExecutionPlan is simple.
if (plan.isSimple()) {
const ErrorStatus fallbackStatus = convertResultCodeToErrorStatus(fallbackN);
executionCallback->notify(fallbackStatus, {}, {});
return;
}
// If the code reaches this point, then there was an error with the
// fallback. In this case, attempt full fallback.
break;
}
// If the code reaches this point, then there was an error with the
// fallback. In this case, attempt full fallback.
break;
nextStep:
// Bottom of the outer loop
continue;
}
// If the code has reached this point, a potentially recoverable error
// occurred during the step executions. Instead, do a full execution
// fallback on the CPU.
auto [fullN, fullOutputShapes, fullTiming] = cpuFallbackFull(executionBuilder);
const ErrorStatus fullStatus = convertResultCodeToErrorStatus(fullN);
executionCallback->notify(fullStatus, fullOutputShapes, fullTiming);
}
// In case of partitioned execution, startComputeFenced call will return the sync
// fence and the fenced compute callback returned from the last partition.
// Any failed partition will result in the whole execution fallback to CPU if
// allowCpuFallback is set to true.
static std::tuple<int, int, sp<V1_3::IFencedExecutionCallback>> startComputeFenced(
ExecutionBuilder* executionBuilder, const ExecutionPlan& plan,
std::shared_ptr<ExecutionPlan::Controller> controller, const std::vector<int>& waitFor,
uint64_t timeoutDurationAfterFence, const std::optional<Deadline>& deadline,
bool allowCpuFallback) {
// We should have detected this earlier in the call chain and fallen back to
// non-fenced execution. This is an implementation limitation: In order to
// support dynamic temporarires in this code, we'd need to implement
// something like the following:
// - If a partition has outputs of unknown size, execute that partition in a
// non fenced fashion, just as if it were scheduled on a driver that does
// not support fenced execution.
// - Implement something similar to the code in asyncStartComputePartitioned()
// that handles a step execution that fails with
// ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE.
CHECK(!executionBuilder->getCompilation()->hasDynamicTemporaries());
CHECK(executionBuilder != nullptr);
VLOG(EXECUTION) << "ExecutionBuilder::computeFenced (from plan, iteratively)";
// Disallow fallback when the ExecutionPlan is simple on CPU.
allowCpuFallback &= !plan.isSimpleCpu();
// Initiate waitForFds, syncFence for the first step.
std::vector<int> waitForFds = waitFor;
int syncFence = -1;
sp<V1_3::IFencedExecutionCallback> computeFencedCallback;
while (true) {
VLOG(EXECUTION) << "looking for next StepExecutor";
// Get the current step of the execution.
std::shared_ptr<StepExecutor> executor;
int n = plan.next(controller, &executor, nullptr, nullptr, syncFence);
if (n != ANEURALNETWORKS_NO_ERROR) {
// During the interpreted execution of control flow, a loop timeout
// might occur in ExecutionPlan::next().
bool missedDeadline = n == ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT ||
n == ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT;
if (allowCpuFallback && !missedDeadline) break;
// Return -1 for the sync fence fd, and nullptr for the callback.
return std::make_tuple(n, -1, nullptr);
}
// If the code reached the end of the plan without error, then return
// with no error.
if (executor == nullptr) {
// If the final step returns a -1 for sync fence, the execution is finished.
// Update the output shapes.
if (syncFence == -1) {
// TODO(miaowang): support dynamic output shape only with memory domain.
// For now just return the initial output shapes.
executionBuilder->finishWithoutSyncFence(
ErrorStatus::NONE, executionBuilder->getInitialOutputShapes());
}
return std::make_tuple(ANEURALNETWORKS_NO_ERROR, syncFence, computeFencedCallback);
}
const bool executorIsCpu = executor->isCpu();
// Attempt to execute a single step of the execution.
auto [stepN, syncFd, callback] =
executor->computeFenced(waitForFds, timeoutDurationAfterFence, deadline);
// Update waitForFds, syncFence for the next step.
syncFence = syncFd;
computeFencedCallback = callback;
waitForFds.clear();
if (syncFd > 0) {
waitForFds = {syncFd};
}
// If execution was successful, continue to next step.
if (stepN == ANEURALNETWORKS_NO_ERROR) {
continue;
}
// If CPU fallback is not allowed and there was an error, end execution.
if (!allowCpuFallback) {
return std::make_tuple(stepN, -1, nullptr);
}
// If CPU execution was already attempted, either:
// (1) perform a full fallback if the plan is not simple, or
// (2) return from the function with an error
if (executorIsCpu) {
if (!plan.isSimple()) break;
return std::make_tuple(stepN, -1, nullptr);
}
// If the code reaches this point, then there was an error with the
// fallback. In this case, attempt full fallback.
break;
}
// If the code has reached this point, a potentially recoverable error
// occurred during the step executions. Instead, do a full execution
// fallback on the CPU.
VLOG(EXECUTION) << "Performing full fallback on the CPU.";
for (int syncFd : waitFor) {
if (syncFd > 0) {
auto r = syncWait(syncFd, -1);
if (r != FenceState::SIGNALED) {
VLOG(EXECUTION) << "syncWait failed, fd: " << syncFd;
return std::make_tuple(ANEURALNETWORKS_OP_FAILED, -1, nullptr);
}
}
}
auto [fullN, fullOutputShapes, fullTiming] = cpuFallbackFull(executionBuilder);
const ErrorStatus fullStatus = convertResultCodeToErrorStatus(fullN);
syncFence = -1;
executionBuilder->finishWithoutSyncFence(fullStatus, fullOutputShapes);
executionBuilder->reportTimingWithoutFencedExecutionCallback(fullTiming);
return std::make_tuple(fullN, syncFence, nullptr);
}
int ExecutionBuilder::computeFenced(const std::vector<int>& waitFor,
uint64_t timeoutDurationAfterFence, int* syncFence) {
CHECK(syncFence != nullptr);
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies"
" called on an execution that has already started";
return ANEURALNETWORKS_BAD_STATE;
}
if (timeoutDurationAfterFence > 0) {
if (!mCompilation->mExplicitDeviceList || (mCompilation->mDevices.size() != 1)) {
LOG(ERROR)
<< "ANeuralNetworksExecution_startComputeWithDependencies called with non-zero "
"duration on an ANeuralNetworksExecution "
"created from an ANeuralNetworksCompilation that was not created by "
"ANeuralNetworksCompilation_createForDevices with numDevices = 1";
return ANEURALNETWORKS_BAD_DATA;
}
}
const auto deadline = makeDeadline(mTimeoutDuration);
for (auto& p : mInputs) {
if (p.state() == ModelArgumentInfo::UNSPECIFIED) {
LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies"
" not all inputs specified";
return ANEURALNETWORKS_BAD_DATA;
}
}
for (auto& p : mOutputs) {
if (p.state() == ModelArgumentInfo::UNSPECIFIED) {
LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies"
" not all outputs specified";
return ANEURALNETWORKS_BAD_DATA;
}
}
for (uint32_t i = 0; i < mOutputs.size(); i++) {
if (mOutputs[i].state() != ModelArgumentInfo::HAS_NO_VALUE &&
!checkDimensionInfo(mModel->getOutputOperand(i), nullptr,
"ANeuralNetworksExecution_startComputeWithDependencies", false)) {
LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies"
" not all outputs have fully specified dimensions";
return ANEURALNETWORKS_BAD_DATA;
}
}
mStarted = true;
const bool allowCpuFallback = DeviceManager::partitioningAllowsFallback(mPartitioning);
std::shared_ptr<ExecutionPlan::Controller> controller = mPlan->makeController(this, nullptr);
VLOG(EXECUTION) << "ExecutionBuilder::computeFenced";
int result;
std::tie(result, mSyncFenceFd, mFencedExecutionCallback) =
startComputeFenced(this, *mPlan, controller, waitFor, timeoutDurationAfterFence,
deadline, allowCpuFallback);
*syncFence = mSyncFenceFd;
return result;
}
int ExecutionBuilder::compute(sp<ExecutionCallback>* synchronizationCallback,
BurstBuilder* burstBuilder) {
CHECK(synchronizationCallback == nullptr || burstBuilder == nullptr)
<< "synchronizationCallback and burstBuilder cannot simultaneously be used";
const bool synchronous = (synchronizationCallback == nullptr);
if (!synchronous) {
*synchronizationCallback = nullptr;
}
const auto deadline = makeDeadline(mTimeoutDuration);
// TODO validate that we have full types for all inputs and outputs,
// that the graph is not cyclic,
auto name = [synchronous, burstBuilder] {
return burstBuilder ? "burstCompute" : synchronous ? "compute" : "startCompute";
};
if (mStarted) {
LOG(ERROR) << "ANeuralNetworksExecution_" << name()
<< " called on an execution that has already started";
return ANEURALNETWORKS_BAD_STATE;
}
for (auto& p : mInputs) {
if (p.state() == ModelArgumentInfo::UNSPECIFIED) {
LOG(ERROR) << "ANeuralNetworksExecution_" << name() << " not all inputs specified";
return ANEURALNETWORKS_BAD_DATA;
} else if (p.state() == ModelArgumentInfo::MEMORY) {
const RuntimeMemory* memory = mMemories[p.locationAndLength().poolIndex];
if (!memory->getValidator().validateInputDimensions(p.dimensions())) {
return ANEURALNETWORKS_OP_FAILED;
}
}
}
for (auto& p : mOutputs) {
if (p.state() == ModelArgumentInfo::UNSPECIFIED) {
LOG(ERROR) << "ANeuralNetworksExecution_" << name() << " not all outputs specified";
return ANEURALNETWORKS_BAD_DATA;
}
}
auto wrappedFinish = [this](ErrorStatus error, const std::vector<OutputShape>& outputShapes) {
return finishWithoutSyncFence(error, outputShapes);
};
// TODO: For asynchronous execution, entire plan-based-path should run in an
// asynchronous thread -- take the asynchronous thread logic out of
// CpuPreparedModel::execute() and use it to wrap the plan-based-path.
mStarted = true;
const bool allowCpuFallback = DeviceManager::partitioningAllowsFallback(mPartitioning);
std::shared_ptr<ExecutionPlan::Controller> controller =
mPlan->makeController(this, burstBuilder);
if (synchronous) {
if (burstBuilder) {
VLOG(EXECUTION) << "ExecutionBuilder::compute (synchronous API, burst)";
} else {
VLOG(EXECUTION) << "ExecutionBuilder::compute (synchronous API)";
}
sp<ExecutionCallback> localSynchronizationCallback = new ExecutionCallback();
localSynchronizationCallback->setOnFinish(wrappedFinish);
asyncStartComputePartitioned(this, *mPlan, controller, allowCpuFallback, deadline,
localSynchronizationCallback);
localSynchronizationCallback->wait();
if (mMeasureTiming) {
mTimingWithoutFencedExecutionCallback = localSynchronizationCallback->getTiming();
}
return convertErrorStatusToResultCode(localSynchronizationCallback->getStatus());
} else /* asynchronous */ {
// TODO: use a thread pool
// TODO(mikie): this could have NNTRACE so we could measure the overhead
// of spinning up a new thread.
// Prepare the callback for asynchronous execution.
// sp<ExecutionCallback> object is returned when the
// execution has been successfully launched, otherwise a
// nullptr is returned. The executionCallback is
// abstracted in the NN API as an "event".
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
executionCallback->setOnFinish(wrappedFinish);
if (DeviceManager::get()->syncExecRuntime()) {
VLOG(EXECUTION) << "ExecutionBuilder::compute (asynchronous API, non-threaded)";
asyncStartComputePartitioned(this, *mPlan, controller, allowCpuFallback, deadline,
executionCallback);
} else {
VLOG(EXECUTION) << "ExecutionBuilder::compute (asynchronous API)";
std::thread asyncExecution(
[this, controller, allowCpuFallback, deadline, executionCallback] {
asyncStartComputePartitioned(this, *mPlan, controller, allowCpuFallback,
deadline, executionCallback);
});
executionCallback->bindThread(std::move(asyncExecution));
}
*synchronizationCallback = executionCallback;
return ANEURALNETWORKS_NO_ERROR;
}
}
std::vector<OutputShape> ExecutionBuilder::getInitialOutputShapes() const {
std::vector<OutputShape> outputShapes(mOutputs.size());
std::transform(mOutputs.begin(), mOutputs.end(), outputShapes.begin(),
[](const auto& x) -> OutputShape {
std::vector<uint32_t> dimensions;
if (x.state() != ModelArgumentInfo::HAS_NO_VALUE) {
dimensions = x.dimensions();
}
return {.dimensions = std::move(dimensions), .isSufficient = true};
});
return outputShapes;
}
// Check if the dimensions "to" is updatable by dimensions "from", where "from" must
// have no lower a specification level.
static bool isUpdatable(const std::vector<uint32_t>& to, const std::vector<uint32_t>& from) {
if (to.size() == 0) return true;
NN_RET_CHECK_EQ(to.size(), from.size());
for (uint32_t i = 0; i < to.size(); i++) {
NN_RET_CHECK(to[i] == from[i] || to[i] == 0);
}
return true;
}
static bool isZeroSizedTensor(int executionResultCode, const OutputShape& outputShape) {
return (executionResultCode == ANEURALNETWORKS_NO_ERROR) && outputShape.isSufficient &&
outputShape.dimensions.size() &&
(std::find(outputShape.dimensions.begin(), outputShape.dimensions.end(), uint32_t(0)) !=
outputShape.dimensions.end());
}
bool ExecutionBuilder::updateOutputShapes(ErrorStatus status,
const std::vector<OutputShape>& outputShapes) {
NN_RET_CHECK(validateOutputShapesFromDriver(status, mModel, outputShapes));
if (outputShapes.size() == 0) {
return true;
}
NN_RET_CHECK_EQ(outputShapes.size(), mOutputs.size());
for (uint32_t i = 0; i < outputShapes.size(); i++) {
// Check if only unspecified dimensions or rank are overwritten.
NN_RET_CHECK(isUpdatable(mOutputs[i].dimensions(), outputShapes[i].dimensions));
const OperandType operandType = mModel->getOutputOperand(i).type;
NN_RET_CHECK(!TypeManager::get()->sizeOfDataOverflowsUInt32(operandType,
outputShapes[i].dimensions));
}
for (uint32_t i = 0; i < outputShapes.size(); i++) {
mOutputs[i].dimensions() = outputShapes[i].dimensions;
mOutputs[i].isSufficient() = outputShapes[i].isSufficient;
}
return true;
}
bool ExecutionBuilder::updateMemories() {
for (const auto& output : mOutputs) {
if (output.state() != ModelArgumentInfo::MEMORY) continue;
const RuntimeMemory* memory = mMemories[output.locationAndLength().poolIndex];
NN_RET_CHECK(memory->getValidator().updateMetadata({.dimensions = output.dimensions()}));
}
return true;
}
ErrorStatus ExecutionBuilder::finishWithoutSyncFence(ErrorStatus status,
const std::vector<OutputShape>& outputShapes) {
CHECK(!mFinishedWithoutSyncFence) << "ExecutionBuilder::finishWithoutSyncFence is called twice";
CHECK(!hasSyncFence())
<< "ExecutionBuilder::finishWithoutSyncFence is called when hasSyncFence()";
if (!updateOutputShapes(status, outputShapes) || !updateMemories()) {
status = ErrorStatus::GENERAL_FAILURE;
}
bool success = status == ErrorStatus::NONE;
for (const auto& output : mOutputs) {
if (output.state() != ModelArgumentInfo::MEMORY) continue;
const RuntimeMemory* memory = mMemories[output.locationAndLength().poolIndex];
memory->getValidator().setInitialized(success);
}
switch (convertErrorStatusToResultCode(status)) {
case ANEURALNETWORKS_NO_ERROR:
mCompletionWithoutSyncFence = Completion::NO_ERROR;
break;
case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE:
mCompletionWithoutSyncFence = Completion::OUTPUT_INSUFFICIENT_SIZE;
break;
default:
mCompletionWithoutSyncFence = Completion::OTHER_ERROR;
break;
}
mFinishedWithoutSyncFence = true;
return status;
}
std::string toString(StepExecutor::UpdateOutputShapes updateOutputShapes) {
return "{ .updatedDynamicTemporary = " +
std::to_string(updateOutputShapes.updatedDynamicTemporary) +
", .mainOutputInsufficient = " +
std::to_string(updateOutputShapes.mainOutputInsufficient) + "}";
}
bool StepExecutor::updateOutputShapes(int executionResultCode, const std::vector<OutputShape>& from,
std::vector<OutputShape>* to, UpdateOutputShapes* update) {
CHECK(update != nullptr);
*update = {.updatedDynamicTemporary = false,
.mainOutputInsufficient = false,
.zeroSizedInput = false};
NN_RET_CHECK(validateOutputShapesFromDriver(executionResultCode, mModel, from));
if (from.size() == 0) {
return true;
}
if (VLOG_IS_ON(EXECUTION)) {
for (const auto& shape : from) {
VLOG(EXECUTION) << "updateOutputShapes: " << shape;
}
}
if (mExecutionStep != nullptr) {
const auto& indexMapping = mExecutionStep->getOutputIndexStepModelToMainModel();
NN_RET_CHECK_LE(indexMapping.size(), from.size());
for (uint32_t i = 0, e = indexMapping.size(); i < e; i++) {
const uint32_t toIndex = indexMapping[i];
NN_RET_CHECK_GT(to->size(), toIndex);
NN_RET_CHECK(isUpdatable(to->at(toIndex).dimensions, from[i].dimensions));
(*to)[toIndex] = from[i];
update->mainOutputInsufficient |= !(*to)[toIndex].isSufficient;
if (mExecutionStep->getModelOutputsThatAreDownstreamInputs().count(toIndex) &&
isZeroSizedTensor(executionResultCode, from[i])) {
update->zeroSizedInput = true;
}
}
if (!mDynamicTemporaries->empty()) {
// TODO(b/157236079): Instead of computing this here, precompute it in ExecutionStep?
std::map<uint32_t, uint32_t> operandIndexStepModelOutputToSourceModelTemp;
for (const auto& entry : mExecutionStep->getTempsAsStepModelOutputs()) {
operandIndexStepModelOutputToSourceModelTemp.emplace(entry.second, entry.first);
}
const uint32_t sourceModelIndex = mExecutionStep->getSourceModelIndex();
for (uint32_t i = 0, e = mModel->outputCount(); i < e; i++) {
const uint32_t stepModelOperandIndex = mModel->getOutputOperandIndex(i);
const auto it =
operandIndexStepModelOutputToSourceModelTemp.find(stepModelOperandIndex);
if (it == operandIndexStepModelOutputToSourceModelTemp.end()) {
continue;
}
const auto sourceOperandIndex = SourceOperandIndex(sourceModelIndex, it->second);
VLOG(EXECUTION) << "updateOutputShapes checking to see if output#" << i
<< " sourceOperandIndex = (" << sourceOperandIndex.first << ", "
<< sourceOperandIndex.second << ") is a dynamic temporary";
// This is a temporary, but it might not be a dynamic temporary.
const auto loc = mDynamicTemporaries->lookup(sourceOperandIndex, false);
if (loc == std::nullopt) {
continue;
}
NN_RET_CHECK(isUpdatable(*loc->dimensions, from[i].dimensions));
bool changedShape = false;
const uint32_t actualSize = TypeManager::get()->getSizeOfData(
mModel->getOperand(stepModelOperandIndex).type, from[i].dimensions);
if (actualSize > 0) {
changedShape = mDynamicTemporaries->redeclare(sourceOperandIndex,
from[i].dimensions, actualSize);
} else if (!from[i].isSufficient) {
NN_RET_CHECK(loc->length < UINT32_MAX / 2)
<< "output#" << i << " length overflow";
changedShape = mDynamicTemporaries->redeclare(
sourceOperandIndex, from[i].dimensions, 2 * loc->length);
} else {
// The combination of not-fully-specified dimensions
// and isSufficient means that we have no
// information about whether the size of the dynamic
// temporary is adequate.
VLOG(EXECUTION) << "updateOutputShapes skipping redeclaration for output#" << i;
if (executionResultCode == ANEURALNETWORKS_NO_ERROR) {
NN_RET_CHECK(isZeroSizedTensor(executionResultCode, from[i]));
// This is a zero-sized tensor, and by
// definition, any dynamic temporary is an input
// to an execution step.
update->zeroSizedInput = true;
}
}
if (changedShape) {
// TODO: find a better place for this comment.
//
// isUpdatable(a, b) imposes a partial ordering a <=
// b. Every fully specified dimensions vector is an
// upper bound of that ordering. Therefore, any
// change in dimensions moves towards an upper
// bound, and hence there are a finite number of
// such changes possible.
//
// actualSize can only be computed from dimensions
// that are an upper bound. Therefore, once
// actualSize is computed, it will not change.
//
// If dimensions are not fully specified, and
// estimated size changes, it increases. There is
// an upper bound on estimated size to avoid
// overflow.
//
// Therefore, if we retry only when dimensions or
// size chage, and we stop retrying if we would
// otherwise overflow, we should only retry a finite
// number of times.
update->updatedDynamicTemporary = true;
}
}
mDynamicTemporaries->vlogDump("finished updateOutputShapes");
}
} else {
NN_RET_CHECK_EQ(from.size(), to->size());
for (uint32_t i = 0, e = from.size(); i < e; i++) {
NN_RET_CHECK(isUpdatable(to->at(i).dimensions, from[i].dimensions));
(*to)[i] = from[i];
}
}
return true;
}
StepExecutor::StepExecutor(ExecutionBuilder* executionBuilder, const ModelBuilder* model,
std::shared_ptr<Device> device,
std::shared_ptr<RuntimePreparedModel> preparedModel,
const ExecutionStep* step, DynamicTemporaries* dynamicTemporaries)
: mExecutionBuilder(executionBuilder),
mExecutionStep(step),
mDynamicTemporaries(dynamicTemporaries),
mModel(model),
mDevice(device),
mPreparedModel(preparedModel),
mInputs(model->inputCount()),
mOutputs(model->outputCount()) {
CHECK(mDevice != nullptr);
CHECK_EQ(step == nullptr, dynamicTemporaries == nullptr);
VLOG(EXECUTION) << "StepExecutor::StepExecutor with " << mInputs.size() << " inputs and "
<< mOutputs.size() << " outputs";
}
bool StepExecutor::areDynamicTemporariesAllocated() const {
return !mDynamicTemporaries || mDynamicTemporaries->allocated(mExecutionStep->getIndex());
}
void StepExecutor::mapInputsAndOutputsTrivially() {
mInputs = mExecutionBuilder->mInputs;
mOutputs = mExecutionBuilder->mOutputs;
mMemories = mExecutionBuilder->mMemories;
}
void StepExecutor::mapInputOrOutput(const ModelArgumentInfo& builderInputOrOutput,
ModelArgumentInfo* executorInputOrOutput,
const Dimensions* builderDimensions) {
auto updateDimensions = [executorInputOrOutput, builderDimensions] {
if (!builderDimensions) {
return;
}
executorInputOrOutput->dimensions() = *builderDimensions;
};
*executorInputOrOutput = builderInputOrOutput;
switch (executorInputOrOutput->state()) {
default:
CHECK(false) << "unexpected ModelArgumentInfo::state";
break;
case ModelArgumentInfo::HAS_NO_VALUE:
case ModelArgumentInfo::UNSPECIFIED:
break;
case ModelArgumentInfo::POINTER:
updateDimensions();
break;
case ModelArgumentInfo::MEMORY: {
updateDimensions();
const uint32_t builderPoolIndex = builderInputOrOutput.locationAndLength().poolIndex;
const RuntimeMemory* memory = mExecutionBuilder->mMemories[builderPoolIndex];
const uint32_t executorPoolIndex = mMemories.add(memory);
executorInputOrOutput->locationAndLength().poolIndex = executorPoolIndex;
break;
}
}
}
int StepExecutor::setInputOrOutputFromMemory(const Operand& inputOrOutputOperand,
const RuntimeMemory* memory, uint32_t offset,
const Dimensions& dimensions,
std::optional<uint32_t> length,
ModelArgumentInfo* inputOrOutputInfo) {
// Should be similar to
// ExecutionBuilder::setInputFromMemory()
// ExecutionBuilder::setOutputFromMemory()
uint32_t poolIndex = mMemories.add(memory);
uint32_t lengthVal = length.value_or(TypeManager::get()->getSizeOfData(inputOrOutputOperand));
CHECK(inputOrOutputInfo->unspecified());
int n;
std::tie(n, *inputOrOutputInfo) =
ModelArgumentInfo::createFromMemory(inputOrOutputOperand,
/*type=*/nullptr, poolIndex, offset, lengthVal);
if (n == ANEURALNETWORKS_NO_ERROR && dimensions.size()) {
CHECK(isUpdatable(inputOrOutputInfo->dimensions(), dimensions));
inputOrOutputInfo->dimensions() = dimensions;
}
return n;
}
static std::string toString(std::vector<uint32_t> dimensions) {
std::string ret = "(";
bool wroteOne = false;
for (uint32_t dimension : dimensions) {
if (wroteOne) {
ret += ", ";
} else {
wroteOne = true;
}
ret += std::to_string(dimension);
}
ret += ")";
return ret;
};
static void logArguments(const char* kind, const std::vector<ModelArgumentInfo>& args) {
for (unsigned i = 0; i < args.size(); i++) {
const auto& arg = args[i];
std::string prefix = kind + std::string("[") + std::to_string(i) + "] = ";
switch (arg.state()) {
case ModelArgumentInfo::POINTER:
VLOG(EXECUTION) << prefix << "POINTER(" << SHOW_IF_DEBUG(arg.buffer()) << ") dim"
<< toString(arg.dimensions());
break;
case ModelArgumentInfo::MEMORY:
VLOG(EXECUTION) << prefix << "MEMORY("
<< "pool=" << arg.locationAndLength().poolIndex << ", "
<< "off=" << arg.locationAndLength().offset << ") dim"
<< toString(arg.dimensions());
break;
case ModelArgumentInfo::HAS_NO_VALUE:
VLOG(EXECUTION) << prefix << "HAS_NO_VALUE";
break;
case ModelArgumentInfo::UNSPECIFIED:
VLOG(EXECUTION) << prefix << "UNSPECIFIED";
break;
default:
VLOG(EXECUTION) << prefix << "state(" << arg.state() << ")";
break;
}
}
}
bool StepExecutor::isCpu() const {
return mDevice == DeviceManager::getCpuDevice();
}
std::tuple<int, std::vector<OutputShape>, Timing> StepExecutor::compute(
const std::optional<Deadline>& deadline,
const std::shared_ptr<ExecutionBurstController>& burstController) {
return computeWithMemories(deadline, mMemories.getObjects(), burstController);
}
std::tuple<int, std::vector<OutputShape>, Timing> StepExecutor::computeWithMemories(
const std::optional<Deadline>& deadline, const std::vector<const RuntimeMemory*>& memories,
const std::shared_ptr<ExecutionBurstController>& burstController) {
CHECK(mPreparedModel != nullptr);
if (VLOG_IS_ON(EXECUTION)) {
logArguments("input", mInputs);
logArguments("output", mOutputs);
}
const MeasureTiming measure = measureTiming(mExecutionBuilder);
const OptionalTimeoutDuration loopTimeoutDuration =
makeTimeoutDuration(mExecutionBuilder->getLoopTimeoutDuration());
const auto [n, outputShapes, timing] = mPreparedModel->execute(
mInputs, mOutputs, memories, burstController, measure, deadline, loopTimeoutDuration);
mExecutionBuilder->reportTimingWithoutFencedExecutionCallback(timing);
return {n, std::move(outputShapes), timing};
}
std::tuple<int, int, sp<V1_3::IFencedExecutionCallback>> StepExecutor::computeFenced(
const std::vector<int>& waitFor, uint64_t timeoutDurationAfterFence,
const std::optional<Deadline>& deadline) {
CHECK(mPreparedModel != nullptr);
if (VLOG_IS_ON(EXECUTION)) {
logArguments("input", mInputs);
logArguments("output", mOutputs);
}
const MeasureTiming measure = measureTiming(mExecutionBuilder);
const OptionalTimeoutDuration loopTimeoutDuration =
makeTimeoutDuration(mExecutionBuilder->getLoopTimeoutDuration());
OptionalTimeoutDuration optionalTimeoutDurationAfterFence;
if (timeoutDurationAfterFence > 0) {
optionalTimeoutDurationAfterFence = makeTimeoutDuration(timeoutDurationAfterFence);
}
const auto [n, syncFence, computeFencedCallback, timing] = mPreparedModel->executeFenced(
mInputs, mOutputs, mMemories.getObjects(), waitFor, measure, deadline,
loopTimeoutDuration, optionalTimeoutDurationAfterFence);
if (syncFence < 0 && computeFencedCallback == nullptr) {
mExecutionBuilder->reportTimingWithoutFencedExecutionCallback(timing);
}
return {n, syncFence, computeFencedCallback};
}
// For cpuFallback{Partial,Full}, recompile the model on CPU and then start compute.
std::tuple<int, std::vector<OutputShape>, Timing> StepExecutor::computeOnCpuFallback() {
NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "StepExecutor::computeOnCpuFallback");
VLOG(EXECUTION) << "Re-compile the model on CPU";
mDevice = DeviceManager::getCpuDevice();
mPreparedModel = nullptr;
const ModelFactory makeModel = [this] { return mModel->makeModel(); };
// TODO: Propagate user preference and compilation priority to this point instead of using
// default values of ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER and
// ANEURALNETWORKS_PRIORITY_MEDIUM
const ExecutionPreference preference =
static_cast<ExecutionPreference>(ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER);
const Priority priority = convertToCanonicalPriority(ANEURALNETWORKS_PRIORITY_DEFAULT);
auto [n, preparedModel] = mDevice->prepareModel(makeModel, preference, priority, {}, {}, {});
mPreparedModel = std::move(preparedModel);
if (n != ANEURALNETWORKS_NO_ERROR) {
return {n, {}, {}};
}
// Prepare device memories for CPU fallback.
std::vector<const RuntimeMemory*> memories = mMemories.getObjects();
std::vector<bool> isUsedAsInput(memories.size(), false);
std::vector<bool> isUsedAsOutput(memories.size(), false);
std::vector<std::unique_ptr<RuntimeMemory>> blobAhwbs;
// Mark the input and output usages.
for (auto& input : mInputs) {
if (input.state() == ModelArgumentInfo::MEMORY) {
const uint32_t poolIndex = input.locationAndLength().poolIndex;
isUsedAsInput[poolIndex] = true;
}
}
for (auto& output : mOutputs) {
if (output.state() == ModelArgumentInfo::MEMORY) {
const uint32_t poolIndex = output.locationAndLength().poolIndex;
// Cannot allocate output buffers with unknown shapes.
if (mMemories[poolIndex]->getValidator().createdWithUnknownShape()) {
LOG(ERROR) << "Cannot fallback to CPU because at least one of the output operands "
"has unknown shape.";
return {ANEURALNETWORKS_OP_FAILED, {}, {}};
}
isUsedAsOutput[poolIndex] = true;
}
}
// Allocate BLOB mode AHardwareBuffers and read the data from input device memories.
for (uint32_t i = 0; i < memories.size(); i++) {
const RuntimeMemory* memory = mMemories[i];
if (memory->getIBuffer() != nullptr) {
const uint32_t size = memory->getValidator().getMetadata().logicalSize;
auto [nAhwb, blobAhwb] = MemoryRuntimeAHWB::create(size);
if (nAhwb != ANEURALNETWORKS_NO_ERROR) {
return {nAhwb, {}, {}};
}
if (isUsedAsInput[i]) {
n = copyIBufferToHidlMemory(memory->getIBuffer(), blobAhwb->getHidlMemory());
if (n != ANEURALNETWORKS_NO_ERROR) {
return {n, {}, {}};
}
}
memories[i] = blobAhwb.get();
blobAhwbs.push_back(std::move(blobAhwb));
}
}
auto [nCompute, outputShapes, timing] = computeWithMemories({}, memories);
if (nCompute != ANEURALNETWORKS_NO_ERROR) {
return {nCompute, std::move(outputShapes), timing};
}
// Write back to output device memories.
for (uint32_t i = 0; i < memories.size(); i++) {
const RuntimeMemory* memory = mMemories[i];
if (memory->getIBuffer() != nullptr && isUsedAsOutput[i]) {
n = copyHidlMemoryToIBuffer(memories[i]->getHidlMemory(), memory->getIBuffer(), {});
if (n != ANEURALNETWORKS_NO_ERROR) {
return {n, {}, {}};
}
}
}
return {ANEURALNETWORKS_NO_ERROR, std::move(outputShapes), timing};
}
} // namespace nn
} // namespace android