blob: 73184ba011b0e212d3bc1bb983450d4311bbe868 [file] [log] [blame]
/*
** Copyright 2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <memory>
#include <numeric>
#include <random>
#include <gtest/gtest.h>
#include "BlobCache.h"
namespace android {
template <typename T>
using sp = std::shared_ptr<T>;
class BlobCacheTest : public ::testing::TestWithParam<BlobCache::Policy> {
protected:
enum { OK = 0, BAD_VALUE = -EINVAL };
enum {
MAX_KEY_SIZE = 6,
MAX_VALUE_SIZE = 8,
MAX_TOTAL_SIZE = 13,
};
virtual void SetUp() {
mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam()));
}
virtual void TearDown() { mBC.reset(); }
std::unique_ptr<BlobCache> mBC;
};
INSTANTIATE_TEST_SUITE_P(
Policy, BlobCacheTest,
::testing::Values(
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE),
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT),
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE)));
TEST_P(BlobCacheTest, CacheSingleValueSucceeds) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_P(BlobCacheTest, CacheTwoValuesSucceeds) {
unsigned char buf[2] = {0xee, 0xee};
mBC->set("ab", 2, "cd", 2);
mBC->set("ef", 2, "gh", 2);
ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2));
ASSERT_EQ('c', buf[0]);
ASSERT_EQ('d', buf[1]);
ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2));
ASSERT_EQ('g', buf[0]);
ASSERT_EQ('h', buf[1]);
}
TEST_P(BlobCacheTest, CacheTwoValuesMallocSucceeds) {
unsigned char* bufPtr;
mBC->set("ab", 2, "cd", 2);
mBC->set("ef", 2, "gh", 2);
bufPtr = nullptr;
ASSERT_EQ(size_t(2), mBC->get("ab", 2, &bufPtr, malloc));
ASSERT_NE(nullptr, bufPtr);
ASSERT_EQ('c', bufPtr[0]);
ASSERT_EQ('d', bufPtr[1]);
free(bufPtr);
bufPtr = nullptr;
ASSERT_EQ(size_t(2), mBC->get("ef", 2, &bufPtr, malloc));
ASSERT_NE(nullptr, bufPtr);
ASSERT_EQ('g', bufPtr[0]);
ASSERT_EQ('h', bufPtr[1]);
free(bufPtr);
}
TEST_P(BlobCacheTest, GetOnlyWritesInsideBounds) {
unsigned char buf[6] = {0xee, 0xee, 0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf + 1, 4));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ('e', buf[1]);
ASSERT_EQ('f', buf[2]);
ASSERT_EQ('g', buf[3]);
ASSERT_EQ('h', buf[4]);
ASSERT_EQ(0xee, buf[5]);
}
TEST_P(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) {
unsigned char buf[3] = {0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
}
TEST_P(BlobCacheTest, GetWithFailedAllocator) {
unsigned char buf[3] = {0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
// If allocator fails, verify that we set the value pointer to
// nullptr, and that we do not modify the buffer that the value
// pointer originally pointed to.
unsigned char* bufPtr = &buf[0];
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, &bufPtr, [](size_t) -> void* { return nullptr; }));
ASSERT_EQ(nullptr, bufPtr);
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
}
TEST_P(BlobCacheTest, GetDoesntAccessNullBuffer) {
mBC->set("abcd", 4, "efgh", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0));
}
TEST_P(BlobCacheTest, MultipleSetsCacheLatestValue) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
mBC->set("abcd", 4, "ijkl", 4);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('i', buf[0]);
ASSERT_EQ('j', buf[1]);
ASSERT_EQ('k', buf[2]);
ASSERT_EQ('l', buf[3]);
}
TEST_P(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) {
unsigned char buf[MAX_VALUE_SIZE + 1] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1);
ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_P(BlobCacheTest, DoesntCacheIfKeyIsTooBig) {
char key[MAX_KEY_SIZE + 1];
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
for (int i = 0; i < MAX_KEY_SIZE + 1; i++) {
key[i] = 'a';
}
mBC->set(key, MAX_KEY_SIZE + 1, "bbbb", 4);
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, buf, 4));
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
ASSERT_EQ(0xee, buf[3]);
// If key is too large, verify that we do not call the allocator,
// that we set the value pointer to nullptr, and that we do not
// modify the buffer that the value pointer originally pointed to.
unsigned char* bufPtr = &buf[0];
bool calledAlloc = false;
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE + 1, &bufPtr, [&calledAlloc](size_t) -> void* {
calledAlloc = true;
return nullptr;
}));
ASSERT_EQ(false, calledAlloc);
ASSERT_EQ(nullptr, bufPtr);
ASSERT_EQ(0xee, buf[0]);
ASSERT_EQ(0xee, buf[1]);
ASSERT_EQ(0xee, buf[2]);
ASSERT_EQ(0xee, buf[3]);
}
TEST_P(BlobCacheTest, DoesntCacheIfValueIsTooBig) {
unsigned char buf[MAX_VALUE_SIZE + 1];
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
buf[i] = 'b';
}
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE + 1);
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
buf[i] = 0xee;
}
ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE + 1));
for (int i = 0; i < MAX_VALUE_SIZE + 1; i++) {
SCOPED_TRACE(i);
ASSERT_EQ(0xee, buf[i]);
}
}
TEST_P(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) {
// Check a testing assumptions
ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE);
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 };
char key[MAX_KEY_SIZE];
char buf[bufSize];
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
for (int i = 0; i < bufSize; i++) {
buf[i] = 'b';
}
mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE);
ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
}
TEST_P(BlobCacheTest, CacheMaxKeySizeSucceeds) {
char key[MAX_KEY_SIZE];
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
mBC->set(key, MAX_KEY_SIZE, "wxyz", 4);
ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4));
ASSERT_EQ('w', buf[0]);
ASSERT_EQ('x', buf[1]);
ASSERT_EQ('y', buf[2]);
ASSERT_EQ('z', buf[3]);
}
TEST_P(BlobCacheTest, CacheMaxValueSizeSucceeds) {
char buf[MAX_VALUE_SIZE];
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
buf[i] = 'b';
}
mBC->set("abcd", 4, buf, MAX_VALUE_SIZE);
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
buf[i] = 0xee;
}
ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE));
for (int i = 0; i < MAX_VALUE_SIZE; i++) {
SCOPED_TRACE(i);
ASSERT_EQ('b', buf[i]);
}
}
TEST_P(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) {
// Check a testing assumption
ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE);
enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE };
char key[MAX_KEY_SIZE];
char buf[bufSize];
for (int i = 0; i < MAX_KEY_SIZE; i++) {
key[i] = 'a';
}
for (int i = 0; i < bufSize; i++) {
buf[i] = 'b';
}
mBC->set(key, MAX_KEY_SIZE, buf, bufSize);
ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0));
}
TEST_P(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) {
unsigned char buf[1] = {0xee};
mBC->set("x", 1, "y", 1);
ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1));
ASSERT_EQ('y', buf[0]);
}
TEST_P(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) {
for (int i = 0; i < 256; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
int numCached = 0;
for (int i = 0; i < 256; i++) {
uint8_t k = i;
if (mBC->get(&k, 1, NULL, 0) == 1) {
numCached++;
}
}
ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached);
}
TEST_P(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) {
if (GetParam().second == BlobCache::Capacity::FIT)
return; // test doesn't apply for this policy
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
// Insert one more entry, causing a cache overflow.
{
uint8_t k = maxEntries;
mBC->set(&k, 1, "x", 1);
}
// Count the number of entries in the cache; and check which
// entries they are.
int numCached = 0;
for (int i = 0; i < maxEntries + 1; i++) {
uint8_t k = i;
bool found = (mBC->get(&k, 1, NULL, 0) == 1);
if (found) numCached++;
if (GetParam().first == BlobCache::Select::LRU) {
SCOPED_TRACE(i);
ASSERT_EQ(found, i >= maxEntries / 2);
}
}
ASSERT_EQ(maxEntries / 2 + 1, numCached);
}
TEST_P(BlobCacheTest, ExceedingTotalLimitJustFitsSmallEntry) {
if (GetParam().second != BlobCache::Capacity::FIT)
return; // test doesn't apply for this policy
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
// Insert one more entry, causing a cache overflow.
{
uint8_t k = maxEntries;
mBC->set(&k, 1, "x", 1);
}
// Count the number of entries in the cache.
int numCached = 0;
for (int i = 0; i < maxEntries + 1; i++) {
uint8_t k = i;
if (mBC->get(&k, 1, NULL, 0) == 1) numCached++;
}
ASSERT_EQ(maxEntries, numCached);
}
// Also see corresponding test in nnCache_test.cpp
TEST_P(BlobCacheTest, ExceedingTotalLimitFitsBigEntry) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
// Insert one more entry, causing a cache overflow.
const int bigValueSize = std::min((MAX_TOTAL_SIZE * 3) / 4 - 1, int(MAX_VALUE_SIZE));
ASSERT_GT(bigValueSize + 1, MAX_TOTAL_SIZE / 2); // Check testing assumption
{
unsigned char buf[MAX_VALUE_SIZE];
for (int i = 0; i < bigValueSize; i++) buf[i] = 0xee;
uint8_t k = maxEntries;
mBC->set(&k, 1, buf, bigValueSize);
}
// Count the number and size of entries in the cache.
int numCached = 0;
size_t sizeCached = 0;
for (int i = 0; i < maxEntries + 1; i++) {
uint8_t k = i;
size_t size = mBC->get(&k, 1, NULL, 0);
if (size) {
numCached++;
sizeCached += (size + 1);
}
}
switch (GetParam().second) {
case BlobCache::Capacity::HALVE:
// New value is too big for this cleaning algorithm. So
// we cleaned the cache, but did not insert the new value.
ASSERT_EQ(maxEntries / 2, numCached);
ASSERT_EQ(size_t((maxEntries / 2) * 2), sizeCached);
break;
case BlobCache::Capacity::FIT:
case BlobCache::Capacity::FIT_HALVE: {
// We had to clean more than half the cache to fit the new
// value.
const int initialNumEntries = maxEntries;
const int initialSizeCached = initialNumEntries * 2;
const int initialFreeSpace = MAX_TOTAL_SIZE - initialSizeCached;
// (bigValueSize + 1) = value size + key size
// trailing "+ 1" is in order to round up
// "/ 2" is because initial entries are size 2 (1 byte key, 1 byte value)
const int cleanNumEntries = ((bigValueSize + 1) - initialFreeSpace + 1) / 2;
const int cleanSpace = cleanNumEntries * 2;
const int postCleanNumEntries = initialNumEntries - cleanNumEntries;
const int postCleanSizeCached = initialSizeCached - cleanSpace;
ASSERT_EQ(postCleanNumEntries + 1, numCached);
ASSERT_EQ(size_t(postCleanSizeCached + bigValueSize + 1), sizeCached);
break;
}
default:
FAIL() << "Unknown Capacity value";
}
}
TEST_P(BlobCacheTest, FailedGetWithAllocator) {
// If get doesn't find anything, verify that we do not call the
// allocator, that we set the value pointer to nullptr, and that
// we do not modify the buffer that the value pointer originally
// pointed to.
unsigned char buf[1] = {0xee};
unsigned char* bufPtr = &buf[0];
bool calledAlloc = false;
ASSERT_EQ(size_t(0), mBC->get("a", 1, &bufPtr, [&calledAlloc](size_t) -> void* {
calledAlloc = true;
return nullptr;
}));
ASSERT_EQ(false, calledAlloc);
ASSERT_EQ(nullptr, bufPtr);
ASSERT_EQ(0xee, buf[0]);
}
TEST_P(BlobCacheTest, ExceedingTotalLimitRemovesLRUEntries) {
if (GetParam().first != BlobCache::Select::LRU) return; // test doesn't apply for this policy
// Fill up the entire cache with 1 char key/value pairs.
static const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, "x", 1);
}
// Access entries in some known pseudorandom order.
int accessSequence[maxEntries];
std::iota(&accessSequence[0], &accessSequence[maxEntries], 0);
std::mt19937 randomEngine(MAX_TOTAL_SIZE /* seed */);
std::shuffle(&accessSequence[0], &accessSequence[maxEntries], randomEngine);
for (int i = 0; i < maxEntries; i++) {
uint8_t k = accessSequence[i];
uint8_t buf[1];
// If we were to pass NULL to get() as the value pointer, this
// won't count as an access for LRU purposes.
mBC->get(&k, 1, buf, 1);
}
// Insert one more entry, causing a cache overflow.
{
uint8_t k = maxEntries;
mBC->set(&k, 1, "x", 1);
}
// Check which entries are in the cache. We expect to see the
// "one more entry" we just added, and also the most-recently
// accessed (according to accessSequence). That is, we should
// find exactly the entries with the following keys:
// . maxEntries
// . accessSequence[j..maxEntries-1] for some 0 <= j < maxEntries
uint8_t k = maxEntries;
ASSERT_EQ(size_t(1), mBC->get(&k, 1, NULL, 0));
bool foundAny = false;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = accessSequence[i];
bool found = (mBC->get(&k, 1, NULL, 0) == 1);
if (foundAny == found) continue;
if (!foundAny) {
// found == true, so we just discovered j == i
foundAny = true;
} else {
// foundAny == true, found == false -- oops
FAIL() << "found [" << i - 1 << "]th entry but not [" << i << "]th entry";
}
}
}
class BlobCacheFlattenTest : public BlobCacheTest {
protected:
virtual void SetUp() {
BlobCacheTest::SetUp();
mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam()));
}
virtual void TearDown() {
mBC2.reset();
BlobCacheTest::TearDown();
}
void roundTrip() {
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
}
sp<BlobCache> mBC2;
};
INSTANTIATE_TEST_SUITE_P(
Policy, BlobCacheFlattenTest,
::testing::Values(
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE),
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT),
BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE),
BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE)));
TEST_P(BlobCacheFlattenTest, FlattenOneValue) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
roundTrip();
ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4));
ASSERT_EQ('e', buf[0]);
ASSERT_EQ('f', buf[1]);
ASSERT_EQ('g', buf[2]);
ASSERT_EQ('h', buf[3]);
}
TEST_P(BlobCacheFlattenTest, FlattenFullCache) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
roundTrip();
// Verify the deserialized cache
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
uint8_t v = 0xee;
ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1));
ASSERT_EQ(k, v);
}
}
TEST_P(BlobCacheFlattenTest, FlattenDoesntChangeCache) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
delete[] flat;
// Verify the cache that we just serialized
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
uint8_t v = 0xee;
ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1));
ASSERT_EQ(k, v);
}
}
TEST_P(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) {
// Fill up the entire cache with 1 char key/value pairs.
const int maxEntries = MAX_TOTAL_SIZE / 2;
for (int i = 0; i < maxEntries; i++) {
uint8_t k = i;
mBC->set(&k, 1, &k, 1);
}
size_t size = mBC->getFlattenedSize() - 1;
uint8_t* flat = new uint8_t[size];
// ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size));
// TODO: The above fails. I expect this is so because getFlattenedSize()
// overstimates the size by using PROPERTY_VALUE_MAX.
delete[] flat;
}
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadMagic) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[1] = ~flat[1];
// Bad magic should cause an error.
ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size));
delete[] flat;
// The error should cause the unflatten to result in an empty cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[5] = ~flat[5];
// Version mismatches shouldn't cause errors, but should not use the
// serialized entries
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
// The version mismatch should cause the unflatten to result in an empty
// cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
flat[10] = ~flat[10];
// Version mismatches shouldn't cause errors, but should not use the
// serialized entries
ASSERT_EQ(OK, mBC2->unflatten(flat, size));
delete[] flat;
// The version mismatch should cause the unflatten to result in an empty
// cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
TEST_P(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) {
unsigned char buf[4] = {0xee, 0xee, 0xee, 0xee};
mBC->set("abcd", 4, "efgh", 4);
size_t size = mBC->getFlattenedSize();
uint8_t* flat = new uint8_t[size];
ASSERT_EQ(OK, mBC->flatten(flat, size));
// A buffer truncation shouldt cause an error
// ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1));
// TODO: The above appears to fail because getFlattenedSize() is
// conservative.
delete[] flat;
// The error should cause the unflatten to result in an empty cache
ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4));
}
} // namespace android