| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_EXTENSIONS_H |
| #define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_EXTENSIONS_H |
| |
| #include "NeuralNetworksExtensions.h" |
| #include "NeuralNetworksWrapper.h" |
| |
| #include <variant> |
| |
| namespace android { |
| namespace nn { |
| namespace extension_wrapper { |
| |
| using wrapper::SymmPerChannelQuantParams; |
| using wrapper::Type; |
| |
| struct ExtensionOperandParams { |
| std::vector<uint8_t> data; |
| |
| ExtensionOperandParams(std::vector<uint8_t> data) : data(std::move(data)) {} |
| |
| template <typename T> |
| ExtensionOperandParams(const T& data) |
| : ExtensionOperandParams( |
| std::vector(reinterpret_cast<const uint8_t*>(&data), |
| reinterpret_cast<const uint8_t*>(&data) + sizeof(data))) { |
| static_assert(std::is_trivially_copyable<T>::value, "data must be trivially copyable"); |
| } |
| }; |
| |
| struct OperandType { |
| using ExtraParams = |
| std::variant<std::monostate, SymmPerChannelQuantParams, ExtensionOperandParams>; |
| |
| ANeuralNetworksOperandType operandType; |
| std::vector<uint32_t> dimensions; |
| ExtraParams extraParams; |
| |
| OperandType(const OperandType& other) |
| : operandType(other.operandType), |
| dimensions(other.dimensions), |
| extraParams(other.extraParams) { |
| operandType.dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr; |
| } |
| |
| OperandType& operator=(const OperandType& other) { |
| if (this != &other) { |
| operandType = other.operandType; |
| dimensions = other.dimensions; |
| extraParams = other.extraParams; |
| operandType.dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr; |
| } |
| return *this; |
| } |
| |
| OperandType(Type type, std::vector<uint32_t> d, float scale = 0.0f, int32_t zeroPoint = 0, |
| ExtraParams&& extraParams = std::monostate()) |
| : dimensions(std::move(d)), extraParams(std::move(extraParams)) { |
| operandType = { |
| .type = static_cast<int32_t>(type), |
| .dimensionCount = static_cast<uint32_t>(dimensions.size()), |
| .dimensions = dimensions.size() > 0 ? dimensions.data() : nullptr, |
| .scale = scale, |
| .zeroPoint = zeroPoint, |
| }; |
| } |
| |
| OperandType(Type type, std::vector<uint32_t> dimensions, float scale, int32_t zeroPoint, |
| SymmPerChannelQuantParams&& channelQuant) |
| : OperandType(type, dimensions, scale, zeroPoint, ExtraParams(std::move(channelQuant))) {} |
| |
| OperandType(Type type, std::vector<uint32_t> dimensions, ExtraParams&& extraParams) |
| : OperandType(type, dimensions, 0.0f, 0, std::move(extraParams)) {} |
| }; |
| |
| class Model : public wrapper::Model { |
| public: |
| using wrapper::Model::Model; // Inherit constructors. |
| |
| int32_t getExtensionOperandType(const char* extensionName, uint16_t typeWithinExtension) { |
| int32_t result; |
| if (ANeuralNetworksModel_getExtensionOperandType(mModel, extensionName, typeWithinExtension, |
| &result) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| return result; |
| } |
| |
| ANeuralNetworksOperationType getExtensionOperationType(const char* extensionName, |
| uint16_t typeWithinExtension) { |
| ANeuralNetworksOperationType result; |
| if (ANeuralNetworksModel_getExtensionOperationType(mModel, extensionName, |
| typeWithinExtension, |
| &result) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| return result; |
| } |
| |
| uint32_t addOperand(const OperandType* type) { |
| if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| if (std::holds_alternative<SymmPerChannelQuantParams>(type->extraParams)) { |
| const auto& channelQuant = std::get<SymmPerChannelQuantParams>(type->extraParams); |
| if (ANeuralNetworksModel_setOperandSymmPerChannelQuantParams( |
| mModel, mNextOperandId, &channelQuant.params) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } else if (std::holds_alternative<ExtensionOperandParams>(type->extraParams)) { |
| const auto& extension = std::get<ExtensionOperandParams>(type->extraParams); |
| if (ANeuralNetworksModel_setOperandExtensionData( |
| mModel, mNextOperandId, extension.data.data(), extension.data.size()) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| return mNextOperandId++; |
| } |
| }; |
| |
| } // namespace extension_wrapper |
| |
| namespace wrapper { |
| |
| using ExtensionModel = extension_wrapper::Model; |
| using ExtensionOperandType = extension_wrapper::OperandType; |
| using ExtensionOperandParams = extension_wrapper::ExtensionOperandParams; |
| |
| } // namespace wrapper |
| } // namespace nn |
| } // namespace android |
| |
| #endif // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_EXTENSIONS_H |