tree: 604fa1214d9d2aab85a88c8944326f7c9a09f471 [path history] [tgz]
  1. include/
  2. tests/
  3. cts_generator.py
  4. README.md
  5. slicing.py
  6. spec_visualizer.py
  7. test_generator.py
  8. vts_generator.py
nn/tools/test_generator/README.md

Using the NN-API Test Generator

Prerequisites

  • Python3
  • Numpy

Writing a Test Specification

You should create new test specs in nn/runtime/test/specs/<version>/ and name it with .mod.py suffix, so that other tools can automatically update the unit tests.

Specifying Operands

Syntax

OperandType(name, (type, shape, <optional scale, zero point>), <optional initializer>)

For example,

# p1 is a 2-by-2 fp matrix parameter, with value [1, 2; 3, 4]
p1 = Parameter("param", ("TENSOR_FLOAT32", [2, 2]), [1, 2, 3, 4])

# i1 is a quantized input of shape (2, 256, 256, 3), with scale = 0.5, zero point = 128
i1 = Input("input", ("TENSOR_QUANT8_ASYMM", [2, 256, 256, 3], 0.5, 128))

# p2 is an Int32 scalar with value 1
p2 = Int32Scalar("act", 1)

OperandType

There are currently 10 operand types supported by the test generator.

  • Input
  • Output
    • IgnoredOutput, will not compare results in the test
  • Parameter
    • Int32Scalar, shorthand for parameter with type INT32
    • Float32Scalar, shorthand for parameter with type FLOAT32
    • Int32Vector, shorthand for 1-D TENSOR_INT32 parameter
    • Float32Vector, shorthand for 1-D TENSOR_FLOAT32 parameter
  • Internal, for model with multiple operations

Specifying Models

Instantiate a model

# Instantiate a model
model = Model()

# Instantiate a model with a name
model2 = Model("model_name")

Add an operation

model.Operation(optype, i1, i2, ...).To(o1, o2, ...)

For example,

model.Operation("ADD", i1, i2, act).To(o1)

Use implicit operands

Simple scalar and 1-D vector parameters can now be directly passed to Operation constructor, and test generator will deduce the operand type from the value provided.

model.Operation("MEAN", i1, [1], 0) # axis = [1], keep_dims = 0

Note that, for fp values, the initializer should all be Python fp numbers, e.g. use 1.0 or 1. instead of 1 for implicit fp operands.

Specifying Inputs and Expected Outputs

The combination of inputs and expected outputs is called an example for a given model. An example is defined like

# Example 1, separate dictionary for inputs and outputs
input1 = {
    i1: [1, 2],
    i2: [3, 4]
}
output1 = {o1: [4, 6]}

# Example 2, combined dictionary
example2_values = {
    i1: [5, 6],
    i2: [7, 8],
    o1: [12, 14]
}

# Instantiate an example
Example((input1, output1), example2_values)

By default, examples will be attached to the most recent instantiated model. You can explicitly specify the target model, and optionally, the example name by

Example((input1, output1), example2_values, model=model, name="example_name")

Specifying Variations

You can add variations to the example so that the test generator can automatically create multiple tests. Currently, 6 types of variation are supported:

  • DefaultVariation, i.e. no variation
  • DataTypeConverter
  • DataLayoutConverter
  • AxisConverter
  • RelaxedModeConverter
  • ParameterAsInputConverter
  • ActivationConverter

DataTypeConverter

Convert input/parameter/output to the specified type, e.g. float32 -> quant8. The target data type for each operand to transform has to be explicitly specified. It is the spec writer's responsibility to ensure such conversion is valid.

converter = DataTypeConverter(name="variation_name").Identify({
    op1: (target_type, target_scale, target_zero_point),
    op2: (target_type, target_scale, target_zero_point),
    ...
})

DataLayoutConverter

Convert input/parameter/output between NHWC and NCHW. The caller need to provide a list of target operands to transform, and also the data layout parameter to set.

converter = DataLayoutConverter(target_data_layout, name="variation_name").Identify(
    [op1, op2, ..., layout_parameter]
)

AxisConverter

Transpose a certain axis in input/output to target position, and optionally remove some axis. The caller need to provide a list of target operands to transform, and also the axis parameter to set.

converter = AxisConverter(originalAxis, targetAxis, dimension, drop=[], name="variation_name").Identify(
    [op1, op2, ..., axis_parameter]
)

This model variation is for ops that apply calculation along certain axis, such as L2_NORMALIZATION, SOFTMAX, and CHANNEL_SHUFFLE. For example, consider L2_NORMALIZATION with input of shape [2, 3, 4, 5] along the last axis, i.e. axis = -1. The output shape would be the same as input. We can create a new model which will do the calculation along axis 0 by transposing input and output shape to [5, 2, 3, 4] and modify the axis parameter to 0. Such converter can be defined as

toAxis0 = AxisConverter(-1, 0, 4).Identify([input, output, axis])

The target axis can also be negative to test the negative indexing

toAxis0 = AxisConverter(-1, -4, 4).Identify([input, output, axis])

Consider the same L2_NORMALIZATION example, we can also create a new model with input/output of 2D shape [4, 5] by removing the first two dimension. This is essentially doing new_input = input[0,0,:,:] in numpy. Such converter can be defined as

toDim2 = AxisConverter(-1, -1, 4, drop=[0, 1]).Identify([input, output, axis])

If transposition and removal are specified at the same time, the converter will do transposition first and then remove the axis. For example, the following converter will result in shape [5, 4] and axis 0.

toDim2Axis0 = AxisConverter(-1, 2, 4, drop=[0, 1]).Identify([input, output, axis])

RelaxedModeConverter

Convert the model to enable/disable relaxed computation.

converter = RelaxedModeConverter(is_relaxed, name="variation_name")

ParameterAsInputConverter

Convert a certain parameter to model input, e.g. weight in CONV_2D. The caller need to provide a list of target operands to convert.

converter = ParameterAsInputConverter(name="variation_name").Identify(
    [op1, op2, ...]
)

ActivationConverter

Convert the output by certain activation, the original activation is assumed to be NONE. The caller need to provide a list of target operands to transform, and also the activation parameter to set.

converter = ActivationConverter(name="variation_name").Identify(
    [op1, op2, ..., act_parameter]
)

Add variation to example

Each example can have multiple groups of variations, and if so, will take the cartesian product of the groups. For example, suppose we declare a model with two groups, and each group has two variations: [[default, nchw], [default, relaxed, quant8]]. This will result in 6 examples: [default, default], [default, relaxed], [default, quant8], [nchw, default], [nchw, relaxed], [nchw, quant8].

Use AddVariations to add a group of variations to the example

# Add two groups of variations [default, nchw] and [default, relaxed, quant8]
example.AddVariations(nchw).AddVariations(relaxed, quant8)

By default, when you add a group of variation, a unnamed default variation will be automatically included in the list. You can name the default variation by

example.AddVariations(nchw, defaultName="nhwc").AddVariations(relaxed, quant8)

Also, you can choose not to include default by

# Add two groups of variations [nchw] and [default, relaxed, quant8]
example.AddVariations(nchw, includeDefault=False).AddVariations(relaxed, quant8)

The example above will result in 3 examples: [nchw, default], [nchw, relaxed], [nchw, quant8].

Some helper functions

The test generator provides several helper functions or shorthands to add commonly used group of variations.

# Each following group of statements are equivalent

# DataTypeConverter
example.AddVariations(DataTypeConverter().Identify({op1: "TENSOR_FLOAT16", ...}))
example.AddVariations("float16")    # will apply to every TENSOR_FLOAT32 operands

example.AddVariations(DataTypeConverter().Identify({op1: "TENSOR_INT32", ...}))
example.AddVariations("int32")      # will apply to every TENSOR_FLOAT32 operands

# DataLayoutConverter
example.AddVariations(DataLayoutConverter("nchw").Identify(op_list))
example.AddVariations(("nchw", op_list))
example.AddNchw(*op_list)

# AxisConverter
# original axis and dim are deduced from the op_list
example.AddVariations(*[AxisConverter(origin, t, dim).Identify(op_list) for t in targets])
example.AddAxis(targets, *op_list)

example.AddVariations(*[
        AxisConverter(origin, t, dim).Identify(op_list) for t in range(dim)
    ], includeDefault=False)
example.AddAllPositiveAxis(*op_list)

example.AddVariations(*[
        AxisConverter(origin, t, dim).Identify(op_list) for t in range(-dim, dim)
    ], includeDefault=False)
example.AddAllAxis(*op_list)

drop = list(range(dim))
drop.pop(origin)
example.AddVariations(*[
    AxisConverter(origin, origin, dim, drop[0:(dim-i)]).Identify(op_list) for i in dims])
example.AddDims(dims, *op_list)

example.AddVariations(*[
    AxisConverter(origin, origin, dim, drop[0:i]).Identify(op_list) for i in range(dim)])
example.AddAllDims(dims, *op_list)

example.AddVariations(*[
        AxisConverter(origin, j, dim, range(i)).Identify(op_list) \
                for i in range(dim) for j in range(i, dim)
    ], includeDefault=False)
example.AddAllDimsAndPositiveAxis(dims, *op_list)

example.AddVariations(*[
        AxisConverter(origin, k, dim, range(i)).Identify(op_list) \
                for i in range(dim) for j in range(i, dim) for k in [j, j - dim]
    ], includeDefault=False)
example.AddAllDimsAndAxis(dims, *op_list)

# ParameterAsInputConverter
example.AddVariations(ParameterAsInputConverter().Identify(op_list))
example.AddVariations(("as_input", op_list))
example.AddInput(*op_list)

# RelaxedModeConverter
example.Addvariations(RelaxedModeConverter(True))
example.AddVariations("relaxed")
example.AddRelaxed()

# ActivationConverter
example.AddVariations(ActivationConverter("relu").Identify(op_list))
example.AddVariations(("relu", op_list))
example.AddRelu(*op_list)

example.AddVariations(
    ActivationConverter("relu").Identify(op_list),
    ActivationConverter("relu1").Identify(op_list),
    ActivationConverter("relu6").Identify(op_list))
example.AddVariations(
    ("relu", op_list),
    ("relu1", op_list),
    ("relu6", op_list))
example.AddAllActivations(*op_list)

Specifying the Model Version

If not explicitly specified, the minimal required HAL version will be inferred from the path, e.g. the models defined in nn/runtime/test/specs/V1_0/add.mod.py will all have version V1_0. However there are several exceptions that a certain operation is under-tested in previous version and more tests are added in a later version. In this case, two methods are provided to set the version manually.

Set the version when creating the model

Use IntroducedIn to set the version of a model. All variations of the model will have the same version.

model_V1_0 = Model().IntroducedIn("V1_0")
...
# All variations of model_V1_0 will have the same version V1_0.
Example(example, model=model_V1_0).AddVariations(var0, var1, ...)

Set the version overrides

Use Example.SetVersion to override the model version for specific tests. The target tests are specified by names. This method can also override the version specified by IntroducedIn.

Example.SetVersion(<version>, testName0, testName1, ...)

This is useful when only a subset of variations has a different version.

Creating negative tests

Negative test, also known as validation test, is a testing method that supplies invalid model or request, and expects the target framework or driver to fail gracefully. You can use ExpectFailure to tag a example as invalid.

Example.ExpectFailure()

A Complete Example

# Declare input, output, and parameters
i1 = Input("op1", "TENSOR_FLOAT32", "{1, 3, 4, 1}")
f1 = Parameter("op2", "TENSOR_FLOAT32", "{1, 3, 3, 1}", [1, 4, 7, 2, 5, 8, 3, 6, 9])
b1 = Parameter("op3", "TENSOR_FLOAT32", "{1}", [-200])
act = Int32Scalar("act", 0)
o1 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}")

# Instantiate a model and add CONV_2D operation
# Use implicit parameter for implicit padding and strides
Model().Operation("CONV_2D", i1, f1, b1, 1, 1, 1, act, layout).To(o1)

# Additional data type
quant8 = DataTypeConverter().Identify({
    i1: ("TENSOR_QUANT8_ASYMM", 0.5, 127),
    f1: ("TENSOR_QUANT8_ASYMM", 0.5, 127),
    b1: ("TENSOR_INT32", 0.25, 0),
    o1: ("TENSOR_QUANT8_ASYMM", 1.0, 50)
})

# Instantiate an example
example = Example({
    i1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
    o1: [0, 0, 0, 0, 35, 112, 157, 0, 0, 34, 61, 0]
})

# Only use NCHW data layout
example.AddNchw(i1, f1, o1, layout, includeDefault=False)

# Add two more groups of variations
example.AddInput(f1, b1).AddVariations("relaxed", quant8).AddAllActivations(o1, act)

The spec above will result in 24 tests.

Generate Tests

Once you have your model ready, run

$ANDROID_BUILD_TOP/frameworks/ml/nn/runtime/test/specs/generate_test.sh
$ANDROID_BUILD_TOP/frameworks/ml/nn/runtime/test/specs/generate_vts_test.sh

It will read and generate all CTS/VTS unit tests based on spec files in nn/runtime/test/specs/V1_*/* if needed. CTS test generator is able to identify which spec files are modified since last generation and only regenerate those files to reduce compilation time. To force a regeneration, use -f flag. The VTS test generator will regenerate tests targeting the latest HAL version by default. Pass the all positional argument to override.

Rebuild with mm afterwards.