blob: 15c48fafd00f724bddb22a9a1d7d703d590a382c [file] [log] [blame]
/*
* Copyright 2013, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <cstdarg>
#include <cctype>
#include <algorithm>
#include <sstream>
#include <string>
#include "os_sep.h"
#include "slang_rs_context.h"
#include "slang_rs_export_var.h"
#include "slang_rs_export_foreach.h"
#include "slang_rs_export_func.h"
#include "slang_rs_export_reduce.h"
#include "slang_rs_reflect_utils.h"
#include "slang_version.h"
#include "slang_rs_reflection_cpp.h"
using namespace std;
namespace slang {
const char kRsTypeItemClassName[] = "Item";
const char kRsElemPrefix[] = "__rs_elem_";
// The name of the Allocation type that is reflected in C++
const char kAllocationSp[] = "android::RSC::sp<android::RSC::Allocation>";
const char kConstRsScriptCall[] = "const RsScriptCall";
static const char *GetMatrixTypeName(const RSExportMatrixType *EMT) {
static const char *MatrixTypeCNameMap[] = {
"rs_matrix2x2", "rs_matrix3x3", "rs_matrix4x4",
};
unsigned Dim = EMT->getDim();
if ((Dim - 2) < (sizeof(MatrixTypeCNameMap) / sizeof(const char *)))
return MatrixTypeCNameMap[EMT->getDim() - 2];
slangAssert(false && "GetMatrixTypeName : Unsupported matrix dimension");
return nullptr;
}
static std::string GetTypeName(const RSExportType *ET, bool PreIdentifier = true) {
if((!PreIdentifier) && (ET->getClass() != RSExportType::ExportClassConstantArray)) {
slangAssert(false && "Non-array type post identifier?");
return "";
}
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive: {
const RSExportPrimitiveType *EPT =
static_cast<const RSExportPrimitiveType *>(ET);
if (EPT->isRSObjectType()) {
return std::string("android::RSC::sp<const android::RSC::") +
RSExportPrimitiveType::getRSReflectionType(EPT)->c_name + ">";
} else {
return RSExportPrimitiveType::getRSReflectionType(EPT)->c_name;
}
}
case RSExportType::ExportClassPointer: {
const RSExportType *PointeeType =
static_cast<const RSExportPointerType *>(ET)->getPointeeType();
if (PointeeType->getClass() != RSExportType::ExportClassRecord)
return kAllocationSp;
else
return PointeeType->getElementName();
}
case RSExportType::ExportClassVector: {
const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET);
std::stringstream VecName;
VecName << EVT->getRSReflectionType(EVT)->rs_c_vector_prefix
<< EVT->getNumElement();
return VecName.str();
}
case RSExportType::ExportClassMatrix: {
return GetMatrixTypeName(static_cast<const RSExportMatrixType *>(ET));
}
case RSExportType::ExportClassConstantArray: {
const RSExportConstantArrayType *CAT =
static_cast<const RSExportConstantArrayType *>(ET);
if (PreIdentifier) {
std::string ElementTypeName = GetTypeName(CAT->getElementType());
return ElementTypeName;
}
else {
std::stringstream ArraySpec;
ArraySpec << "[" << CAT->getSize() << "]";
return ArraySpec.str();
}
}
case RSExportType::ExportClassRecord: {
// TODO: Fix for C structs!
return ET->getElementName() + "." + kRsTypeItemClassName;
}
default: { slangAssert(false && "Unknown class of type"); }
}
return "";
}
static bool canExportReduceArrayVariant(const RSExportType *Type) {
// FIXME: No half types available for C++ reflection yet
if (Type->getElementName().find("F16") == 0) {
return false;
}
return Type->getClass() == RSExportType::ExportClassPrimitive ||
Type->getClass() == RSExportType::ExportClassVector;
}
RSReflectionCpp::RSReflectionCpp(const RSContext *Context,
const string &OutputDirectory,
const string &RSSourceFileName,
const string &BitCodeFileName)
: mRSContext(Context), mRSSourceFilePath(RSSourceFileName),
mBitCodeFilePath(BitCodeFileName), mOutputDirectory(OutputDirectory),
mNextExportVarSlot(0), mNextExportFuncSlot(0), mNextExportForEachSlot(0),
mNextExportReduceSlot(0) {
mCleanedRSFileName = RootNameFromRSFileName(mRSSourceFilePath);
mClassName = "ScriptC_" + mCleanedRSFileName;
}
RSReflectionCpp::~RSReflectionCpp() {}
bool RSReflectionCpp::reflect() {
writeHeaderFile();
writeImplementationFile();
return true;
}
#define RS_TYPE_CLASS_NAME_PREFIX "ScriptField_"
bool RSReflectionCpp::writeHeaderFile() {
// Create the file and write the license note.
if (!mOut.startFile(mOutputDirectory, mClassName + ".h", mRSSourceFilePath,
mRSContext->getLicenseNote(), false,
mRSContext->getVerbose())) {
return false;
}
mOut.indent() << "#include \"RenderScript.h\"\n\n";
mOut.indent() << "using namespace android::RSC;\n\n";
mOut.comment("This class encapsulates access to the exported elements of the script. "
"Typically, you would instantiate this class once, call the set_* methods "
"for each of the exported global variables you want to change, then call "
"one of the forEach_ methods to invoke a kernel.");
mOut.indent() << "class " << mClassName << " : public android::RSC::ScriptC";
mOut.startBlock();
mOut.decreaseIndent();
mOut.indent() << "private:\n";
mOut.increaseIndent();
genFieldsToStoreExportVariableValues();
genTypeInstancesUsedInForEach();
genTypeInstancesUsedInReduce();
genFieldsForAllocationTypeVerification();
mOut.decreaseIndent();
mOut.indent() << "public:\n";
mOut.increaseIndent();
// Generate the constructor and destructor declarations.
mOut.indent() << mClassName << "(android::RSC::sp<android::RSC::RS> rs);\n";
mOut.indent() << "virtual ~" << mClassName << "();\n\n";
genExportVariablesGetterAndSetter();
genForEachDeclarations();
genReduceDeclarations();
genExportFunctionDeclarations();
mOut.endBlock(true);
mOut.closeFile();
return true;
}
void RSReflectionCpp::genTypeInstancesUsedInForEach() {
for (auto I = mRSContext->export_foreach_begin(),
E = mRSContext->export_foreach_end();
I != E; I++) {
const RSExportForEach *EF = *I;
const RSExportType *OET = EF->getOutType();
if (OET) {
genTypeInstanceFromPointer(OET);
}
const RSExportForEach::InTypeVec &InTypes = EF->getInTypes();
for (RSExportForEach::InTypeIter BI = InTypes.begin(),
EI = InTypes.end(); BI != EI; BI++) {
genTypeInstanceFromPointer(*BI);
}
}
}
// Ensure that the type of the reduce kernel is reflected.
void RSReflectionCpp::genTypeInstancesUsedInReduce() {
for (auto I = mRSContext->export_reduce_begin(),
E = mRSContext->export_reduce_end();
I != E; ++I) {
genTypeInstance((*I)->getType());
}
}
void RSReflectionCpp::genFieldsForAllocationTypeVerification() {
bool CommentAdded = false;
for (std::set<std::string>::iterator I = mTypesToCheck.begin(),
E = mTypesToCheck.end();
I != E; I++) {
if (!CommentAdded) {
mOut.comment("The following elements are used to verify the types of "
"allocations passed to kernels.");
CommentAdded = true;
}
mOut.indent() << "android::RSC::sp<const android::RSC::Element> "
<< kRsElemPrefix << *I << ";\n";
}
}
void RSReflectionCpp::genFieldsToStoreExportVariableValues() {
bool CommentAdded = false;
for (RSContext::const_export_var_iterator I = mRSContext->export_vars_begin(),
E = mRSContext->export_vars_end();
I != E; I++) {
const RSExportVar *ev = *I;
if (ev->isConst()) {
continue;
}
if (!CommentAdded) {
mOut.comment("For each non-const variable exported by the script, we "
"have an equivalent field. This field contains the last "
"value this variable was set to using the set_ method. "
"This may not be current value of the variable in the "
"script, as the script is free to modify its internal "
"variable without changing this field. If the script "
"initializes the exported variable, the constructor will "
"initialize this field to the same value.");
CommentAdded = true;
}
mOut.indent() << GetTypeName(ev->getType()) << " " RS_EXPORT_VAR_PREFIX
<< ev->getName() << ";\n";
}
}
void RSReflectionCpp::genForEachDeclarations() {
bool CommentAdded = false;
for (RSContext::const_export_foreach_iterator
I = mRSContext->export_foreach_begin(),
E = mRSContext->export_foreach_end();
I != E; I++) {
const RSExportForEach *ForEach = *I;
if (ForEach->isDummyRoot()) {
mOut.indent() << "// No forEach_root(...)\n";
continue;
}
if (!CommentAdded) {
mOut.comment("For each kernel of the script corresponds one method. "
"That method queues the kernel for execution. The kernel "
"may not have completed nor even started by the time this "
"function returns. Calls that extract the data out of the "
"output allocation will wait for the kernels to complete.");
CommentAdded = true;
}
std::string FunctionStart = "void forEach_" + ForEach->getName() + "(";
mOut.indent() << FunctionStart;
ArgumentList Arguments;
const RSExportForEach::InVec &Ins = ForEach->getIns();
for (RSExportForEach::InIter BI = Ins.begin(), EI = Ins.end();
BI != EI; BI++) {
Arguments.push_back(Argument(kAllocationSp, (*BI)->getName()));
}
if (ForEach->hasOut() || ForEach->hasReturn()) {
Arguments.push_back(Argument(kAllocationSp, "aout"));
}
const RSExportRecordType *ERT = ForEach->getParamPacketType();
if (ERT) {
for (RSExportForEach::const_param_iterator i = ForEach->params_begin(),
e = ForEach->params_end();
i != e; i++) {
RSReflectionTypeData rtd;
(*i)->getType()->convertToRTD(&rtd);
Arguments.push_back(Argument(rtd.type->c_name, (*i)->getName()));
}
}
genArguments(Arguments, FunctionStart.length());
mOut << ");\n";
}
}
void RSReflectionCpp::genReduceDeclarations() {
bool CommentAdded = false;
for (auto I = mRSContext->export_reduce_begin(),
E = mRSContext->export_reduce_end(); I != E; I++) {
if (!CommentAdded) {
mOut.comment("For each reduce kernel of the script, there is an entry "
"point to call the reduce kernel.");
CommentAdded = true;
}
makeReduceSignatureAllocationVariant(false, *I);
makeReduceSignatureArrayVariant(false, *I);
}
}
void RSReflectionCpp::genExportFunctionDeclarations() {
for (RSContext::const_export_func_iterator
I = mRSContext->export_funcs_begin(),
E = mRSContext->export_funcs_end();
I != E; I++) {
const RSExportFunc *ef = *I;
makeFunctionSignature(false, ef);
}
}
// forEach_* implementation
void RSReflectionCpp::genExportForEachBodies() {
uint32_t slot = 0;
for (auto I = mRSContext->export_foreach_begin(),
E = mRSContext->export_foreach_end();
I != E; I++, slot++) {
const RSExportForEach *ef = *I;
if (ef->isDummyRoot()) {
mOut.indent() << "// No forEach_root(...)\n";
continue;
}
ArgumentList Arguments;
std::string FunctionStart =
"void " + mClassName + "::forEach_" + ef->getName() + "(";
mOut.indent() << FunctionStart;
if (ef->hasIns()) {
// FIXME: Add support for kernels with multiple inputs.
slangAssert(ef->getIns().size() == 1);
Arguments.push_back(Argument(kAllocationSp, "ain"));
}
if (ef->hasOut() || ef->hasReturn()) {
Arguments.push_back(Argument(kAllocationSp, "aout"));
}
const RSExportRecordType *ERT = ef->getParamPacketType();
if (ERT) {
for (RSExportForEach::const_param_iterator i = ef->params_begin(),
e = ef->params_end();
i != e; i++) {
RSReflectionTypeData rtd;
(*i)->getType()->convertToRTD(&rtd);
Arguments.push_back(Argument(rtd.type->c_name, (*i)->getName()));
}
}
genArguments(Arguments, FunctionStart.length());
mOut << ")";
mOut.startBlock();
const RSExportType *OET = ef->getOutType();
const RSExportForEach::InTypeVec &InTypes = ef->getInTypes();
if (ef->hasIns()) {
// FIXME: Add support for kernels with multiple inputs.
slangAssert(ef->getIns().size() == 1);
genTypeCheck(InTypes[0], "ain");
}
if (OET) {
genTypeCheck(OET, "aout");
}
// TODO Add the appropriate dimension checking code, as seen in
// slang_rs_reflection.cpp.
std::string FieldPackerName = ef->getName() + "_fp";
if (ERT) {
if (genCreateFieldPacker(ERT, FieldPackerName.c_str())) {
genPackVarOfType(ERT, nullptr, FieldPackerName.c_str());
}
}
mOut.indent() << "forEach(" << slot << ", ";
if (ef->hasIns()) {
// FIXME: Add support for kernels with multiple inputs.
slangAssert(ef->getIns().size() == 1);
mOut << "ain, ";
} else {
mOut << "NULL, ";
}
if (ef->hasOut() || ef->hasReturn()) {
mOut << "aout, ";
} else {
mOut << "NULL, ";
}
// FIXME (no support for usrData with C++ kernels)
mOut << "NULL, 0);\n";
mOut.endBlock();
}
}
// reduce_* implementation
void RSReflectionCpp::genExportReduceBodies() {
for (auto I = mRSContext->export_reduce_begin(),
E = mRSContext->export_reduce_end();
I != E; ++I) {
const RSExportReduce &Reduce = **I;
const RSExportType *Type = Reduce.getType();
// Allocation variant
//
// void reduce_foo(sp<Allocation> ain, sp<Allocation> aout,
// const RsScriptCall *sc);
makeReduceSignatureAllocationVariant(true, &Reduce);
mOut.startBlock();
// Type check
genTypeCheck(Type, "ain");
genTypeCheck(Type, "aout");
// Dimension check
gen1DCheck("ain");
const uint32_t Slot = getNextExportReduceSlot();
// Call into RenderScript.
mOut.indent() << "reduce(" << Slot << ", "
<< "ain, aout, sc);\n";
mOut.endBlock();
if (!canExportReduceArrayVariant(Type)) {
continue;
}
// Array variant
//
// Ty reduce_foo(const ElemTy[] in, uint32_t x1, uint32_t x2, uint32_t inLen);
// "Ty" could be different from "ElemTy" in the case of vectors.
makeReduceSignatureArrayVariant(true, &Reduce);
mOut.startBlock();
const std::string ReturnType = GetTypeName(Type);
const std::string DefaultReturnValue = ReturnType + "()";
genNullOrEmptyArrayCheck("in", "inLen", DefaultReturnValue);
RSReflectionTypeData TypeData;
Type->convertToRTD(&TypeData);
const uint32_t VecSize = TypeData.vecSize;
std::string InLength = "inLen";
// Adjust the length so that it corresponds to the number of elements in the allocation.
if (VecSize > 1) {
InLength += " / " + std::to_string(VecSize);
}
genVectorLengthCompatibilityCheck("inLen", VecSize, DefaultReturnValue);
mOut.indent() << "if (x1 >= x2 || x2 > " << InLength << ")";
mOut.startBlock();
mOut.indent() << "mRS->throwError(RS_ERROR_RUNTIME_ERROR, "
<< "\"Input bounds are invalid\");\n";
mOut.indent() << "return " << DefaultReturnValue << ";\n";
mOut.endBlock();
mOut.indent() << kAllocationSp
<< " ain = android::RSC::Allocation::createSized(mRS, "
<< kRsElemPrefix << Type->getElementName() << ", "
<< "x2 - x1);\n";
mOut.indent() << "ain->setAutoPadding(true);\n";
mOut.indent() << kAllocationSp
<< " aout = android::RSC::Allocation::createSized(mRS, "
<< kRsElemPrefix << Type->getElementName() << ", 1);\n";
mOut.indent() << "aout->setAutoPadding(true);\n";
const std::string ArrayElementType = TypeData.type->c_name;
std::string StartOffset = "x1";
if (VecSize > 1) {
StartOffset += " * " + std::to_string(VecSize);
}
mOut.indent() << "ain->copy1DRangeFrom(0, x2 - x1, &in[" << StartOffset << "]);\n";
mOut.indent() << "reduce_" << Reduce.getName() << "(ain, aout);\n";
mOut.indent() << ArrayElementType << " outArray[" << VecSize << "];\n";
mOut.indent() << "aout->copy1DRangeTo(0, 1, &outArray[0]);\n";
mOut.indent() << "return " << ReturnType << "(";
for (uint32_t VecElem = 0; VecElem < VecSize; ++VecElem) {
if (VecElem > 0) mOut << ", ";
mOut << "outArray[" << VecElem << "]";
}
mOut << ");\n";
mOut.endBlock();
}
}
// invoke_* implementation
void RSReflectionCpp::genExportFunctionBodies() {
uint32_t slot = 0;
// Reflect export function
for (auto I = mRSContext->export_funcs_begin(),
E = mRSContext->export_funcs_end();
I != E; I++) {
const RSExportFunc *ef = *I;
makeFunctionSignature(true, ef);
mOut.startBlock();
const RSExportRecordType *params = ef->getParamPacketType();
size_t param_len = 0;
if (params) {
param_len = params->getAllocSize();
if (genCreateFieldPacker(params, "__fp")) {
genPackVarOfType(params, nullptr, "__fp");
}
}
mOut.indent() << "invoke(" << slot;
if (params) {
mOut << ", __fp.getData(), " << param_len << ");\n";
} else {
mOut << ", NULL, 0);\n";
}
mOut.endBlock();
slot++;
}
}
bool RSReflectionCpp::genEncodedBitCode() {
FILE *pfin = fopen(mBitCodeFilePath.c_str(), "rb");
if (pfin == nullptr) {
fprintf(stderr, "Error: could not read file %s\n",
mBitCodeFilePath.c_str());
return false;
}
unsigned char buf[16];
int read_length;
mOut.indent() << "static const unsigned char __txt[] =";
mOut.startBlock();
while ((read_length = fread(buf, 1, sizeof(buf), pfin)) > 0) {
mOut.indent();
for (int i = 0; i < read_length; i++) {
char buf2[16];
snprintf(buf2, sizeof(buf2), "0x%02x,", buf[i]);
mOut << buf2;
}
mOut << "\n";
}
mOut.endBlock(true);
mOut << "\n";
return true;
}
bool RSReflectionCpp::writeImplementationFile() {
if (!mOut.startFile(mOutputDirectory, mClassName + ".cpp", mRSSourceFilePath,
mRSContext->getLicenseNote(), false,
mRSContext->getVerbose())) {
return false;
}
// Front matter
mOut.indent() << "#include \"" << mClassName << ".h\"\n\n";
genEncodedBitCode();
mOut.indent() << "\n\n";
// Constructor
const std::string &packageName = mRSContext->getReflectJavaPackageName();
mOut.indent() << mClassName << "::" << mClassName
<< "(android::RSC::sp<android::RSC::RS> rs):\n"
" ScriptC(rs, __txt, sizeof(__txt), \""
<< mCleanedRSFileName << "\", " << mCleanedRSFileName.length()
<< ", \"/data/data/" << packageName << "/app\", sizeof(\""
<< packageName << "\"))";
mOut.startBlock();
for (std::set<std::string>::iterator I = mTypesToCheck.begin(),
E = mTypesToCheck.end();
I != E; I++) {
mOut.indent() << kRsElemPrefix << *I << " = android::RSC::Element::" << *I
<< "(mRS);\n";
}
for (RSContext::const_export_var_iterator I = mRSContext->export_vars_begin(),
E = mRSContext->export_vars_end();
I != E; I++) {
const RSExportVar *EV = *I;
if (!EV->getInit().isUninit()) {
genInitExportVariable(EV->getType(), EV->getName(), EV->getInit());
} else {
genZeroInitExportVariable(EV->getName());
}
}
mOut.endBlock();
// Destructor
mOut.indent() << mClassName << "::~" << mClassName << "()";
mOut.startBlock();
mOut.endBlock();
// Function bodies
genExportForEachBodies();
genExportReduceBodies();
genExportFunctionBodies();
mOut.closeFile();
return true;
}
void RSReflectionCpp::genExportVariablesGetterAndSetter() {
mOut.comment("Methods to set and get the variables exported by the script. "
"Const variables will not have a setter.\n\n"
"Note that the value returned by the getter may not be the "
"current value of the variable in the script. The getter will "
"return the initial value of the variable (as defined in the "
"script) or the the last value set by using the setter method. "
"The script is free to modify its value independently.");
for (RSContext::const_export_var_iterator I = mRSContext->export_vars_begin(),
E = mRSContext->export_vars_end();
I != E; I++) {
const RSExportVar *EV = *I;
const RSExportType *ET = EV->getType();
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive: {
genGetterAndSetter(static_cast<const RSExportPrimitiveType *>(ET), EV);
break;
}
case RSExportType::ExportClassPointer: {
// TODO Deprecate this.
genPointerTypeExportVariable(EV);
break;
}
case RSExportType::ExportClassVector: {
genGetterAndSetter(static_cast<const RSExportVectorType *>(ET), EV);
break;
}
case RSExportType::ExportClassMatrix: {
genMatrixTypeExportVariable(EV);
break;
}
case RSExportType::ExportClassConstantArray: {
genGetterAndSetter(static_cast<const RSExportConstantArrayType *>(ET),
EV);
break;
}
case RSExportType::ExportClassRecord: {
genGetterAndSetter(static_cast<const RSExportRecordType *>(ET), EV);
break;
}
default: { slangAssert(false && "Unknown class of type"); }
}
}
}
void RSReflectionCpp::genGetterAndSetter(const RSExportPrimitiveType *EPT,
const RSExportVar *EV) {
RSReflectionTypeData rtd;
EPT->convertToRTD(&rtd);
std::string TypeName = GetTypeName(EPT);
if (!EV->isConst()) {
mOut.indent() << "void set_" << EV->getName() << "(" << TypeName << " v)";
mOut.startBlock();
mOut.indent() << "setVar(" << getNextExportVarSlot() << ", ";
if (EPT->isRSObjectType()) {
mOut << "v";
} else {
mOut << "&v, sizeof(v)";
}
mOut << ");\n";
mOut.indent() << RS_EXPORT_VAR_PREFIX << EV->getName() << " = v;\n";
mOut.endBlock();
}
mOut.indent() << TypeName << " get_" << EV->getName() << "() const";
mOut.startBlock();
if (EV->isConst()) {
const clang::APValue &val = EV->getInit();
bool isBool = !strcmp(TypeName.c_str(), "bool");
mOut.indent() << "return ";
genInitValue(val, isBool);
mOut << ";\n";
} else {
mOut.indent() << "return " << RS_EXPORT_VAR_PREFIX << EV->getName()
<< ";\n";
}
mOut.endBlock();
}
void RSReflectionCpp::genPointerTypeExportVariable(const RSExportVar *EV) {
const RSExportType *ET = EV->getType();
slangAssert((ET->getClass() == RSExportType::ExportClassPointer) &&
"Variable should be type of pointer here");
std::string TypeName = GetTypeName(ET);
std::string VarName = EV->getName();
RSReflectionTypeData rtd;
EV->getType()->convertToRTD(&rtd);
uint32_t slot = getNextExportVarSlot();
if (!EV->isConst()) {
mOut.indent() << "void bind_" << VarName << "(" << TypeName << " v)";
mOut.startBlock();
mOut.indent() << "bindAllocation(v, " << slot << ");\n";
mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = v;\n";
mOut.endBlock();
}
mOut.indent() << TypeName << " get_" << VarName << "() const";
mOut.startBlock();
if (EV->isConst()) {
const clang::APValue &val = EV->getInit();
bool isBool = !strcmp(TypeName.c_str(), "bool");
mOut.indent() << "return ";
genInitValue(val, isBool);
mOut << ";\n";
} else {
mOut.indent() << "return " << RS_EXPORT_VAR_PREFIX << VarName << ";\n";
}
mOut.endBlock();
}
void RSReflectionCpp::genGetterAndSetter(const RSExportVectorType *EVT,
const RSExportVar *EV) {
slangAssert(EVT != nullptr);
RSReflectionTypeData rtd;
EVT->convertToRTD(&rtd);
if (!EV->isConst()) {
mOut.indent() << "void set_" << EV->getName() << "("
<< rtd.type->rs_c_vector_prefix << EVT->getNumElement()
<< " v)";
mOut.startBlock();
mOut.indent() << "setVar(" << getNextExportVarSlot()
<< ", &v, sizeof(v));\n";
mOut.indent() << RS_EXPORT_VAR_PREFIX << EV->getName() << " = v;\n";
mOut.endBlock();
}
mOut.indent() << rtd.type->rs_c_vector_prefix << EVT->getNumElement()
<< " get_" << EV->getName() << "() const";
mOut.startBlock();
if (EV->isConst()) {
const clang::APValue &val = EV->getInit();
mOut.indent() << "return ";
genInitValue(val, false);
mOut << ";\n";
} else {
mOut.indent() << "return " << RS_EXPORT_VAR_PREFIX << EV->getName()
<< ";\n";
}
mOut.endBlock();
}
void RSReflectionCpp::genMatrixTypeExportVariable(const RSExportVar *EV) {
uint32_t slot = getNextExportVarSlot();
stringstream tmp;
tmp << slot;
const RSExportType *ET = EV->getType();
if (ET->getName() == "rs_matrix4x4") {
mOut.indent() << "void set_" << EV->getName() << "(float v[16])";
mOut.startBlock();
mOut.indent() << "setVar(" << tmp.str() << ", v, sizeof(float)*16);\n";
mOut.endBlock();
} else if (ET->getName() == "rs_matrix3x3") {
mOut.indent() << "void set_" << EV->getName() << "(float v[9])";
mOut.startBlock();
mOut.indent() << "setVar(" << tmp.str() << ", v, sizeof(float)*9);";
mOut.endBlock();
} else if (ET->getName() == "rs_matrix2x2") {
mOut.indent() << "void set_" << EV->getName() << "(float v[4])";
mOut.startBlock();
mOut.indent() << "setVar(" << tmp.str() << ", v, sizeof(float)*4);";
mOut.endBlock();
} else {
mOut.indent() << "#error: TODO: " << ET->getName();
slangAssert(false);
}
}
void RSReflectionCpp::genGetterAndSetter(const RSExportConstantArrayType *AT,
const RSExportVar *EV) {
std::stringstream ArraySpec;
const RSExportType *ET = EV->getType();
const RSExportConstantArrayType *CAT =
static_cast<const RSExportConstantArrayType *>(ET);
uint32_t slot = getNextExportVarSlot();
stringstream tmp;
tmp << slot;
ArraySpec << CAT->getSize();
mOut.indent() << "void set_" << EV->getName() << "(" << GetTypeName(EV->getType()) << " v "
<< GetTypeName(EV->getType(), false) << ")";
mOut.startBlock();
mOut.indent() << "setVar(" << tmp.str() << ", v, sizeof(" << GetTypeName(EV->getType()) + ") *"
<< ArraySpec.str() << ");";
mOut.endBlock();
}
void RSReflectionCpp::genGetterAndSetter(const RSExportRecordType *ERT,
const RSExportVar *EV) {
slangAssert(false);
}
void RSReflectionCpp::makeFunctionSignature(bool isDefinition,
const RSExportFunc *ef) {
mOut.indent() << "void ";
if (isDefinition) {
mOut << mClassName << "::";
}
mOut << "invoke_" << ef->getName() << "(";
if (ef->getParamPacketType()) {
bool FirstArg = true;
for (RSExportFunc::const_param_iterator i = ef->params_begin(),
e = ef->params_end();
i != e; i++) {
if (!FirstArg) {
mOut << ", ";
} else {
FirstArg = false;
}
mOut << GetTypeName((*i)->getType()) << " " << (*i)->getName();
}
}
if (isDefinition) {
mOut << ")";
} else {
mOut << ");\n";
}
}
void RSReflectionCpp::makeReduceSignatureAllocationVariant(bool IsDefinition,
const RSExportReduce *ER) {
// void reduce_foo(sp<Allocation> ain, sp<Allocation> aout,
// const RsScriptCall *sc = nullptr);
std::string FunctionStart = "void ";
if (IsDefinition) {
FunctionStart += mClassName + "::";
}
FunctionStart += "reduce_" + ER->getName() + "(";
ArgumentList Arguments{
Argument(kAllocationSp, "ain"),
Argument(kAllocationSp, "aout"),
Argument(kConstRsScriptCall, "*sc", IsDefinition ? "" : "nullptr")
};
mOut.indent() << FunctionStart;
genArguments(Arguments, FunctionStart.length());
if (IsDefinition) {
mOut << ")";
} else {
mOut << ");\n\n";
}
}
void RSReflectionCpp::makeReduceSignatureArrayVariant(bool IsDefinition,
const RSExportReduce *ER) {
// Ty reduce_foo(const ElemTy[] in, uint32_t x1, uint32_t x2, size_t inLen);
// "Ty" could be different from "ElemTy" in the case of vectors.
const RSExportType *Type = ER->getType();
if (!canExportReduceArrayVariant(Type)) {
return;
}
RSReflectionTypeData TypeData;
Type->convertToRTD(&TypeData);
const std::string ReturnType = GetTypeName(Type);
std::string FunctionStart = ReturnType + " ";
if (IsDefinition) {
FunctionStart += mClassName + "::";
}
FunctionStart += "reduce_" + ER->getName() + "(";
const std::string ArrayElementType = TypeData.type->c_name;
ArgumentList Arguments{
Argument("const " + ArrayElementType, "in[]"),
Argument("uint32_t", "x1"),
Argument("uint32_t", "x2"),
Argument("size_t", "inLen")
};
mOut.indent() << FunctionStart;
genArguments(Arguments, FunctionStart.size());
if (IsDefinition) {
mOut << ")";
} else {
mOut << ");\n\n";
}
if (!IsDefinition) {
// We reflect three more variants in the header. First, there is
//
// Ty reduce_foo(const ElemTy[] in, size_t inLen);
//
// Note the inLen is the number of primitive elements in the array, as opposed to the
// bounds whose units are allocation elements. The other variants use templates to infer
// the array length statically:
//
// template<size_t inLen> Ty reduce_foo(const ElemTy (&in)[inLen]);
// template<size_t inLen> Ty reduce_foo(const ElemTy (&in)[inLen], uint32_t x1, uint32_t x2);
// Generate inLen variant
const uint32_t VecSize = TypeData.vecSize;
std::string X2 = "inLen";
const std::string FunctionName = ER->getName();
auto ForwardReduce = [this, &FunctionName](const std::string &x1,
const std::string &x2,
const std::string &inLen) {
this->mOut.indent() << " return reduce_" << FunctionName << "(in, "
<< x1 << ", " << x2 << ", " << inLen << ");\n";
this->mOut.indent() << "}\n\n";
};
const std::string DefaultValue = ReturnType + "()";
ArgumentList InLenVariantArguments{
Argument("const " + ArrayElementType, "in[]"), Argument("size_t", "inLen")
};
mOut.indent() << FunctionStart;
genArguments(InLenVariantArguments, FunctionStart.size());
mOut << ") {\n";
if (VecSize > 1) {
genVectorLengthCompatibilityCheck("inLen", VecSize, DefaultValue, 2);
X2 += " / " + std::to_string(VecSize);
}
ForwardReduce("0", X2, "inLen");
// Generate template variants
ArgumentList TemplateVariantArguments{
Argument("const " + ArrayElementType, "(&in)[inLen]")
};
mOut.indent() << "template<size_t inLen>\n";
mOut.indent() << FunctionStart;
genArguments(TemplateVariantArguments, FunctionStart.size());
mOut << ") {\n return reduce_" << FunctionName << "(in, inLen);\n }\n\n";
TemplateVariantArguments.push_back(Argument("uint32_t", "x1"));
TemplateVariantArguments.push_back(Argument("uint32_t", "x2"));
mOut.indent() << "template<size_t inLen>\n";
mOut.indent() << FunctionStart;
genArguments(TemplateVariantArguments, FunctionStart.size());
mOut << ") {\n";
ForwardReduce("x1", "x2", "inLen");
}
}
void RSReflectionCpp::genArguments(const ArgumentList &Arguments, int Offset) {
bool FirstArg = true;
for (ArgumentList::const_iterator I = Arguments.begin(), E = Arguments.end();
I != E; I++) {
if (!FirstArg) {
mOut << ",\n";
mOut.indent() << string(Offset, ' ');
} else {
FirstArg = false;
}
mOut << I->Type << " " << I->Name;
if (!I->DefaultValue.empty()) {
mOut << " = " << I->DefaultValue;
}
}
}
bool RSReflectionCpp::genCreateFieldPacker(const RSExportType *ET,
const char *FieldPackerName) {
size_t AllocSize = ET->getAllocSize();
if (AllocSize > 0) {
mOut.indent() << "android::RSC::FieldPacker " << FieldPackerName << "("
<< AllocSize << ");\n";
return true;
}
return false;
}
void RSReflectionCpp::genPackVarOfType(const RSExportType *ET,
const char *VarName,
const char *FieldPackerName) {
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive:
case RSExportType::ExportClassVector:
case RSExportType::ExportClassPointer:
case RSExportType::ExportClassMatrix: {
mOut.indent() << FieldPackerName << ".add(" << VarName << ");\n";
break;
}
case RSExportType::ExportClassConstantArray: {
/*const RSExportConstantArrayType *ECAT =
static_cast<const RSExportConstantArrayType *>(ET);
// TODO(zonr): more elegant way. Currently, we obtain the unique index
// variable (this method involves recursive call which means
// we may have more than one level loop, therefore we can't
// always use the same index variable name here) name given
// in the for-loop from counting the '.' in @VarName.
unsigned Level = 0;
size_t LastDotPos = 0;
std::string ElementVarName(VarName);
while (LastDotPos != std::string::npos) {
LastDotPos = ElementVarName.find_first_of('.', LastDotPos + 1);
Level++;
}
std::string IndexVarName("ct");
IndexVarName.append(llvm::utostr_32(Level));
C.indent() << "for (int " << IndexVarName << " = 0; " <<
IndexVarName << " < " << ECAT->getSize() << "; " <<
IndexVarName << "++)";
C.startBlock();
ElementVarName.append("[" + IndexVarName + "]");
genPackVarOfType(C, ECAT->getElementType(), ElementVarName.c_str(),
FieldPackerName);
C.endBlock();*/
break;
}
case RSExportType::ExportClassRecord: {
const RSExportRecordType *ERT = static_cast<const RSExportRecordType *>(ET);
// Relative pos from now on in field packer
unsigned Pos = 0;
for (RSExportRecordType::const_field_iterator I = ERT->fields_begin(),
E = ERT->fields_end();
I != E; I++) {
const RSExportRecordType::Field *F = *I;
std::string FieldName;
size_t FieldOffset = F->getOffsetInParent();
const RSExportType *T = F->getType();
size_t FieldStoreSize = T->getStoreSize();
size_t FieldAllocSize = T->getAllocSize();
if (VarName != nullptr)
FieldName = VarName + ("." + F->getName());
else
FieldName = F->getName();
if (FieldOffset > Pos) {
mOut.indent() << FieldPackerName << ".skip(" << (FieldOffset - Pos)
<< ");\n";
}
genPackVarOfType(F->getType(), FieldName.c_str(), FieldPackerName);
// There is padding in the field type
if (FieldAllocSize > FieldStoreSize) {
mOut.indent() << FieldPackerName << ".skip("
<< (FieldAllocSize - FieldStoreSize) << ");\n";
}
Pos = FieldOffset + FieldAllocSize;
}
// There maybe some padding after the struct
if (ERT->getAllocSize() > Pos) {
mOut.indent() << FieldPackerName << ".skip(" << ERT->getAllocSize() - Pos
<< ");\n";
}
break;
}
default: { slangAssert(false && "Unknown class of type"); }
}
}
void RSReflectionCpp::genTypeCheck(const RSExportType *ET,
const char *VarName) {
mOut.indent() << "// Type check for " << VarName << "\n";
if (ET->getClass() == RSExportType::ExportClassPointer) {
const RSExportPointerType *EPT =
static_cast<const RSExportPointerType *>(ET);
ET = EPT->getPointeeType();
}
std::string TypeName;
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive:
case RSExportType::ExportClassVector:
case RSExportType::ExportClassRecord: {
TypeName = ET->getElementName();
break;
}
default:
break;
}
if (!TypeName.empty()) {
mOut.indent() << "if (!" << VarName
<< "->getType()->getElement()->isCompatible("
<< kRsElemPrefix << TypeName << "))";
mOut.startBlock();
mOut.indent() << "mRS->throwError(RS_ERROR_RUNTIME_ERROR, "
"\"Incompatible type\");\n";
mOut.indent() << "return;\n";
mOut.endBlock();
}
}
// Ensure that the input is 1 dimensional.
void RSReflectionCpp::gen1DCheck(const std::string &VarName) {
mOut.indent() << "// check that " << VarName << " is 1d\n";
mOut.indent() << "sp<const Type> t0 = " << VarName << "->getType();\n";
mOut.indent() << "if (t0->getY() != 0 ||\n";
mOut.indent() << " t0->hasFaces() ||\n";
mOut.indent() << " t0->hasMipmaps())";
mOut.startBlock();
mOut.indent() << "mRS->throwError(RS_ERROR_INVALID_PARAMETER, "
<< "\"" << VarName << " is not 1D!\");\n";
mOut.indent() << "return;\n";
mOut.endBlock();
}
// Generates code to ensure that the supplied array length is a multiple of the vector size.
void RSReflectionCpp::genVectorLengthCompatibilityCheck(const std::string &Length,
unsigned VecSize,
const std::string &ValueToReturn,
unsigned IndentLevels) {
auto Indenter = [this, IndentLevels]() -> std::ofstream& {
GeneratedFile &Out = this->mOut;
for (unsigned Level = 0; Level < IndentLevels; ++Level) {
Out.indent();
}
return Out;
};
Indenter() << "// Verify that the array length is a multiple of the vector size.\n";
Indenter() << "if (" << Length << " % " << std::to_string(VecSize) << " != 0) {\n";
Indenter() << " mRS->throwError(RS_ERROR_INVALID_PARAMETER, "
<< "\"Input array length is not a multiple of "
<< std::to_string(VecSize) << "\");\n";
Indenter() << " return " << ValueToReturn << ";\n";
Indenter() << "}\n\n";
}
// Generates code to ensure that the supplied array is non-null and nonzero in length.
void RSReflectionCpp::genNullOrEmptyArrayCheck(const std::string &ArrayName,
const std::string &Length,
const std::string &ValueToReturn) {
mOut.indent() << "// Verify that the array is non-null and non-empty.\n";
mOut.indent() << "if (" << ArrayName << " == nullptr) {\n";
mOut.indent() << " mRS->throwError(RS_ERROR_INVALID_PARAMETER, "
<< "\"Input array is null\");\n";
mOut.indent() << " return " << ValueToReturn << ";\n";
mOut.indent() << "}\n\n";
mOut.indent() << "if (" << Length << " == 0) {\n";
mOut.indent() << " mRS->throwError(RS_ERROR_INVALID_PARAMETER, "
<< "\"Input array is zero-length\");\n";
mOut.indent() << " return " << ValueToReturn << ";\n";
mOut.indent() << "}\n\n";
}
void RSReflectionCpp::genTypeInstanceFromPointer(const RSExportType *ET) {
if (ET->getClass() == RSExportType::ExportClassPointer) {
// For pointer parameters to original forEach kernels.
const RSExportPointerType *EPT =
static_cast<const RSExportPointerType *>(ET);
genTypeInstance(EPT->getPointeeType());
} else {
// For handling pass-by-value kernel parameters.
genTypeInstance(ET);
}
}
void RSReflectionCpp::genTypeInstance(const RSExportType *ET) {
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive:
case RSExportType::ExportClassVector:
case RSExportType::ExportClassConstantArray:
case RSExportType::ExportClassRecord: {
std::string TypeName = ET->getElementName();
mTypesToCheck.insert(TypeName);
break;
}
default:
break;
}
}
void RSReflectionCpp::genInitExportVariable(const RSExportType *ET,
const std::string &VarName,
const clang::APValue &Val) {
slangAssert(!Val.isUninit() && "Not a valid initializer");
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive: {
const RSExportPrimitiveType *EPT =
static_cast<const RSExportPrimitiveType *>(ET);
if (EPT->getType() == DataTypeBoolean) {
genInitBoolExportVariable(VarName, Val);
} else {
genInitPrimitiveExportVariable(VarName, Val);
}
break;
}
case RSExportType::ExportClassPointer: {
if (!Val.isInt() || Val.getInt().getSExtValue() != 0)
std::cerr << "Initializer which is non-NULL to pointer type variable "
"will be ignored" << std::endl;
break;
}
case RSExportType::ExportClassVector: {
const RSExportVectorType *EVT = static_cast<const RSExportVectorType *>(ET);
switch (Val.getKind()) {
case clang::APValue::Int:
case clang::APValue::Float: {
for (unsigned i = 0; i < EVT->getNumElement(); i++) {
std::string Name = VarName + "." + getVectorAccessor(i);
genInitPrimitiveExportVariable(Name, Val);
}
break;
}
case clang::APValue::Vector: {
unsigned NumElements = std::min(
static_cast<unsigned>(EVT->getNumElement()), Val.getVectorLength());
for (unsigned i = 0; i < NumElements; i++) {
const clang::APValue &ElementVal = Val.getVectorElt(i);
std::string Name = VarName + "." + getVectorAccessor(i);
genInitPrimitiveExportVariable(Name, ElementVal);
}
break;
}
case clang::APValue::MemberPointer:
case clang::APValue::Uninitialized:
case clang::APValue::ComplexInt:
case clang::APValue::ComplexFloat:
case clang::APValue::LValue:
case clang::APValue::Array:
case clang::APValue::Struct:
case clang::APValue::Union:
case clang::APValue::AddrLabelDiff: {
slangAssert(false && "Unexpected type of value of initializer.");
}
}
break;
}
case RSExportType::ExportClassMatrix:
case RSExportType::ExportClassConstantArray:
case RSExportType::ExportClassRecord: {
slangAssert(false && "Unsupported initializer for record/matrix/constant "
"array type variable currently");
break;
}
default: { slangAssert(false && "Unknown class of type"); }
}
}
const char *RSReflectionCpp::getVectorAccessor(unsigned Index) {
static const char *VectorAccessorMap[] = {/* 0 */ "x",
/* 1 */ "y",
/* 2 */ "z",
/* 3 */ "w",
};
slangAssert((Index < (sizeof(VectorAccessorMap) / sizeof(const char *))) &&
"Out-of-bound index to access vector member");
return VectorAccessorMap[Index];
}
void RSReflectionCpp::genZeroInitExportVariable(const std::string &VarName) {
mOut.indent() << "memset(&" << RS_EXPORT_VAR_PREFIX << VarName
<< ", 0, sizeof(" << RS_EXPORT_VAR_PREFIX << VarName << "));\n";
}
void
RSReflectionCpp::genInitPrimitiveExportVariable(const std::string &VarName,
const clang::APValue &Val) {
slangAssert(!Val.isUninit() && "Not a valid initializer");
mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = ";
genInitValue(Val);
mOut << ";\n";
}
void RSReflectionCpp::genInitValue(const clang::APValue &Val, bool asBool) {
switch (Val.getKind()) {
case clang::APValue::Int: {
llvm::APInt api = Val.getInt();
if (asBool) {
mOut << ((api.getSExtValue() == 0) ? "false" : "true");
} else {
// TODO: Handle unsigned correctly for C++
mOut << api.getSExtValue();
if (api.getBitWidth() > 32) {
mOut << "L";
}
}
break;
}
case clang::APValue::Float: {
llvm::APFloat apf = Val.getFloat();
llvm::SmallString<30> s;
apf.toString(s);
mOut << s.c_str();
if (&apf.getSemantics() == &llvm::APFloat::IEEEsingle) {
if (s.count('.') == 0) {
mOut << ".f";
} else {
mOut << "f";
}
}
break;
}
case clang::APValue::ComplexInt:
case clang::APValue::ComplexFloat:
case clang::APValue::LValue:
case clang::APValue::Vector: {
slangAssert(false && "Primitive type cannot have such kind of initializer");
break;
}
default: { slangAssert(false && "Unknown kind of initializer"); }
}
}
void RSReflectionCpp::genInitBoolExportVariable(const std::string &VarName,
const clang::APValue &Val) {
slangAssert(!Val.isUninit() && "Not a valid initializer");
slangAssert((Val.getKind() == clang::APValue::Int) &&
"Bool type has wrong initial APValue");
mOut.indent() << RS_EXPORT_VAR_PREFIX << VarName << " = "
<< ((Val.getInt().getSExtValue() == 0) ? "false" : "true")
<< ";";
}
} // namespace slang