blob: afeb6c59a386f09fc2a966c4f9fcb43d60478556 [file] [log] [blame]
/*
* Copyright 2010-2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slang_rs_export_type.h"
#include <list>
#include <vector>
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "slang_assert.h"
#include "slang_rs_context.h"
#include "slang_rs_export_element.h"
#include "slang_version.h"
#define CHECK_PARENT_EQUALITY(ParentClass, E) \
if (!ParentClass::matchODR(E, true)) \
return false;
namespace slang {
namespace {
// For the data types we support:
// Category - data type category
// SName - "common name" in script (C99)
// RsType - element name in RenderScript
// RsShortType - short element name in RenderScript
// SizeInBits - size in bits
// CName - reflected C name
// JavaName - reflected Java name
// JavaArrayElementName - reflected name in Java arrays
// CVecName - prefix for C vector types
// JavaVecName - prefix for Java vector type
// JavaPromotion - unsigned type undergoing Java promotion
//
// IMPORTANT: The data types in this table should be at the same index as
// specified by the corresponding DataType enum.
//
// TODO: Pull this information out into a separate file.
static RSReflectionType gReflectionTypes[] = {
#define _ nullptr
// Category SName RsType RsST CName JN JAEN CVN JVN JP
{PrimitiveDataType, "half", "FLOAT_16", "F16", 16, "half", "short", "short", "Half", "Short", false},
{PrimitiveDataType, "float", "FLOAT_32", "F32", 32, "float", "float", "float", "Float", "Float", false},
{PrimitiveDataType, "double", "FLOAT_64", "F64", 64, "double", "double", "double", "Double", "Double", false},
{PrimitiveDataType, "char", "SIGNED_8", "I8", 8, "int8_t", "byte", "byte", "Byte", "Byte", false},
{PrimitiveDataType, "short", "SIGNED_16", "I16", 16, "int16_t", "short", "short", "Short", "Short", false},
{PrimitiveDataType, "int", "SIGNED_32", "I32", 32, "int32_t", "int", "int", "Int", "Int", false},
{PrimitiveDataType, "long", "SIGNED_64", "I64", 64, "int64_t", "long", "long", "Long", "Long", false},
{PrimitiveDataType, "uchar", "UNSIGNED_8", "U8", 8, "uint8_t", "short", "byte", "UByte", "Short", true},
{PrimitiveDataType, "ushort", "UNSIGNED_16", "U16", 16, "uint16_t", "int", "short", "UShort", "Int", true},
{PrimitiveDataType, "uint", "UNSIGNED_32", "U32", 32, "uint32_t", "long", "int", "UInt", "Long", true},
{PrimitiveDataType, "ulong", "UNSIGNED_64", "U64", 64, "uint64_t", "long", "long", "ULong", "Long", false},
{PrimitiveDataType, "bool", "BOOLEAN", "BOOLEAN", 8, "bool", "boolean", "byte", _, _, false},
{PrimitiveDataType, _, "UNSIGNED_5_6_5", _, 16, _, _, _, _, _, false},
{PrimitiveDataType, _, "UNSIGNED_5_5_5_1", _, 16, _, _, _, _, _, false},
{PrimitiveDataType, _, "UNSIGNED_4_4_4_4", _, 16, _, _, _, _, _, false},
{MatrixDataType, "rs_matrix2x2", "MATRIX_2X2", _, 4*32, "rs_matrix2x2", "Matrix2f", _, _, _, false},
{MatrixDataType, "rs_matrix3x3", "MATRIX_3X3", _, 9*32, "rs_matrix3x3", "Matrix3f", _, _, _, false},
{MatrixDataType, "rs_matrix4x4", "MATRIX_4X4", _, 16*32, "rs_matrix4x4", "Matrix4f", _, _, _, false},
// RS object types are 32 bits in 32-bit RS, but 256 bits in 64-bit RS.
// This is handled specially by the GetElementSizeInBits() method.
{ObjectDataType, "rs_element", "RS_ELEMENT", "ELEMENT", 32, "Element", "Element", _, _, _, false},
{ObjectDataType, "rs_type", "RS_TYPE", "TYPE", 32, "Type", "Type", _, _, _, false},
{ObjectDataType, "rs_allocation", "RS_ALLOCATION", "ALLOCATION", 32, "Allocation", "Allocation", _, _, _, false},
{ObjectDataType, "rs_sampler", "RS_SAMPLER", "SAMPLER", 32, "Sampler", "Sampler", _, _, _, false},
{ObjectDataType, "rs_script", "RS_SCRIPT", "SCRIPT", 32, "Script", "Script", _, _, _, false},
{ObjectDataType, "rs_mesh", "RS_MESH", "MESH", 32, "Mesh", "Mesh", _, _, _, false},
{ObjectDataType, "rs_path", "RS_PATH", "PATH", 32, "Path", "Path", _, _, _, false},
{ObjectDataType, "rs_program_fragment", "RS_PROGRAM_FRAGMENT", "PROGRAM_FRAGMENT", 32, "ProgramFragment", "ProgramFragment", _, _, _, false},
{ObjectDataType, "rs_program_vertex", "RS_PROGRAM_VERTEX", "PROGRAM_VERTEX", 32, "ProgramVertex", "ProgramVertex", _, _, _, false},
{ObjectDataType, "rs_program_raster", "RS_PROGRAM_RASTER", "PROGRAM_RASTER", 32, "ProgramRaster", "ProgramRaster", _, _, _, false},
{ObjectDataType, "rs_program_store", "RS_PROGRAM_STORE", "PROGRAM_STORE", 32, "ProgramStore", "ProgramStore", _, _, _, false},
{ObjectDataType, "rs_font", "RS_FONT", "FONT", 32, "Font", "Font", _, _, _, false},
#undef _
};
const int kMaxVectorSize = 4;
struct BuiltinInfo {
clang::BuiltinType::Kind builtinTypeKind;
DataType type;
/* TODO If we return std::string instead of llvm::StringRef, we could build
* the name instead of duplicating the entries.
*/
const char *cname[kMaxVectorSize];
};
BuiltinInfo BuiltinInfoTable[] = {
{clang::BuiltinType::Bool, DataTypeBoolean,
{"bool", "bool2", "bool3", "bool4"}},
{clang::BuiltinType::Char_U, DataTypeUnsigned8,
{"uchar", "uchar2", "uchar3", "uchar4"}},
{clang::BuiltinType::UChar, DataTypeUnsigned8,
{"uchar", "uchar2", "uchar3", "uchar4"}},
{clang::BuiltinType::Char16, DataTypeSigned16,
{"short", "short2", "short3", "short4"}},
{clang::BuiltinType::Char32, DataTypeSigned32,
{"int", "int2", "int3", "int4"}},
{clang::BuiltinType::UShort, DataTypeUnsigned16,
{"ushort", "ushort2", "ushort3", "ushort4"}},
{clang::BuiltinType::UInt, DataTypeUnsigned32,
{"uint", "uint2", "uint3", "uint4"}},
{clang::BuiltinType::ULong, DataTypeUnsigned64,
{"ulong", "ulong2", "ulong3", "ulong4"}},
{clang::BuiltinType::ULongLong, DataTypeUnsigned64,
{"ulong", "ulong2", "ulong3", "ulong4"}},
{clang::BuiltinType::Char_S, DataTypeSigned8,
{"char", "char2", "char3", "char4"}},
{clang::BuiltinType::SChar, DataTypeSigned8,
{"char", "char2", "char3", "char4"}},
{clang::BuiltinType::Short, DataTypeSigned16,
{"short", "short2", "short3", "short4"}},
{clang::BuiltinType::Int, DataTypeSigned32,
{"int", "int2", "int3", "int4"}},
{clang::BuiltinType::Long, DataTypeSigned64,
{"long", "long2", "long3", "long4"}},
{clang::BuiltinType::LongLong, DataTypeSigned64,
{"long", "long2", "long3", "long4"}},
{clang::BuiltinType::Half, DataTypeFloat16,
{"half", "half2", "half3", "half4"}},
{clang::BuiltinType::Float, DataTypeFloat32,
{"float", "float2", "float3", "float4"}},
{clang::BuiltinType::Double, DataTypeFloat64,
{"double", "double2", "double3", "double4"}},
};
const int BuiltinInfoTableCount = sizeof(BuiltinInfoTable) / sizeof(BuiltinInfoTable[0]);
struct NameAndPrimitiveType {
const char *name;
DataType dataType;
};
static NameAndPrimitiveType MatrixAndObjectDataTypes[] = {
{"rs_matrix2x2", DataTypeRSMatrix2x2},
{"rs_matrix3x3", DataTypeRSMatrix3x3},
{"rs_matrix4x4", DataTypeRSMatrix4x4},
{"rs_element", DataTypeRSElement},
{"rs_type", DataTypeRSType},
{"rs_allocation", DataTypeRSAllocation},
{"rs_sampler", DataTypeRSSampler},
{"rs_script", DataTypeRSScript},
{"rs_mesh", DataTypeRSMesh},
{"rs_path", DataTypeRSPath},
{"rs_program_fragment", DataTypeRSProgramFragment},
{"rs_program_vertex", DataTypeRSProgramVertex},
{"rs_program_raster", DataTypeRSProgramRaster},
{"rs_program_store", DataTypeRSProgramStore},
{"rs_font", DataTypeRSFont},
};
const int MatrixAndObjectDataTypesCount =
sizeof(MatrixAndObjectDataTypes) / sizeof(MatrixAndObjectDataTypes[0]);
static const clang::Type *TypeExportableHelper(
const clang::Type *T,
llvm::SmallPtrSet<const clang::Type*, 8>& SPS,
slang::RSContext *Context,
const clang::VarDecl *VD,
const clang::RecordDecl *TopLevelRecord,
ExportKind EK);
template <unsigned N>
static void ReportTypeError(slang::RSContext *Context,
const clang::NamedDecl *ND,
const clang::RecordDecl *TopLevelRecord,
const char (&Message)[N],
unsigned int TargetAPI = 0) {
// Attempt to use the type declaration first (if we have one).
// Fall back to the variable definition, if we are looking at something
// like an array declaration that can't be exported.
if (TopLevelRecord) {
Context->ReportError(TopLevelRecord->getLocation(), Message)
<< TopLevelRecord->getName() << TargetAPI;
} else if (ND) {
Context->ReportError(ND->getLocation(), Message) << ND->getName()
<< TargetAPI;
} else {
slangAssert(false && "Variables should be validated before exporting");
}
}
static const clang::Type *ConstantArrayTypeExportableHelper(
const clang::ConstantArrayType *CAT,
llvm::SmallPtrSet<const clang::Type*, 8>& SPS,
slang::RSContext *Context,
const clang::VarDecl *VD,
const clang::RecordDecl *TopLevelRecord,
ExportKind EK) {
// Check element type
const clang::Type *ElementType = GetConstantArrayElementType(CAT);
if (ElementType->isArrayType()) {
ReportTypeError(Context, VD, TopLevelRecord,
"multidimensional arrays cannot be exported: '%0'");
return nullptr;
} else if (ElementType->isExtVectorType()) {
const clang::ExtVectorType *EVT =
static_cast<const clang::ExtVectorType*>(ElementType);
unsigned numElements = EVT->getNumElements();
const clang::Type *BaseElementType = GetExtVectorElementType(EVT);
if (!RSExportPrimitiveType::IsPrimitiveType(BaseElementType)) {
ReportTypeError(Context, VD, TopLevelRecord,
"vectors of non-primitive types cannot be exported: '%0'");
return nullptr;
}
if (numElements == 3 && CAT->getSize() != 1) {
ReportTypeError(Context, VD, TopLevelRecord,
"arrays of width 3 vector types cannot be exported: '%0'");
return nullptr;
}
}
if (TypeExportableHelper(ElementType, SPS, Context, VD,
TopLevelRecord, EK) == nullptr) {
return nullptr;
} else {
return CAT;
}
}
BuiltinInfo *FindBuiltinType(clang::BuiltinType::Kind builtinTypeKind) {
for (int i = 0; i < BuiltinInfoTableCount; i++) {
if (builtinTypeKind == BuiltinInfoTable[i].builtinTypeKind) {
return &BuiltinInfoTable[i];
}
}
return nullptr;
}
static const clang::Type *TypeExportableHelper(
clang::Type const *T,
llvm::SmallPtrSet<clang::Type const *, 8> &SPS,
slang::RSContext *Context,
clang::VarDecl const *VD,
clang::RecordDecl const *TopLevelRecord,
ExportKind EK) {
// Normalize first
if ((T = GetCanonicalType(T)) == nullptr)
return nullptr;
if (SPS.count(T))
return T;
const clang::Type *CTI = T->getCanonicalTypeInternal().getTypePtr();
switch (T->getTypeClass()) {
case clang::Type::Builtin: {
const clang::BuiltinType *BT = static_cast<const clang::BuiltinType*>(CTI);
return FindBuiltinType(BT->getKind()) == nullptr ? nullptr : T;
}
case clang::Type::Record: {
if (RSExportPrimitiveType::GetRSSpecificType(T) != DataTypeUnknown) {
return T; // RS object type, no further checks are needed
}
// Check internal struct
if (T->isUnionType()) {
ReportTypeError(Context, VD, T->getAsUnionType()->getDecl(),
"unions cannot be exported: '%0'");
return nullptr;
} else if (!T->isStructureType()) {
slangAssert(false && "Unknown type cannot be exported");
return nullptr;
}
clang::RecordDecl *RD = T->getAsStructureType()->getDecl();
slangAssert(RD);
RD = RD->getDefinition();
if (RD == nullptr) {
ReportTypeError(Context, nullptr, T->getAsStructureType()->getDecl(),
"struct is not defined in this module");
return nullptr;
}
if (!TopLevelRecord) {
TopLevelRecord = RD;
}
if (RD->getName().empty()) {
ReportTypeError(Context, nullptr, RD,
"anonymous structures cannot be exported");
return nullptr;
}
// Fast check
if (RD->hasFlexibleArrayMember() || RD->hasObjectMember())
return nullptr;
// Insert myself into checking set
SPS.insert(T);
// Check all element
for (clang::RecordDecl::field_iterator FI = RD->field_begin(),
FE = RD->field_end();
FI != FE;
FI++) {
const clang::FieldDecl *FD = *FI;
const clang::Type *FT = RSExportType::GetTypeOfDecl(FD);
FT = GetCanonicalType(FT);
if (!TypeExportableHelper(FT, SPS, Context, VD, TopLevelRecord,
EK)) {
return nullptr;
}
// We don't support bit fields yet
//
// TODO(zonr/srhines): allow bit fields of size 8, 16, 32
if (FD->isBitField()) {
Context->ReportError(
FD->getLocation(),
"bit fields are not able to be exported: '%0.%1'")
<< RD->getName() << FD->getName();
return nullptr;
}
}
return T;
}
case clang::Type::FunctionProto:
case clang::Type::FunctionNoProto:
ReportTypeError(Context, VD, TopLevelRecord,
"function types cannot be exported: '%0'");
return nullptr;
case clang::Type::Pointer: {
if (TopLevelRecord) {
ReportTypeError(Context, VD, TopLevelRecord,
"structures containing pointers cannot be used as the type of "
"an exported global variable or the parameter to an exported "
"function: '%0'");
return nullptr;
}
const clang::PointerType *PT = static_cast<const clang::PointerType*>(CTI);
const clang::Type *PointeeType = GetPointeeType(PT);
if (PointeeType->getTypeClass() == clang::Type::Pointer) {
ReportTypeError(Context, VD, TopLevelRecord,
"multiple levels of pointers cannot be exported: '%0'");
return nullptr;
}
// Void pointers are forbidden for export, although we must accept
// void pointers that come in as arguments to a legacy kernel.
if (PointeeType->isVoidType() && EK != LegacyKernelArgument) {
ReportTypeError(Context, VD, TopLevelRecord,
"void pointers cannot be exported: '%0'");
return nullptr;
}
// We don't support pointer with array-type pointee
if (PointeeType->isArrayType()) {
ReportTypeError(Context, VD, TopLevelRecord,
"pointers to arrays cannot be exported: '%0'");
return nullptr;
}
// Check for unsupported pointee type
if (TypeExportableHelper(PointeeType, SPS, Context, VD,
TopLevelRecord, EK) == nullptr)
return nullptr;
else
return T;
}
case clang::Type::ExtVector: {
const clang::ExtVectorType *EVT =
static_cast<const clang::ExtVectorType*>(CTI);
// Only vector with size 2, 3 and 4 are supported.
if (EVT->getNumElements() < 2 || EVT->getNumElements() > 4)
return nullptr;
// Check base element type
const clang::Type *ElementType = GetExtVectorElementType(EVT);
if ((ElementType->getTypeClass() != clang::Type::Builtin) ||
(TypeExportableHelper(ElementType, SPS, Context, VD,
TopLevelRecord, EK) == nullptr))
return nullptr;
else
return T;
}
case clang::Type::ConstantArray: {
const clang::ConstantArrayType *CAT =
static_cast<const clang::ConstantArrayType*>(CTI);
return ConstantArrayTypeExportableHelper(CAT, SPS, Context, VD,
TopLevelRecord, EK);
}
case clang::Type::Enum: {
// FIXME: We currently convert enums to integers, rather than reflecting
// a more complete (and nicer type-safe Java version).
return Context->getASTContext().IntTy.getTypePtr();
}
default: {
slangAssert(false && "Unknown type cannot be validated");
return nullptr;
}
}
}
// Return the type that can be used to create RSExportType, will always return
// the canonical type.
//
// If the Type T is not exportable, this function returns nullptr. DiagEngine is
// used to generate proper Clang diagnostic messages when a non-exportable type
// is detected. TopLevelRecord is used to capture the highest struct (in the
// case of a nested hierarchy) for detecting other types that cannot be exported
// (mostly pointers within a struct).
static const clang::Type *TypeExportable(const clang::Type *T,
slang::RSContext *Context,
const clang::VarDecl *VD,
ExportKind EK) {
llvm::SmallPtrSet<const clang::Type*, 8> SPS =
llvm::SmallPtrSet<const clang::Type*, 8>();
return TypeExportableHelper(T, SPS, Context, VD, nullptr, EK);
}
static bool ValidateRSObjectInVarDecl(slang::RSContext *Context,
const clang::VarDecl *VD, bool InCompositeType,
unsigned int TargetAPI) {
if (TargetAPI < SLANG_JB_TARGET_API) {
// Only if we are already in a composite type (like an array or structure).
if (InCompositeType) {
// Only if we are actually exported (i.e. non-static).
if (VD->hasLinkage() &&
(VD->getFormalLinkage() == clang::ExternalLinkage)) {
// Only if we are not a pointer to an object.
const clang::Type *T = GetCanonicalType(VD->getType().getTypePtr());
if (T->getTypeClass() != clang::Type::Pointer) {
ReportTypeError(Context, VD, nullptr,
"arrays/structures containing RS object types "
"cannot be exported in target API < %1: '%0'",
SLANG_JB_TARGET_API);
return false;
}
}
}
}
return true;
}
// Helper function for ValidateType(). We do a recursive descent on the
// type hierarchy to ensure that we can properly export/handle the
// declaration.
// \return true if the variable declaration is valid,
// false if it is invalid (along with proper diagnostics).
//
// C - ASTContext (for diagnostics + builtin types).
// T - sub-type that we are validating.
// ND - (optional) top-level named declaration that we are validating.
// SPS - set of types we have already seen/validated.
// InCompositeType - true if we are within an outer composite type.
// UnionDecl - set if we are in a sub-type of a union.
// TargetAPI - target SDK API level.
// IsFilterscript - whether or not we are compiling for Filterscript
// IsExtern - is this type externally visible (i.e. extern global or parameter
// to an extern function)
static bool ValidateTypeHelper(
slang::RSContext *Context,
clang::ASTContext &C,
const clang::Type *&T,
const clang::NamedDecl *ND,
clang::SourceLocation Loc,
llvm::SmallPtrSet<const clang::Type*, 8>& SPS,
bool InCompositeType,
clang::RecordDecl *UnionDecl,
unsigned int TargetAPI,
bool IsFilterscript,
bool IsExtern) {
if ((T = GetCanonicalType(T)) == nullptr)
return true;
if (SPS.count(T))
return true;
const clang::Type *CTI = T->getCanonicalTypeInternal().getTypePtr();
switch (T->getTypeClass()) {
case clang::Type::Record: {
if (RSExportPrimitiveType::IsRSObjectType(T)) {
const clang::VarDecl *VD = (ND ? llvm::dyn_cast<clang::VarDecl>(ND) : nullptr);
if (VD && !ValidateRSObjectInVarDecl(Context, VD, InCompositeType,
TargetAPI)) {
return false;
}
}
if (RSExportPrimitiveType::GetRSSpecificType(T) != DataTypeUnknown) {
if (!UnionDecl) {
return true;
} else if (RSExportPrimitiveType::IsRSObjectType(T)) {
ReportTypeError(Context, nullptr, UnionDecl,
"unions containing RS object types are not allowed");
return false;
}
}
clang::RecordDecl *RD = nullptr;
// Check internal struct
if (T->isUnionType()) {
RD = T->getAsUnionType()->getDecl();
UnionDecl = RD;
} else if (T->isStructureType()) {
RD = T->getAsStructureType()->getDecl();
} else {
slangAssert(false && "Unknown type cannot be exported");
return false;
}
slangAssert(RD);
RD = RD->getDefinition();
if (RD == nullptr) {
// FIXME
return true;
}
// Fast check
if (RD->hasFlexibleArrayMember() || RD->hasObjectMember())
return false;
// Insert myself into checking set
SPS.insert(T);
// Check all elements
for (clang::RecordDecl::field_iterator FI = RD->field_begin(),
FE = RD->field_end();
FI != FE;
FI++) {
const clang::FieldDecl *FD = *FI;
const clang::Type *FT = RSExportType::GetTypeOfDecl(FD);
FT = GetCanonicalType(FT);
if (!ValidateTypeHelper(Context, C, FT, ND, Loc, SPS, true, UnionDecl,
TargetAPI, IsFilterscript, IsExtern)) {
return false;
}
}
return true;
}
case clang::Type::Builtin: {
if (IsFilterscript) {
clang::QualType QT = T->getCanonicalTypeInternal();
if (QT == C.DoubleTy ||
QT == C.LongDoubleTy ||
QT == C.LongTy ||
QT == C.LongLongTy) {
if (ND) {
Context->ReportError(
Loc,
"Builtin types > 32 bits in size are forbidden in "
"Filterscript: '%0'")
<< ND->getName();
} else {
Context->ReportError(
Loc,
"Builtin types > 32 bits in size are forbidden in "
"Filterscript");
}
return false;
}
}
break;
}
case clang::Type::Pointer: {
if (IsFilterscript) {
if (ND) {
Context->ReportError(Loc,
"Pointers are forbidden in Filterscript: '%0'")
<< ND->getName();
return false;
} else {
// TODO(srhines): Find a better way to handle expressions (i.e. no
// NamedDecl) involving pointers in FS that should be allowed.
// An example would be calls to library functions like
// rsMatrixMultiply() that take rs_matrixNxN * types.
}
}
// Forbid pointers in structures that are externally visible.
if (InCompositeType && IsExtern) {
if (ND) {
Context->ReportError(Loc,
"structures containing pointers cannot be used as the type of "
"an exported global variable or the parameter to an exported "
"function: '%0'")
<< ND->getName();
} else {
Context->ReportError(Loc,
"structures containing pointers cannot be used as the type of "
"an exported global variable or the parameter to an exported "
"function");
}
return false;
}
const clang::PointerType *PT = static_cast<const clang::PointerType*>(CTI);
const clang::Type *PointeeType = GetPointeeType(PT);
return ValidateTypeHelper(Context, C, PointeeType, ND, Loc, SPS,
InCompositeType, UnionDecl, TargetAPI,
IsFilterscript, IsExtern);
}
case clang::Type::ExtVector: {
const clang::ExtVectorType *EVT =
static_cast<const clang::ExtVectorType*>(CTI);
const clang::Type *ElementType = GetExtVectorElementType(EVT);
if (TargetAPI < SLANG_ICS_TARGET_API &&
InCompositeType &&
EVT->getNumElements() == 3 &&
ND &&
ND->getFormalLinkage() == clang::ExternalLinkage) {
ReportTypeError(Context, ND, nullptr,
"structs containing vectors of dimension 3 cannot "
"be exported at this API level: '%0'");
return false;
}
return ValidateTypeHelper(Context, C, ElementType, ND, Loc, SPS, true,
UnionDecl, TargetAPI, IsFilterscript, IsExtern);
}
case clang::Type::ConstantArray: {
const clang::ConstantArrayType *CAT = static_cast<const clang::ConstantArrayType*>(CTI);
const clang::Type *ElementType = GetConstantArrayElementType(CAT);
return ValidateTypeHelper(Context, C, ElementType, ND, Loc, SPS, true,
UnionDecl, TargetAPI, IsFilterscript, IsExtern);
}
default: {
break;
}
}
return true;
}
} // namespace
std::string CreateDummyName(const char *type, const std::string &name) {
std::stringstream S;
S << "<" << type;
if (!name.empty()) {
S << ":" << name;
}
S << ">";
return S.str();
}
/****************************** RSExportType ******************************/
bool RSExportType::NormalizeType(const clang::Type *&T,
llvm::StringRef &TypeName,
RSContext *Context,
const clang::VarDecl *VD,
ExportKind EK) {
if ((T = TypeExportable(T, Context, VD, EK)) == nullptr) {
return false;
}
// Get type name
TypeName = RSExportType::GetTypeName(T);
if (Context && TypeName.empty()) {
if (VD) {
Context->ReportError(VD->getLocation(),
"anonymous types cannot be exported");
} else {
Context->ReportError("anonymous types cannot be exported");
}
return false;
}
return true;
}
bool RSExportType::ValidateType(slang::RSContext *Context, clang::ASTContext &C,
clang::QualType QT, const clang::NamedDecl *ND,
clang::SourceLocation Loc,
unsigned int TargetAPI, bool IsFilterscript,
bool IsExtern) {
const clang::Type *T = QT.getTypePtr();
llvm::SmallPtrSet<const clang::Type*, 8> SPS =
llvm::SmallPtrSet<const clang::Type*, 8>();
// If this is an externally visible variable declaration, we check if the
// type is able to be exported first.
if (auto VD = llvm::dyn_cast_or_null<clang::VarDecl>(ND)) {
if (VD->getFormalLinkage() == clang::ExternalLinkage) {
if (!TypeExportable(T, Context, VD, NotLegacyKernelArgument)) {
return false;
}
}
}
return ValidateTypeHelper(Context, C, T, ND, Loc, SPS, false, nullptr, TargetAPI,
IsFilterscript, IsExtern);
}
bool RSExportType::ValidateVarDecl(slang::RSContext *Context,
clang::VarDecl *VD, unsigned int TargetAPI,
bool IsFilterscript) {
return ValidateType(Context, VD->getASTContext(), VD->getType(), VD,
VD->getLocation(), TargetAPI, IsFilterscript,
(VD->getFormalLinkage() == clang::ExternalLinkage));
}
const clang::Type
*RSExportType::GetTypeOfDecl(const clang::DeclaratorDecl *DD) {
if (DD) {
clang::QualType T = DD->getType();
if (T.isNull())
return nullptr;
else
return T.getTypePtr();
}
return nullptr;
}
llvm::StringRef RSExportType::GetTypeName(const clang::Type* T) {
T = GetCanonicalType(T);
if (T == nullptr)
return llvm::StringRef();
const clang::Type *CTI = T->getCanonicalTypeInternal().getTypePtr();
switch (T->getTypeClass()) {
case clang::Type::Builtin: {
const clang::BuiltinType *BT = static_cast<const clang::BuiltinType*>(CTI);
BuiltinInfo *info = FindBuiltinType(BT->getKind());
if (info != nullptr) {
return info->cname[0];
}
slangAssert(false && "Unknown data type of the builtin");
break;
}
case clang::Type::Record: {
clang::RecordDecl *RD;
if (T->isStructureType()) {
RD = T->getAsStructureType()->getDecl();
} else {
break;
}
llvm::StringRef Name = RD->getName();
if (Name.empty()) {
if (RD->getTypedefNameForAnonDecl() != nullptr) {
Name = RD->getTypedefNameForAnonDecl()->getName();
}
if (Name.empty()) {
// Try to find a name from redeclaration (i.e. typedef)
for (clang::TagDecl::redecl_iterator RI = RD->redecls_begin(),
RE = RD->redecls_end();
RI != RE;
RI++) {
slangAssert(*RI != nullptr && "cannot be NULL object");
Name = (*RI)->getName();
if (!Name.empty())
break;
}
}
}
return Name;
}
case clang::Type::Pointer: {
// "*" plus pointee name
const clang::PointerType *P = static_cast<const clang::PointerType*>(CTI);
const clang::Type *PT = GetPointeeType(P);
llvm::StringRef PointeeName;
if (NormalizeType(PT, PointeeName, nullptr, nullptr,
NotLegacyKernelArgument)) {
char *Name = new char[ 1 /* * */ + PointeeName.size() + 1 ];
Name[0] = '*';
memcpy(Name + 1, PointeeName.data(), PointeeName.size());
Name[PointeeName.size() + 1] = '\0';
return Name;
}
break;
}
case clang::Type::ExtVector: {
const clang::ExtVectorType *EVT =
static_cast<const clang::ExtVectorType*>(CTI);
return RSExportVectorType::GetTypeName(EVT);
break;
}
case clang::Type::ConstantArray : {
// Construct name for a constant array is too complicated.
return "<ConstantArray>";
}
default: {
break;
}
}
return llvm::StringRef();
}
RSExportType *RSExportType::Create(RSContext *Context,
const clang::Type *T,
const llvm::StringRef &TypeName,
ExportKind EK) {
// Lookup the context to see whether the type was processed before.
// Newly created RSExportType will insert into context
// in RSExportType::RSExportType()
RSContext::export_type_iterator ETI = Context->findExportType(TypeName);
if (ETI != Context->export_types_end())
return ETI->second;
const clang::Type *CTI = T->getCanonicalTypeInternal().getTypePtr();
RSExportType *ET = nullptr;
switch (T->getTypeClass()) {
case clang::Type::Record: {
DataType dt = RSExportPrimitiveType::GetRSSpecificType(TypeName);
switch (dt) {
case DataTypeUnknown: {
// User-defined types
ET = RSExportRecordType::Create(Context,
T->getAsStructureType(),
TypeName);
break;
}
case DataTypeRSMatrix2x2: {
// 2 x 2 Matrix type
ET = RSExportMatrixType::Create(Context,
T->getAsStructureType(),
TypeName,
2);
break;
}
case DataTypeRSMatrix3x3: {
// 3 x 3 Matrix type
ET = RSExportMatrixType::Create(Context,
T->getAsStructureType(),
TypeName,
3);
break;
}
case DataTypeRSMatrix4x4: {
// 4 x 4 Matrix type
ET = RSExportMatrixType::Create(Context,
T->getAsStructureType(),
TypeName,
4);
break;
}
default: {
// Others are primitive types
ET = RSExportPrimitiveType::Create(Context, T, TypeName);
break;
}
}
break;
}
case clang::Type::Builtin: {
ET = RSExportPrimitiveType::Create(Context, T, TypeName);
break;
}
case clang::Type::Pointer: {
ET = RSExportPointerType::Create(Context,
static_cast<const clang::PointerType*>(CTI),
TypeName);
// FIXME: free the name (allocated in RSExportType::GetTypeName)
delete [] TypeName.data();
break;
}
case clang::Type::ExtVector: {
ET = RSExportVectorType::Create(Context,
static_cast<const clang::ExtVectorType*>(CTI),
TypeName);
break;
}
case clang::Type::ConstantArray: {
ET = RSExportConstantArrayType::Create(
Context,
static_cast<const clang::ConstantArrayType*>(CTI));
break;
}
default: {
Context->ReportError("unknown type cannot be exported: '%0'")
<< T->getTypeClassName();
break;
}
}
return ET;
}
RSExportType *RSExportType::Create(RSContext *Context, const clang::Type *T,
ExportKind EK, const clang::VarDecl *VD) {
llvm::StringRef TypeName;
if (NormalizeType(T, TypeName, Context, VD, EK)) {
return Create(Context, T, TypeName, EK);
} else {
return nullptr;
}
}
RSExportType *RSExportType::CreateFromDecl(RSContext *Context,
const clang::VarDecl *VD) {
return RSExportType::Create(Context, GetTypeOfDecl(VD),
NotLegacyKernelArgument, VD);
}
size_t RSExportType::getStoreSize() const {
return getRSContext()->getDataLayout().getTypeStoreSize(getLLVMType());
}
size_t RSExportType::getAllocSize() const {
return getRSContext()->getDataLayout().getTypeAllocSize(getLLVMType());
}
RSExportType::RSExportType(RSContext *Context,
ExportClass Class,
const llvm::StringRef &Name, clang::SourceLocation Loc)
: RSExportable(Context, RSExportable::EX_TYPE, Loc),
mClass(Class),
// Make a copy on Name since memory stored @Name is either allocated in
// ASTContext or allocated in GetTypeName which will be destroyed later.
mName(Name.data(), Name.size()),
mLLVMType(nullptr) {
// Don't cache the type whose name start with '<'. Those type failed to
// get their name since constructing their name in GetTypeName() requiring
// complicated work.
if (!IsDummyName(Name)) {
// TODO(zonr): Need to check whether the insertion is successful or not.
Context->insertExportType(llvm::StringRef(Name), this);
}
}
bool RSExportType::keep() {
if (!RSExportable::keep())
return false;
// Invalidate converted LLVM type.
mLLVMType = nullptr;
return true;
}
bool RSExportType::matchODR(const RSExportType *E, bool /* LookInto */) const {
return (E->getClass() == getClass());
}
RSExportType::~RSExportType() {
}
/************************** RSExportPrimitiveType **************************/
llvm::ManagedStatic<RSExportPrimitiveType::RSSpecificTypeMapTy>
RSExportPrimitiveType::RSSpecificTypeMap;
bool RSExportPrimitiveType::IsPrimitiveType(const clang::Type *T) {
if ((T != nullptr) && (T->getTypeClass() == clang::Type::Builtin))
return true;
else
return false;
}
DataType
RSExportPrimitiveType::GetRSSpecificType(const llvm::StringRef &TypeName) {
if (TypeName.empty())
return DataTypeUnknown;
if (RSSpecificTypeMap->empty()) {
for (int i = 0; i < MatrixAndObjectDataTypesCount; i++) {
(*RSSpecificTypeMap)[MatrixAndObjectDataTypes[i].name] =
MatrixAndObjectDataTypes[i].dataType;
}
}
RSSpecificTypeMapTy::const_iterator I = RSSpecificTypeMap->find(TypeName);
if (I == RSSpecificTypeMap->end())
return DataTypeUnknown;
else
return I->getValue();
}
DataType RSExportPrimitiveType::GetRSSpecificType(const clang::Type *T) {
T = GetCanonicalType(T);
if ((T == nullptr) || (T->getTypeClass() != clang::Type::Record))
return DataTypeUnknown;
return GetRSSpecificType( RSExportType::GetTypeName(T) );
}
bool RSExportPrimitiveType::IsRSMatrixType(DataType DT) {
if (DT < 0 || DT >= DataTypeMax) {
return false;
}
return gReflectionTypes[DT].category == MatrixDataType;
}
bool RSExportPrimitiveType::IsRSObjectType(DataType DT) {
if (DT < 0 || DT >= DataTypeMax) {
return false;
}
return gReflectionTypes[DT].category == ObjectDataType;
}
bool RSExportPrimitiveType::IsStructureTypeWithRSObject(const clang::Type *T) {
bool RSObjectTypeSeen = false;
slangAssert(T);
while (T->isArrayType()) {
T = T->getArrayElementTypeNoTypeQual();
slangAssert(T);
}
const clang::RecordType *RT = T->getAsStructureType();
if (!RT) {
return false;
}
const clang::RecordDecl *RD = RT->getDecl();
if (RD) {
RD = RD->getDefinition();
}
if (!RD) {
return false;
}
for (clang::RecordDecl::field_iterator FI = RD->field_begin(),
FE = RD->field_end();
FI != FE;
FI++) {
// We just look through all field declarations to see if we find a
// declaration for an RS object type (or an array of one).
const clang::FieldDecl *FD = *FI;
const clang::Type *FT = RSExportType::GetTypeOfDecl(FD);
slangAssert(FT);
while (FT->isArrayType()) {
FT = FT->getArrayElementTypeNoTypeQual();
slangAssert(FT);
}
DataType DT = GetRSSpecificType(FT);
if (IsRSObjectType(DT)) {
// RS object types definitely need to be zero-initialized
RSObjectTypeSeen = true;
} else {
switch (DT) {
case DataTypeRSMatrix2x2:
case DataTypeRSMatrix3x3:
case DataTypeRSMatrix4x4:
// Matrix types should get zero-initialized as well
RSObjectTypeSeen = true;
break;
default:
// Ignore all other primitive types
break;
}
if (FT->isStructureType()) {
// Recursively handle structs of structs (even though these can't
// be exported, it is possible for a user to have them internally).
RSObjectTypeSeen |= IsStructureTypeWithRSObject(FT);
}
}
}
return RSObjectTypeSeen;
}
size_t RSExportPrimitiveType::GetElementSizeInBits(const RSExportPrimitiveType *EPT) {
int type = EPT->getType();
slangAssert((type > DataTypeUnknown && type < DataTypeMax) &&
"RSExportPrimitiveType::GetElementSizeInBits : unknown data type");
// All RS object types are 256 bits in 64-bit RS.
if (EPT->isRSObjectType() && EPT->getRSContext()->is64Bit()) {
return 256;
}
return gReflectionTypes[type].size_in_bits;
}
DataType
RSExportPrimitiveType::GetDataType(RSContext *Context, const clang::Type *T) {
if (T == nullptr)
return DataTypeUnknown;
switch (T->getTypeClass()) {
case clang::Type::Builtin: {
const clang::BuiltinType *BT =
static_cast<const clang::BuiltinType*>(T->getCanonicalTypeInternal().getTypePtr());
BuiltinInfo *info = FindBuiltinType(BT->getKind());
if (info != nullptr) {
return info->type;
}
// The size of type WChar depend on platform so we abandon the support
// to them.
Context->ReportError("built-in type cannot be exported: '%0'")
<< T->getTypeClassName();
break;
}
case clang::Type::Record: {
// must be RS object type
return RSExportPrimitiveType::GetRSSpecificType(T);
}
default: {
Context->ReportError("primitive type cannot be exported: '%0'")
<< T->getTypeClassName();
break;
}
}
return DataTypeUnknown;
}
RSExportPrimitiveType
*RSExportPrimitiveType::Create(RSContext *Context,
const clang::Type *T,
const llvm::StringRef &TypeName,
bool Normalized) {
DataType DT = GetDataType(Context, T);
if ((DT == DataTypeUnknown) || TypeName.empty())
return nullptr;
else
return new RSExportPrimitiveType(Context, ExportClassPrimitive, TypeName,
DT, Normalized);
}
RSExportPrimitiveType *RSExportPrimitiveType::Create(RSContext *Context,
const clang::Type *T) {
llvm::StringRef TypeName;
if (RSExportType::NormalizeType(T, TypeName, Context, nullptr,
NotLegacyKernelArgument) &&
IsPrimitiveType(T)) {
return Create(Context, T, TypeName);
} else {
return nullptr;
}
}
llvm::Type *RSExportPrimitiveType::convertToLLVMType() const {
llvm::LLVMContext &C = getRSContext()->getLLVMContext();
if (isRSObjectType()) {
// struct {
// int *p;
// } __attribute__((packed, aligned(pointer_size)))
//
// which is
//
// <{ [1 x i32] }> in LLVM
//
std::vector<llvm::Type *> Elements;
if (getRSContext()->is64Bit()) {
// 64-bit path
Elements.push_back(llvm::ArrayType::get(llvm::Type::getInt64Ty(C), 4));
return llvm::StructType::get(C, Elements, true);
} else {
// 32-bit legacy path
Elements.push_back(llvm::ArrayType::get(llvm::Type::getInt32Ty(C), 1));
return llvm::StructType::get(C, Elements, true);
}
}
switch (mType) {
case DataTypeFloat16: {
return llvm::Type::getHalfTy(C);
break;
}
case DataTypeFloat32: {
return llvm::Type::getFloatTy(C);
break;
}
case DataTypeFloat64: {
return llvm::Type::getDoubleTy(C);
break;
}
case DataTypeBoolean: {
return llvm::Type::getInt1Ty(C);
break;
}
case DataTypeSigned8:
case DataTypeUnsigned8: {
return llvm::Type::getInt8Ty(C);
break;
}
case DataTypeSigned16:
case DataTypeUnsigned16:
case DataTypeUnsigned565:
case DataTypeUnsigned5551:
case DataTypeUnsigned4444: {
return llvm::Type::getInt16Ty(C);
break;
}
case DataTypeSigned32:
case DataTypeUnsigned32: {
return llvm::Type::getInt32Ty(C);
break;
}
case DataTypeSigned64:
case DataTypeUnsigned64: {
return llvm::Type::getInt64Ty(C);
break;
}
default: {
slangAssert(false && "Unknown data type");
}
}
return nullptr;
}
bool RSExportPrimitiveType::matchODR(const RSExportType *E,
bool /* LookInto */) const {
CHECK_PARENT_EQUALITY(RSExportType, E);
return (static_cast<const RSExportPrimitiveType*>(E)->getType() == getType());
}
RSReflectionType *RSExportPrimitiveType::getRSReflectionType(DataType DT) {
if (DT > DataTypeUnknown && DT < DataTypeMax) {
return &gReflectionTypes[DT];
} else {
return nullptr;
}
}
/**************************** RSExportPointerType ****************************/
RSExportPointerType
*RSExportPointerType::Create(RSContext *Context,
const clang::PointerType *PT,
const llvm::StringRef &TypeName) {
const clang::Type *PointeeType = GetPointeeType(PT);
const RSExportType *PointeeET;
if (PointeeType->getTypeClass() != clang::Type::Pointer) {
PointeeET = RSExportType::Create(Context, PointeeType,
NotLegacyKernelArgument);
} else {
// Double or higher dimension of pointer, export as int*
PointeeET = RSExportPrimitiveType::Create(Context,
Context->getASTContext().IntTy.getTypePtr());
}
if (PointeeET == nullptr) {
// Error diagnostic is emitted for corresponding pointee type
return nullptr;
}
return new RSExportPointerType(Context, TypeName, PointeeET);
}
llvm::Type *RSExportPointerType::convertToLLVMType() const {
llvm::Type *PointeeType = mPointeeType->getLLVMType();
return llvm::PointerType::getUnqual(PointeeType);
}
bool RSExportPointerType::keep() {
if (!RSExportType::keep())
return false;
const_cast<RSExportType*>(mPointeeType)->keep();
return true;
}
bool RSExportPointerType::matchODR(const RSExportType *E,
bool /* LookInto */) const {
// Exported types cannot contain pointers
slangAssert(false && "Not supposed to perform ODR check on pointers");
return false;
}
/***************************** RSExportVectorType *****************************/
llvm::StringRef
RSExportVectorType::GetTypeName(const clang::ExtVectorType *EVT) {
const clang::Type *ElementType = GetExtVectorElementType(EVT);
llvm::StringRef name;
if ((ElementType->getTypeClass() != clang::Type::Builtin))
return name;
const clang::BuiltinType *BT =
static_cast<const clang::BuiltinType*>(
ElementType->getCanonicalTypeInternal().getTypePtr());
if ((EVT->getNumElements() < 1) ||
(EVT->getNumElements() > 4))
return name;
BuiltinInfo *info = FindBuiltinType(BT->getKind());
if (info != nullptr) {
int I = EVT->getNumElements() - 1;
if (I < kMaxVectorSize) {
name = info->cname[I];
} else {
slangAssert(false && "Max vector is 4");
}
}
return name;
}
RSExportVectorType *RSExportVectorType::Create(RSContext *Context,
const clang::ExtVectorType *EVT,
const llvm::StringRef &TypeName,
bool Normalized) {
slangAssert(EVT != nullptr && EVT->getTypeClass() == clang::Type::ExtVector);
const clang::Type *ElementType = GetExtVectorElementType(EVT);
DataType DT = RSExportPrimitiveType::GetDataType(Context, ElementType);
if (DT != DataTypeUnknown)
return new RSExportVectorType(Context,
TypeName,
DT,
Normalized,
EVT->getNumElements());
else
return nullptr;
}
llvm::Type *RSExportVectorType::convertToLLVMType() const {
llvm::Type *ElementType = RSExportPrimitiveType::convertToLLVMType();
return llvm::VectorType::get(ElementType, getNumElement());
}
bool RSExportVectorType::matchODR(const RSExportType *E,
bool /* LookInto*/) const {
CHECK_PARENT_EQUALITY(RSExportPrimitiveType, E);
return (static_cast<const RSExportVectorType*>(E)->getNumElement()
== getNumElement());
}
/***************************** RSExportMatrixType *****************************/
RSExportMatrixType *RSExportMatrixType::Create(RSContext *Context,
const clang::RecordType *RT,
const llvm::StringRef &TypeName,
unsigned Dim) {
slangAssert((RT != nullptr) && (RT->getTypeClass() == clang::Type::Record));
slangAssert((Dim > 1) && "Invalid dimension of matrix");
// Check whether the struct rs_matrix is in our expected form (but assume it's
// correct if we're not sure whether it's correct or not)
const clang::RecordDecl* RD = RT->getDecl();
RD = RD->getDefinition();
if (RD != nullptr) {
// Find definition, perform further examination
if (RD->field_empty()) {
Context->ReportError(
RD->getLocation(),
"invalid matrix struct: must have 1 field for saving values: '%0'")
<< RD->getName();
return nullptr;
}
clang::RecordDecl::field_iterator FIT = RD->field_begin();
const clang::FieldDecl *FD = *FIT;
const clang::Type *FT = RSExportType::GetTypeOfDecl(FD);
if ((FT == nullptr) || (FT->getTypeClass() != clang::Type::ConstantArray)) {
Context->ReportError(RD->getLocation(),
"invalid matrix struct: first field should"
" be an array with constant size: '%0'")
<< RD->getName();
return nullptr;
}
const clang::ConstantArrayType *CAT =
static_cast<const clang::ConstantArrayType *>(FT);
const clang::Type *ElementType = GetConstantArrayElementType(CAT);
if ((ElementType == nullptr) ||
(ElementType->getTypeClass() != clang::Type::Builtin) ||
(static_cast<const clang::BuiltinType *>(ElementType)->getKind() !=
clang::BuiltinType::Float)) {
Context->ReportError(RD->getLocation(),
"invalid matrix struct: first field "
"should be a float array: '%0'")
<< RD->getName();
return nullptr;
}
if (CAT->getSize() != Dim * Dim) {
Context->ReportError(RD->getLocation(),
"invalid matrix struct: first field "
"should be an array with size %0: '%1'")
<< (Dim * Dim) << (RD->getName());
return nullptr;
}
FIT++;
if (FIT != RD->field_end()) {
Context->ReportError(RD->getLocation(),
"invalid matrix struct: must have "
"exactly 1 field: '%0'")
<< RD->getName();
return nullptr;
}
}
return new RSExportMatrixType(Context, TypeName, Dim);
}
llvm::Type *RSExportMatrixType::convertToLLVMType() const {
// Construct LLVM type:
// struct {
// float X[mDim * mDim];
// }
llvm::LLVMContext &C = getRSContext()->getLLVMContext();
llvm::ArrayType *X = llvm::ArrayType::get(llvm::Type::getFloatTy(C),
mDim * mDim);
return llvm::StructType::get(C, X, false);
}
bool RSExportMatrixType::matchODR(const RSExportType *E,
bool /* LookInto */) const {
CHECK_PARENT_EQUALITY(RSExportType, E);
return (static_cast<const RSExportMatrixType*>(E)->getDim() == getDim());
}
/************************* RSExportConstantArrayType *************************/
RSExportConstantArrayType
*RSExportConstantArrayType::Create(RSContext *Context,
const clang::ConstantArrayType *CAT) {
slangAssert(CAT != nullptr && CAT->getTypeClass() == clang::Type::ConstantArray);
slangAssert((CAT->getSize().getActiveBits() < 32) && "array too large");
unsigned Size = static_cast<unsigned>(CAT->getSize().getZExtValue());
slangAssert((Size > 0) && "Constant array should have size greater than 0");
const clang::Type *ElementType = GetConstantArrayElementType(CAT);
RSExportType *ElementET = RSExportType::Create(Context, ElementType,
NotLegacyKernelArgument);
if (ElementET == nullptr) {
return nullptr;
}
return new RSExportConstantArrayType(Context,
ElementET,
Size);
}
llvm::Type *RSExportConstantArrayType::convertToLLVMType() const {
return llvm::ArrayType::get(mElementType->getLLVMType(), getNumElement());
}
bool RSExportConstantArrayType::keep() {
if (!RSExportType::keep())
return false;
const_cast<RSExportType*>(mElementType)->keep();
return true;
}
bool RSExportConstantArrayType::matchODR(const RSExportType *E,
bool LookInto) const {
CHECK_PARENT_EQUALITY(RSExportType, E);
const RSExportConstantArrayType *RHS =
static_cast<const RSExportConstantArrayType*>(E);
return ((getNumElement() == RHS->getNumElement()) &&
(getElementType()->matchODR(RHS->getElementType(), LookInto)));
}
/**************************** RSExportRecordType ****************************/
RSExportRecordType *RSExportRecordType::Create(RSContext *Context,
const clang::RecordType *RT,
const llvm::StringRef &TypeName,
bool mIsArtificial) {
slangAssert(RT != nullptr && RT->getTypeClass() == clang::Type::Record);
const clang::RecordDecl *RD = RT->getDecl();
slangAssert(RD->isStruct());
RD = RD->getDefinition();
if (RD == nullptr) {
slangAssert(false && "struct is not defined in this module");
return nullptr;
}
// Struct layout construct by clang. We rely on this for obtaining the
// alloc size of a struct and offset of every field in that struct.
const clang::ASTRecordLayout *RL =
&Context->getASTContext().getASTRecordLayout(RD);
slangAssert((RL != nullptr) &&
"Failed to retrieve the struct layout from Clang.");
RSExportRecordType *ERT =
new RSExportRecordType(Context,
TypeName,
RD->getLocation(),
RD->hasAttr<clang::PackedAttr>(),
mIsArtificial,
RL->getDataSize().getQuantity(),
RL->getSize().getQuantity());
unsigned int Index = 0;
for (clang::RecordDecl::field_iterator FI = RD->field_begin(),
FE = RD->field_end();
FI != FE;
FI++, Index++) {
// FIXME: All fields should be primitive type
slangAssert(FI->getKind() == clang::Decl::Field);
clang::FieldDecl *FD = *FI;
if (FD->isBitField()) {
return nullptr;
}
if (FD->isImplicit() && (FD->getName() == RS_PADDING_FIELD_NAME))
continue;
// Type
RSExportType *ET = RSExportElement::CreateFromDecl(Context, FD);
if (ET != nullptr) {
ERT->mFields.push_back(
new Field(ET, FD->getName(), ERT,
static_cast<size_t>(RL->getFieldOffset(Index) >> 3)));
} else {
// clang static analysis complains about a potential memory leak
// for the memory pointed by ERT at the end of this basic
// block. This is a false warning because the compiler does not
// see that the pointer to this memory is saved away in the
// constructor for RSExportRecordType by calling
// RSContext::newExportable(this). So, we disable this
// particular instance of the warning.
Context->ReportError(RD->getLocation(),
"field type cannot be exported: '%0.%1'")
<< RD->getName() << FD->getName(); // NOLINT
return nullptr;
}
}
return ERT;
}
llvm::Type *RSExportRecordType::convertToLLVMType() const {
// Create an opaque type since struct may reference itself recursively.
// TODO(sliao): LLVM took out the OpaqueType. Any other to migrate to?
std::vector<llvm::Type*> FieldTypes;
for (const_field_iterator FI = fields_begin(), FE = fields_end();
FI != FE;
FI++) {
const Field *F = *FI;
const RSExportType *FET = F->getType();
FieldTypes.push_back(FET->getLLVMType());
}
llvm::StructType *ST = llvm::StructType::get(getRSContext()->getLLVMContext(),
FieldTypes,
mIsPacked);
if (ST != nullptr) {
return ST;
} else {
return nullptr;
}
}
bool RSExportRecordType::keep() {
if (!RSExportType::keep())
return false;
for (std::list<const Field*>::iterator I = mFields.begin(),
E = mFields.end();
I != E;
I++) {
const_cast<RSExportType*>((*I)->getType())->keep();
}
return true;
}
bool RSExportRecordType::matchODR(const RSExportType *E, bool LookInto) const {
CHECK_PARENT_EQUALITY(RSExportType, E);
// Enforce ODR checking - the type E represents must hold
// *exactly* the same "definition" as the one defined previously. We
// say two record types A and B have the same definition iff:
//
// struct A { struct B {
// Type(a1) a1, Type(b1) b1,
// Type(a2) a2, Type(b1) b2,
// ... ...
// Type(aN) aN Type(bM) bM,
// }; }
// Cond. #0. A = B;
// Cond. #1. They have same number of fields, i.e., N = M;
// Cond. #2. for (i := 1 to N)
// Type(ai).matchODR(Type(bi)) must hold;
// Cond. #3. for (i := 1 to N)
// Name(ai) = Name(bi) must hold;
//
// where,
// Type(F) = the type of field F and
// Name(F) = the field name.
const RSExportRecordType *ERT = static_cast<const RSExportRecordType*>(E);
// Cond. #0.
if (getName() != ERT->getName())
return false;
// Examine fields - types and names
if (LookInto) {
// Cond. #1
if (ERT->getFields().size() != getFields().size())
return false;
for (RSExportRecordType::const_field_iterator AI = fields_begin(),
BI = ERT->fields_begin(), AE = fields_end(); AI != AE; ++AI, ++BI) {
const RSExportType *AITy = (*AI)->getType();
const RSExportType *BITy = (*BI)->getType();
// Cond. #3; field names must agree
if ((*AI)->getName() != (*BI)->getName())
return false;
// Cond. #2; field types must agree recursively until we see another
// next level of RSExportRecordType - such field types will be
// examined and reported later when checkODR() encounters them.
if (!AITy->matchODR(BITy, false))
return false;
}
}
return true;
}
void RSExportType::convertToRTD(RSReflectionTypeData *rtd) const {
memset(rtd, 0, sizeof(*rtd));
rtd->vecSize = 1;
switch(getClass()) {
case RSExportType::ExportClassPrimitive: {
const RSExportPrimitiveType *EPT = static_cast<const RSExportPrimitiveType*>(this);
rtd->type = RSExportPrimitiveType::getRSReflectionType(EPT);
return;
}
case RSExportType::ExportClassPointer: {
const RSExportPointerType *EPT = static_cast<const RSExportPointerType*>(this);
const RSExportType *PointeeType = EPT->getPointeeType();
PointeeType->convertToRTD(rtd);
rtd->isPointer = true;
return;
}
case RSExportType::ExportClassVector: {
const RSExportVectorType *EVT = static_cast<const RSExportVectorType*>(this);
rtd->type = EVT->getRSReflectionType(EVT);
rtd->vecSize = EVT->getNumElement();
return;
}
case RSExportType::ExportClassMatrix: {
const RSExportMatrixType *EMT = static_cast<const RSExportMatrixType*>(this);
unsigned Dim = EMT->getDim();
slangAssert((Dim >= 2) && (Dim <= 4));
rtd->type = &gReflectionTypes[15 + Dim-2];
return;
}
case RSExportType::ExportClassConstantArray: {
const RSExportConstantArrayType* CAT =
static_cast<const RSExportConstantArrayType*>(this);
CAT->getElementType()->convertToRTD(rtd);
rtd->arraySize = CAT->getNumElement();
return;
}
case RSExportType::ExportClassRecord: {
slangAssert(!"RSExportType::ExportClassRecord not implemented");
return;// RS_TYPE_CLASS_NAME_PREFIX + ET->getName() + ".Item";
}
default: {
slangAssert(false && "Unknown class of type");
}
}
}
} // namespace slang