blob: 439d12198daccbbf2a06e68275fdf64628e368fb [file] [log] [blame] [edit]
/*
* Copyright 2011-2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bcinfo/MetadataExtractor.h"
#include "bcinfo/BitcodeWrapper.h"
#include "rsDefines.h"
#define LOG_TAG "bcinfo"
#include <log/log.h>
#include "Assert.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/MemoryBuffer.h"
#ifdef __ANDROID__
#include "Properties.h"
#endif
#include <cstdlib>
namespace bcinfo {
namespace {
llvm::StringRef getStringOperand(const llvm::Metadata *node) {
if (auto *mds = llvm::dyn_cast_or_null<const llvm::MDString>(node)) {
return mds->getString();
}
return llvm::StringRef();
}
bool extractUIntFromMetadataString(uint32_t *value,
const llvm::Metadata *m) {
llvm::StringRef SigString = getStringOperand(m);
if (SigString != "") {
if (!SigString.getAsInteger(10, *value)) {
return true;
}
}
return false;
}
const char *createStringFromValue(llvm::Metadata *m) {
auto ref = getStringOperand(m);
char *c = new char[ref.size() + 1];
memcpy(c, ref.data(), ref.size());
c[ref.size()] = '\0';
return c;
}
const char *createStringFromOptionalValue(llvm::MDNode *n, unsigned opndNum) {
llvm::Metadata *opnd;
if (opndNum >= n->getNumOperands() || !(opnd = n->getOperand(opndNum)))
return nullptr;
return createStringFromValue(opnd);
}
// Collect metadata from NamedMDNodes that contain a list of names
// (strings).
//
// Inputs:
//
// NamedMetadata - An LLVM metadata node, each of whose operands have
// a string as their first entry
//
// NameList - A reference that will hold an allocated array of strings
//
// Count - A reference that will hold the length of the allocated
// array of strings
//
// Return value:
//
// Return true on success, false on error.
//
// Upon success, the function sets NameList to an array of strings
// corresponding the names found in the metadata. The function sets
// Count to the number of entries in NameList.
//
// An error occurs if one of the metadata operands doesn't have a
// first entry.
bool populateNameMetadata(const llvm::NamedMDNode *NameMetadata,
const char **&NameList, size_t &Count) {
if (!NameMetadata) {
NameList = nullptr;
Count = 0;
return true;
}
Count = NameMetadata->getNumOperands();
if (!Count) {
NameList = nullptr;
return true;
}
NameList = new const char *[Count];
for (size_t i = 0; i < Count; i++) {
llvm::MDNode *Name = NameMetadata->getOperand(i);
if (Name && Name->getNumOperands() > 0) {
NameList[i] = createStringFromValue(Name->getOperand(0));
} else {
ALOGE("Metadata operand does not contain a name string");
for (size_t AllocatedIndex = 0; AllocatedIndex < i; AllocatedIndex++) {
delete [] NameList[AllocatedIndex];
}
delete [] NameList;
NameList = nullptr;
Count = 0;
return false;
}
}
return true;
}
} // end anonymous namespace
// Name of metadata node where pragma info resides (should be synced with
// slang.cpp)
static const llvm::StringRef PragmaMetadataName = "#pragma";
// Name of metadata node where exported variable names reside (should be
// synced with slang_rs_metadata.h)
static const llvm::StringRef ExportVarMetadataName = "#rs_export_var";
// Name of metadata node where exported function names reside (should be
// synced with slang_rs_metadata.h)
static const llvm::StringRef ExportFuncMetadataName = "#rs_export_func";
// Name of metadata node where exported ForEach name information resides
// (should be synced with slang_rs_metadata.h)
static const llvm::StringRef ExportForEachNameMetadataName =
"#rs_export_foreach_name";
// Name of metadata node where exported ForEach signature information resides
// (should be synced with slang_rs_metadata.h)
static const llvm::StringRef ExportForEachMetadataName = "#rs_export_foreach";
// Name of metadata node where exported general reduce information resides
// (should be synced with slang_rs_metadata.h)
static const llvm::StringRef ExportReduceMetadataName = "#rs_export_reduce";
// Name of metadata node where RS object slot info resides (should be
// synced with slang_rs_metadata.h)
static const llvm::StringRef ObjectSlotMetadataName = "#rs_object_slots";
static const llvm::StringRef ThreadableMetadataName = "#rs_is_threadable";
// Name of metadata node where the checksum for this build is stored. (should
// be synced with libbcc/lib/Core/Source.cpp)
static const llvm::StringRef ChecksumMetadataName = "#rs_build_checksum";
// Name of metadata node which contains a list of compile units that have debug
// metadata. If this is null then there is no debug metadata in the compile
// unit.
static const llvm::StringRef DebugInfoMetadataName = "llvm.dbg.cu";
const char MetadataExtractor::kWrapperMetadataName[] = "#rs_wrapper";
MetadataExtractor::MetadataExtractor(const char *bitcode, size_t bitcodeSize)
: mModule(nullptr), mBitcode(bitcode), mBitcodeSize(bitcodeSize),
mExportVarCount(0), mExportFuncCount(0), mExportForEachSignatureCount(0),
mExportReduceCount(0), mExportVarNameList(nullptr),
mExportFuncNameList(nullptr), mExportForEachNameList(nullptr),
mExportForEachSignatureList(nullptr),
mExportForEachInputCountList(nullptr),
mExportReduceList(nullptr),
mPragmaCount(0), mPragmaKeyList(nullptr), mPragmaValueList(nullptr),
mObjectSlotCount(0), mObjectSlotList(nullptr),
mRSFloatPrecision(RS_FP_Full), mIsThreadable(true),
mBuildChecksum(nullptr), mHasDebugInfo(false) {
BitcodeWrapper wrapper(bitcode, bitcodeSize);
mCompilerVersion = wrapper.getCompilerVersion();
mOptimizationLevel = wrapper.getOptimizationLevel();
}
MetadataExtractor::MetadataExtractor(const llvm::Module *module)
: mModule(module), mBitcode(nullptr), mBitcodeSize(0),
mExportVarCount(0), mExportFuncCount(0), mExportForEachSignatureCount(0),
mExportReduceCount(0), mExportVarNameList(nullptr),
mExportFuncNameList(nullptr), mExportForEachNameList(nullptr),
mExportForEachSignatureList(nullptr),
mExportForEachInputCountList(nullptr),
mExportReduceList(nullptr),
mPragmaCount(0), mPragmaKeyList(nullptr), mPragmaValueList(nullptr),
mObjectSlotCount(0), mObjectSlotList(nullptr),
mRSFloatPrecision(RS_FP_Full), mIsThreadable(true),
mBuildChecksum(nullptr) {
const llvm::NamedMDNode *const wrapperMDNode = module->getNamedMetadata(kWrapperMetadataName);
bccAssert((wrapperMDNode != nullptr) && (wrapperMDNode->getNumOperands() == 1));
const llvm::MDNode *const wrapperMDTuple = wrapperMDNode->getOperand(0);
bool success = true;
success &= extractUIntFromMetadataString(&mCompilerVersion, wrapperMDTuple->getOperand(0));
success &= extractUIntFromMetadataString(&mOptimizationLevel, wrapperMDTuple->getOperand(1));
bccAssert(success);
}
MetadataExtractor::~MetadataExtractor() {
if (mExportVarNameList) {
for (size_t i = 0; i < mExportVarCount; i++) {
delete [] mExportVarNameList[i];
mExportVarNameList[i] = nullptr;
}
}
delete [] mExportVarNameList;
mExportVarNameList = nullptr;
if (mExportFuncNameList) {
for (size_t i = 0; i < mExportFuncCount; i++) {
delete [] mExportFuncNameList[i];
mExportFuncNameList[i] = nullptr;
}
}
delete [] mExportFuncNameList;
mExportFuncNameList = nullptr;
if (mExportForEachNameList) {
for (size_t i = 0; i < mExportForEachSignatureCount; i++) {
delete [] mExportForEachNameList[i];
mExportForEachNameList[i] = nullptr;
}
}
delete [] mExportForEachNameList;
mExportForEachNameList = nullptr;
delete [] mExportForEachSignatureList;
mExportForEachSignatureList = nullptr;
delete [] mExportForEachInputCountList;
mExportForEachInputCountList = nullptr;
delete [] mExportReduceList;
mExportReduceList = nullptr;
for (size_t i = 0; i < mPragmaCount; i++) {
if (mPragmaKeyList) {
delete [] mPragmaKeyList[i];
mPragmaKeyList[i] = nullptr;
}
if (mPragmaValueList) {
delete [] mPragmaValueList[i];
mPragmaValueList[i] = nullptr;
}
}
delete [] mPragmaKeyList;
mPragmaKeyList = nullptr;
delete [] mPragmaValueList;
mPragmaValueList = nullptr;
delete [] mObjectSlotList;
mObjectSlotList = nullptr;
delete [] mBuildChecksum;
return;
}
bool MetadataExtractor::populateObjectSlotMetadata(
const llvm::NamedMDNode *ObjectSlotMetadata) {
if (!ObjectSlotMetadata) {
return true;
}
mObjectSlotCount = ObjectSlotMetadata->getNumOperands();
if (!mObjectSlotCount) {
return true;
}
std::unique_ptr<uint32_t[]> TmpSlotList(new uint32_t[mObjectSlotCount]());
for (size_t i = 0; i < mObjectSlotCount; i++) {
llvm::MDNode *ObjectSlot = ObjectSlotMetadata->getOperand(i);
if (ObjectSlot != nullptr && ObjectSlot->getNumOperands() == 1) {
if (!extractUIntFromMetadataString(&TmpSlotList[i], ObjectSlot->getOperand(0))) {
ALOGE("Non-integer object slot value");
return false;
}
} else {
ALOGE("Corrupt object slot information");
return false;
}
}
delete [] mObjectSlotList;
mObjectSlotList = TmpSlotList.release();
return true;
}
void MetadataExtractor::populatePragmaMetadata(
const llvm::NamedMDNode *PragmaMetadata) {
if (!PragmaMetadata) {
return;
}
mPragmaCount = PragmaMetadata->getNumOperands();
if (!mPragmaCount) {
return;
}
const char **TmpKeyList = new const char*[mPragmaCount];
const char **TmpValueList = new const char*[mPragmaCount];
for (size_t i = 0; i < mPragmaCount; i++) {
llvm::MDNode *Pragma = PragmaMetadata->getOperand(i);
if (Pragma != nullptr && Pragma->getNumOperands() == 2) {
llvm::Metadata *PragmaKeyMDS = Pragma->getOperand(0);
TmpKeyList[i] = createStringFromValue(PragmaKeyMDS);
llvm::Metadata *PragmaValueMDS = Pragma->getOperand(1);
TmpValueList[i] = createStringFromValue(PragmaValueMDS);
}
}
mPragmaKeyList = TmpKeyList;
mPragmaValueList = TmpValueList;
// Check to see if we have any FP precision-related pragmas.
std::string Relaxed("rs_fp_relaxed");
std::string Imprecise("rs_fp_imprecise");
std::string Full("rs_fp_full");
bool RelaxedPragmaSeen = false;
bool FullPragmaSeen = false;
for (size_t i = 0; i < mPragmaCount; i++) {
if (!Relaxed.compare(mPragmaKeyList[i])) {
RelaxedPragmaSeen = true;
} else if (!Imprecise.compare(mPragmaKeyList[i])) {
ALOGW("rs_fp_imprecise is deprecated. Assuming rs_fp_relaxed instead.");
RelaxedPragmaSeen = true;
} else if (!Full.compare(mPragmaKeyList[i])) {
FullPragmaSeen = true;
}
}
if (RelaxedPragmaSeen && FullPragmaSeen) {
ALOGE("Full and relaxed precision specified at the same time!");
}
mRSFloatPrecision = RelaxedPragmaSeen ? RS_FP_Relaxed : RS_FP_Full;
#ifdef __ANDROID__
// Provide an override for precsiion via adb shell setprop
// adb shell setprop debug.rs.precision rs_fp_full
// adb shell setprop debug.rs.precision rs_fp_relaxed
// adb shell setprop debug.rs.precision rs_fp_imprecise
char PrecisionPropBuf[PROP_VALUE_MAX];
const std::string PrecisionPropName("debug.rs.precision");
property_get("debug.rs.precision", PrecisionPropBuf, "");
if (PrecisionPropBuf[0]) {
if (!Relaxed.compare(PrecisionPropBuf)) {
ALOGI("Switching to RS FP relaxed mode via setprop");
mRSFloatPrecision = RS_FP_Relaxed;
} else if (!Imprecise.compare(PrecisionPropBuf)) {
ALOGW("Switching to RS FP relaxed mode via setprop. rs_fp_imprecise was "
"specified but is deprecated ");
mRSFloatPrecision = RS_FP_Relaxed;
} else if (!Full.compare(PrecisionPropBuf)) {
ALOGI("Switching to RS FP full mode via setprop");
mRSFloatPrecision = RS_FP_Full;
} else {
ALOGE("Unrecognized debug.rs.precision %s", PrecisionPropBuf);
}
}
#endif
}
uint32_t MetadataExtractor::calculateNumInputs(const llvm::Function *Function,
uint32_t Signature) {
if (hasForEachSignatureIn(Signature)) {
uint32_t OtherCount = 0;
OtherCount += hasForEachSignatureUsrData(Signature);
OtherCount += hasForEachSignatureX(Signature);
OtherCount += hasForEachSignatureY(Signature);
OtherCount += hasForEachSignatureZ(Signature);
OtherCount += hasForEachSignatureCtxt(Signature);
OtherCount += hasForEachSignatureOut(Signature) &&
Function->getReturnType()->isVoidTy();
return Function->arg_size() - OtherCount;
} else {
return 0;
}
}
bool MetadataExtractor::populateForEachMetadata(
const llvm::NamedMDNode *Names,
const llvm::NamedMDNode *Signatures) {
if (!Names && !Signatures && mCompilerVersion == 0) {
// Handle legacy case for pre-ICS bitcode that doesn't contain a metadata
// section for ForEach. We generate a full signature for a "root" function
// which means that we need to set the bottom 5 bits in the mask.
mExportForEachSignatureCount = 1;
char **TmpNameList = new char*[mExportForEachSignatureCount];
size_t RootLen = strlen(kRoot) + 1;
TmpNameList[0] = new char[RootLen];
strncpy(TmpNameList[0], kRoot, RootLen);
uint32_t *TmpSigList = new uint32_t[mExportForEachSignatureCount];
TmpSigList[0] = 0x1f;
mExportForEachNameList = (const char**)TmpNameList;
mExportForEachSignatureList = TmpSigList;
return true;
}
if (Signatures) {
mExportForEachSignatureCount = Signatures->getNumOperands();
if (!mExportForEachSignatureCount) {
return true;
}
} else {
mExportForEachSignatureCount = 0;
mExportForEachSignatureList = nullptr;
return true;
}
std::unique_ptr<uint32_t[]> TmpSigList(new uint32_t[mExportForEachSignatureCount]);
std::unique_ptr<const char *[]> TmpNameList(new const char*[mExportForEachSignatureCount]);
std::unique_ptr<uint32_t[]> TmpInputCountList(new uint32_t[mExportForEachSignatureCount]);
for (size_t i = 0; i < mExportForEachSignatureCount; i++) {
llvm::MDNode *SigNode = Signatures->getOperand(i);
if (SigNode != nullptr && SigNode->getNumOperands() == 1) {
if (!extractUIntFromMetadataString(&TmpSigList[i], SigNode->getOperand(0))) {
ALOGE("Non-integer signature value");
return false;
}
} else {
ALOGE("Corrupt signature information");
return false;
}
}
if (Names) {
for (size_t i = 0; i < mExportForEachSignatureCount; i++) {
llvm::MDNode *Name = Names->getOperand(i);
if (Name != nullptr && Name->getNumOperands() == 1) {
TmpNameList[i] = createStringFromValue(Name->getOperand(0));
// Note that looking up the function by name can fail: One of
// the uses of MetadataExtractor is as part of the
// RSEmbedInfoPass, which bcc_compat runs sufficiently late in
// the phase order that RSKernelExpandPass has already run and
// the original (UNexpanded) kernel function (TmpNameList[i])
// may have been deleted as having no references (if it has
// been inlined into the expanded kernel function and is
// otherwise unreferenced).
llvm::Function *Func =
mModule->getFunction(llvm::StringRef(TmpNameList[i]));
TmpInputCountList[i] = (Func != nullptr) ?
calculateNumInputs(Func, TmpSigList[i]) : 0;
}
}
} else {
if (mExportForEachSignatureCount != 1) {
ALOGE("mExportForEachSignatureCount = %zu, but should be 1",
mExportForEachSignatureCount);
}
char *RootName = new char[5];
strncpy(RootName, "root", 5);
TmpNameList[0] = RootName;
}
delete [] mExportForEachNameList;
mExportForEachNameList = TmpNameList.release();
delete [] mExportForEachSignatureList;
mExportForEachSignatureList = TmpSigList.release();
delete [] mExportForEachInputCountList;
mExportForEachInputCountList = TmpInputCountList.release();
return true;
}
bool MetadataExtractor::populateReduceMetadata(const llvm::NamedMDNode *ReduceMetadata) {
mExportReduceCount = 0;
mExportReduceList = nullptr;
if (!ReduceMetadata || !(mExportReduceCount = ReduceMetadata->getNumOperands()))
return true;
std::unique_ptr<Reduce[]> TmpReduceList(new Reduce[mExportReduceCount]);
for (size_t i = 0; i < mExportReduceCount; i++) {
llvm::MDNode *Node = ReduceMetadata->getOperand(i);
if (!Node || Node->getNumOperands() < 3) {
ALOGE("Missing reduce metadata");
return false;
}
TmpReduceList[i].mReduceName = createStringFromValue(Node->getOperand(0));
if (!extractUIntFromMetadataString(&TmpReduceList[i].mAccumulatorDataSize,
Node->getOperand(1))) {
ALOGE("Non-integer accumulator data size value in reduce metadata");
return false;
}
llvm::MDNode *AccumulatorNode = llvm::dyn_cast<llvm::MDNode>(Node->getOperand(2));
if (!AccumulatorNode || AccumulatorNode->getNumOperands() != 2) {
ALOGE("Malformed accumulator node in reduce metadata");
return false;
}
TmpReduceList[i].mAccumulatorName = createStringFromValue(AccumulatorNode->getOperand(0));
if (!extractUIntFromMetadataString(&TmpReduceList[i].mSignature,
AccumulatorNode->getOperand(1))) {
ALOGE("Non-integer signature value in reduce metadata");
return false;
}
// Note that looking up the function by name can fail: One of the
// uses of MetadataExtractor is as part of the RSEmbedInfoPass,
// which bcc_compat runs sufficiently late in the phase order that
// RSKernelExpandPass has already run and the original
// (UNexpanded) accumulator function (mAccumulatorName) may have
// been deleted as having no references (if it has been inlined
// into the expanded accumulator function and is otherwise
// unreferenced).
llvm::Function *Func =
mModule->getFunction(llvm::StringRef(TmpReduceList[i].mAccumulatorName));
// Why calculateNumInputs() - 1? The "-1" is because we don't
// want to treat the accumulator argument as an input.
TmpReduceList[i].mInputCount = (Func ? calculateNumInputs(Func, TmpReduceList[i].mSignature) - 1 : 0);
TmpReduceList[i].mInitializerName = createStringFromOptionalValue(Node, 3);
TmpReduceList[i].mCombinerName = createStringFromOptionalValue(Node, 4);
TmpReduceList[i].mOutConverterName = createStringFromOptionalValue(Node, 5);
TmpReduceList[i].mHalterName = createStringFromOptionalValue(Node, 6);
}
mExportReduceList = TmpReduceList.release();
return true;
}
void MetadataExtractor::readThreadableFlag(
const llvm::NamedMDNode *ThreadableMetadata) {
// Scripts are threadable by default. If we read a valid metadata value for
// 'ThreadableMetadataName' and it is set to 'no', we mark script as non
// threadable. All other exception paths retain the default value.
mIsThreadable = true;
if (ThreadableMetadata == nullptr)
return;
llvm::MDNode *mdNode = ThreadableMetadata->getOperand(0);
if (mdNode == nullptr)
return;
llvm::Metadata *mdValue = mdNode->getOperand(0);
if (mdValue == nullptr)
return;
if (getStringOperand(mdValue) == "no")
mIsThreadable = false;
}
void MetadataExtractor::readBuildChecksumMetadata(
const llvm::NamedMDNode *ChecksumMetadata) {
if (ChecksumMetadata == nullptr)
return;
llvm::MDNode *mdNode = ChecksumMetadata->getOperand(0);
if (mdNode == nullptr)
return;
llvm::Metadata *mdValue = mdNode->getOperand(0);
if (mdValue == nullptr)
return;
mBuildChecksum = createStringFromValue(mdValue);
}
bool MetadataExtractor::extract() {
if (!(mBitcode && mBitcodeSize) && !mModule) {
ALOGE("Invalid/empty bitcode/module");
return false;
}
std::unique_ptr<llvm::LLVMContext> mContext;
bool shouldNullModule = false;
if (!mModule) {
mContext.reset(new llvm::LLVMContext());
std::unique_ptr<llvm::MemoryBuffer> MEM(
llvm::MemoryBuffer::getMemBuffer(
llvm::StringRef(mBitcode, mBitcodeSize), "", false));
std::string error;
llvm::ErrorOr<std::unique_ptr<llvm::Module> > errval =
llvm::parseBitcodeFile(MEM.get()->getMemBufferRef(), *mContext);
if (std::error_code ec = errval.getError()) {
ALOGE("Could not parse bitcode file");
ALOGE("%s", ec.message().c_str());
return false;
}
mModule = errval.get().release();
shouldNullModule = true;
}
const llvm::NamedMDNode *ExportVarMetadata =
mModule->getNamedMetadata(ExportVarMetadataName);
const llvm::NamedMDNode *ExportFuncMetadata =
mModule->getNamedMetadata(ExportFuncMetadataName);
const llvm::NamedMDNode *ExportForEachNameMetadata =
mModule->getNamedMetadata(ExportForEachNameMetadataName);
const llvm::NamedMDNode *ExportForEachMetadata =
mModule->getNamedMetadata(ExportForEachMetadataName);
const llvm::NamedMDNode *ExportReduceMetadata =
mModule->getNamedMetadata(ExportReduceMetadataName);
const llvm::NamedMDNode *PragmaMetadata =
mModule->getNamedMetadata(PragmaMetadataName);
const llvm::NamedMDNode *ObjectSlotMetadata =
mModule->getNamedMetadata(ObjectSlotMetadataName);
const llvm::NamedMDNode *ThreadableMetadata =
mModule->getNamedMetadata(ThreadableMetadataName);
const llvm::NamedMDNode *ChecksumMetadata =
mModule->getNamedMetadata(ChecksumMetadataName);
const llvm::NamedMDNode *DebugInfoMetadata =
mModule->getNamedMetadata(DebugInfoMetadataName);
if (!populateNameMetadata(ExportVarMetadata, mExportVarNameList,
mExportVarCount)) {
ALOGE("Could not populate export variable metadata");
goto err;
}
if (!populateNameMetadata(ExportFuncMetadata, mExportFuncNameList,
mExportFuncCount)) {
ALOGE("Could not populate export function metadata");
goto err;
}
if (!populateForEachMetadata(ExportForEachNameMetadata,
ExportForEachMetadata)) {
ALOGE("Could not populate ForEach signature metadata");
goto err;
}
if (!populateReduceMetadata(ExportReduceMetadata)) {
ALOGE("Could not populate export general reduction metadata");
goto err;
}
populatePragmaMetadata(PragmaMetadata);
if (!populateObjectSlotMetadata(ObjectSlotMetadata)) {
ALOGE("Could not populate object slot metadata");
goto err;
}
readThreadableFlag(ThreadableMetadata);
readBuildChecksumMetadata(ChecksumMetadata);
mHasDebugInfo = DebugInfoMetadata != nullptr;
if (shouldNullModule) {
mModule = nullptr;
}
return true;
err:
if (shouldNullModule) {
mModule = nullptr;
}
return false;
}
} // namespace bcinfo