blob: 6f1e8a288754f2554b811c46e9401e00f1888b5e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <SkCanvas.h>
#include <SkColor.h>
#include <SkShader.h>
#include <SkTypeface.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <private/hwui/DrawGlInfo.h>
#include <ui/Rect.h>
#include "OpenGLRenderer.h"
#include "DeferredDisplayList.h"
#include "DisplayListRenderer.h"
#include "Fence.h"
#include "RenderState.h"
#include "PathTessellator.h"
#include "Properties.h"
#include "ShadowTessellator.h"
#include "SkiaShader.h"
#include "utils/GLUtils.h"
#include "utils/TraceUtils.h"
#include "Vector.h"
#include "VertexBuffer.h"
#if DEBUG_DETAILED_EVENTS
#define EVENT_LOGD(...) eventMarkDEBUG(__VA_ARGS__)
#else
#define EVENT_LOGD(...)
#endif
namespace android {
namespace uirenderer {
static GLenum getFilter(const SkPaint* paint) {
if (!paint || paint->getFilterLevel() != SkPaint::kNone_FilterLevel) {
return GL_LINEAR;
}
return GL_NEAREST;
}
///////////////////////////////////////////////////////////////////////////////
// Globals
///////////////////////////////////////////////////////////////////////////////
/**
* Structure mapping Skia xfermodes to OpenGL blending factors.
*/
struct Blender {
SkXfermode::Mode mode;
GLenum src;
GLenum dst;
}; // struct Blender
// In this array, the index of each Blender equals the value of the first
// entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode]
static const Blender gBlends[] = {
{ SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kDst_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kModulate_Mode, GL_ZERO, GL_SRC_COLOR },
{ SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR }
};
// This array contains the swapped version of each SkXfermode. For instance
// this array's SrcOver blending mode is actually DstOver. You can refer to
// createLayer() for more information on the purpose of this array.
static const Blender gBlendsSwap[] = {
{ SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kDst_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kModulate_Mode, GL_DST_COLOR, GL_ZERO },
{ SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE }
};
///////////////////////////////////////////////////////////////////////////////
// Functions
///////////////////////////////////////////////////////////////////////////////
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
OpenGLRenderer::OpenGLRenderer(RenderState& renderState)
: mFrameStarted(false)
, mCaches(Caches::getInstance())
, mExtensions(Extensions::getInstance())
, mRenderState(renderState)
, mScissorOptimizationDisabled(false)
, mSuppressTiling(false)
, mFirstFrameAfterResize(true)
, mLightCenter((Vector3){FLT_MIN, FLT_MIN, FLT_MIN})
, mLightRadius(FLT_MIN)
, mAmbientShadowAlpha(0)
, mSpotShadowAlpha(0) {
// *set* draw modifiers to be 0
memset(&mDrawModifiers, 0, sizeof(mDrawModifiers));
mDrawModifiers.mOverrideLayerAlpha = 1.0f;
memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices));
}
OpenGLRenderer::~OpenGLRenderer() {
// The context has already been destroyed at this point, do not call
// GL APIs. All GL state should be kept in Caches.h
}
void OpenGLRenderer::initProperties() {
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) {
mScissorOptimizationDisabled = !strcasecmp(property, "true");
INIT_LOGD(" Scissor optimization %s",
mScissorOptimizationDisabled ? "disabled" : "enabled");
} else {
INIT_LOGD(" Scissor optimization enabled");
}
}
void OpenGLRenderer::initLight(const Vector3& lightCenter, float lightRadius,
uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) {
mLightCenter = lightCenter;
mLightRadius = lightRadius;
mAmbientShadowAlpha = ambientShadowAlpha;
mSpotShadowAlpha = spotShadowAlpha;
}
///////////////////////////////////////////////////////////////////////////////
// Setup
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::onViewportInitialized() {
glDisable(GL_DITHER);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnableVertexAttribArray(Program::kBindingPosition);
mFirstFrameAfterResize = true;
}
void OpenGLRenderer::setupFrameState(float left, float top,
float right, float bottom, bool opaque) {
mCaches.clearGarbage();
initializeSaveStack(left, top, right, bottom, mLightCenter);
mOpaque = opaque;
mTilingClip.set(left, top, right, bottom);
}
status_t OpenGLRenderer::startFrame() {
if (mFrameStarted) return DrawGlInfo::kStatusDone;
mFrameStarted = true;
mDirtyClip = true;
discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom);
mRenderState.setViewport(getWidth(), getHeight());
// Functors break the tiling extension in pretty spectacular ways
// This ensures we don't use tiling when a functor is going to be
// invoked during the frame
mSuppressTiling = mCaches.hasRegisteredFunctors()
|| mFirstFrameAfterResize;
mFirstFrameAfterResize = false;
startTilingCurrentClip(true);
debugOverdraw(true, true);
return clear(mTilingClip.left, mTilingClip.top,
mTilingClip.right, mTilingClip.bottom, mOpaque);
}
status_t OpenGLRenderer::prepareDirty(float left, float top,
float right, float bottom, bool opaque) {
setupFrameState(left, top, right, bottom, opaque);
// Layer renderers will start the frame immediately
// The framebuffer renderer will first defer the display list
// for each layer and wait until the first drawing command
// to start the frame
if (currentSnapshot()->fbo == 0) {
syncState();
updateLayers();
} else {
return startFrame();
}
return DrawGlInfo::kStatusDone;
}
void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) {
// If we know that we are going to redraw the entire framebuffer,
// perform a discard to let the driver know we don't need to preserve
// the back buffer for this frame.
if (mExtensions.hasDiscardFramebuffer() &&
left <= 0.0f && top <= 0.0f && right >= getWidth() && bottom >= getHeight()) {
const bool isFbo = getTargetFbo() == 0;
const GLenum attachments[] = {
isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0,
isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT };
glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments);
}
}
status_t OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) {
if (!opaque) {
mCaches.enableScissor();
mCaches.setScissor(left, getViewportHeight() - bottom, right - left, bottom - top);
glClear(GL_COLOR_BUFFER_BIT);
return DrawGlInfo::kStatusDrew;
}
mCaches.resetScissor();
return DrawGlInfo::kStatusDone;
}
void OpenGLRenderer::syncState() {
if (mCaches.blend) {
glEnable(GL_BLEND);
} else {
glDisable(GL_BLEND);
}
}
void OpenGLRenderer::startTilingCurrentClip(bool opaque, bool expand) {
if (!mSuppressTiling) {
const Snapshot* snapshot = currentSnapshot();
const Rect* clip = &mTilingClip;
if (snapshot->flags & Snapshot::kFlagFboTarget) {
clip = &(snapshot->layer->clipRect);
}
startTiling(*clip, getViewportHeight(), opaque, expand);
}
}
void OpenGLRenderer::startTiling(const Rect& clip, int windowHeight, bool opaque, bool expand) {
if (!mSuppressTiling) {
if(expand) {
// Expand the startTiling region by 1
int leftNotZero = (clip.left > 0) ? 1 : 0;
int topNotZero = (windowHeight - clip.bottom > 0) ? 1 : 0;
mCaches.startTiling(
clip.left - leftNotZero,
windowHeight - clip.bottom - topNotZero,
clip.right - clip.left + leftNotZero + 1,
clip.bottom - clip.top + topNotZero + 1,
opaque);
} else {
mCaches.startTiling(clip.left, windowHeight - clip.bottom,
clip.right - clip.left, clip.bottom - clip.top, opaque);
}
}
}
void OpenGLRenderer::endTiling() {
if (!mSuppressTiling) mCaches.endTiling();
}
void OpenGLRenderer::finish() {
renderOverdraw();
endTiling();
for (size_t i = 0; i < mTempPaths.size(); i++) {
delete mTempPaths[i];
}
mTempPaths.clear();
// When finish() is invoked on FBO 0 we've reached the end
// of the current frame
if (getTargetFbo() == 0) {
mCaches.pathCache.trim();
mCaches.tessellationCache.trim();
}
if (!suppressErrorChecks()) {
#if DEBUG_OPENGL
GLUtils::dumpGLErrors();
#endif
#if DEBUG_MEMORY_USAGE
mCaches.dumpMemoryUsage();
#else
if (mCaches.getDebugLevel() & kDebugMemory) {
mCaches.dumpMemoryUsage();
}
#endif
}
mFrameStarted = false;
}
void OpenGLRenderer::resumeAfterLayer() {
mRenderState.setViewport(getViewportWidth(), getViewportHeight());
mRenderState.bindFramebuffer(currentSnapshot()->fbo);
debugOverdraw(true, false);
mCaches.resetScissor();
dirtyClip();
}
status_t OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) {
if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone;
Rect clip(*currentClipRect());
clip.snapToPixelBoundaries();
// Since we don't know what the functor will draw, let's dirty
// the entire clip region
if (hasLayer()) {
dirtyLayerUnchecked(clip, getRegion());
}
DrawGlInfo info;
info.clipLeft = clip.left;
info.clipTop = clip.top;
info.clipRight = clip.right;
info.clipBottom = clip.bottom;
info.isLayer = hasLayer();
info.width = getViewportWidth();
info.height = getViewportHeight();
currentTransform()->copyTo(&info.transform[0]);
bool prevDirtyClip = mDirtyClip;
// setup GL state for functor
if (mDirtyClip) {
setStencilFromClip(); // can issue draws, so must precede enableScissor()/interrupt()
}
if (mCaches.enableScissor() || prevDirtyClip) {
setScissorFromClip();
}
mRenderState.invokeFunctor(functor, DrawGlInfo::kModeDraw, &info);
// Scissor may have been modified, reset dirty clip
dirtyClip();
return DrawGlInfo::kStatusDrew;
}
///////////////////////////////////////////////////////////////////////////////
// Debug
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::eventMarkDEBUG(const char* fmt, ...) const {
#if DEBUG_DETAILED_EVENTS
const int BUFFER_SIZE = 256;
va_list ap;
char buf[BUFFER_SIZE];
va_start(ap, fmt);
vsnprintf(buf, BUFFER_SIZE, fmt, ap);
va_end(ap);
eventMark(buf);
#endif
}
void OpenGLRenderer::eventMark(const char* name) const {
mCaches.eventMark(0, name);
}
void OpenGLRenderer::startMark(const char* name) const {
mCaches.startMark(0, name);
}
void OpenGLRenderer::endMark() const {
mCaches.endMark();
}
void OpenGLRenderer::debugOverdraw(bool enable, bool clear) {
mRenderState.debugOverdraw(enable, clear);
}
void OpenGLRenderer::renderOverdraw() {
if (mCaches.debugOverdraw && getTargetFbo() == 0) {
const Rect* clip = &mTilingClip;
mCaches.enableScissor();
mCaches.setScissor(clip->left, firstSnapshot()->getViewportHeight() - clip->bottom,
clip->right - clip->left, clip->bottom - clip->top);
// 1x overdraw
mCaches.stencil.enableDebugTest(2);
drawColor(mCaches.getOverdrawColor(1), SkXfermode::kSrcOver_Mode);
// 2x overdraw
mCaches.stencil.enableDebugTest(3);
drawColor(mCaches.getOverdrawColor(2), SkXfermode::kSrcOver_Mode);
// 3x overdraw
mCaches.stencil.enableDebugTest(4);
drawColor(mCaches.getOverdrawColor(3), SkXfermode::kSrcOver_Mode);
// 4x overdraw and higher
mCaches.stencil.enableDebugTest(4, true);
drawColor(mCaches.getOverdrawColor(4), SkXfermode::kSrcOver_Mode);
mCaches.stencil.disable();
}
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) {
if (layer->deferredUpdateScheduled && layer->renderer
&& layer->renderNode.get() && layer->renderNode->isRenderable()) {
Rect& dirty = layer->dirtyRect;
if (inFrame) {
endTiling();
debugOverdraw(false, false);
}
if (CC_UNLIKELY(inFrame || mCaches.drawDeferDisabled)) {
layer->render(*this);
} else {
layer->defer(*this);
}
if (inFrame) {
resumeAfterLayer();
startTilingCurrentClip();
}
layer->debugDrawUpdate = mCaches.debugLayersUpdates;
layer->hasDrawnSinceUpdate = false;
return true;
}
return false;
}
void OpenGLRenderer::updateLayers() {
// If draw deferring is enabled this method will simply defer
// the display list of each individual layer. The layers remain
// in the layer updates list which will be cleared by flushLayers().
int count = mLayerUpdates.size();
if (count > 0) {
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
startMark("Layer Updates");
} else {
startMark("Defer Layer Updates");
}
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
Layer* layer = mLayerUpdates.itemAt(i).get();
updateLayer(layer, false);
}
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
mLayerUpdates.clear();
mRenderState.bindFramebuffer(getTargetFbo());
}
endMark();
}
}
void OpenGLRenderer::flushLayers() {
int count = mLayerUpdates.size();
if (count > 0) {
startMark("Apply Layer Updates");
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
mLayerUpdates.itemAt(i)->flush();
}
mLayerUpdates.clear();
mRenderState.bindFramebuffer(getTargetFbo());
endMark();
}
}
void OpenGLRenderer::pushLayerUpdate(Layer* layer) {
if (layer) {
// Make sure we don't introduce duplicates.
// SortedVector would do this automatically but we need to respect
// the insertion order. The linear search is not an issue since
// this list is usually very short (typically one item, at most a few)
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
return;
}
}
mLayerUpdates.push_back(layer);
}
}
void OpenGLRenderer::cancelLayerUpdate(Layer* layer) {
if (layer) {
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
mLayerUpdates.removeAt(i);
break;
}
}
}
}
void OpenGLRenderer::flushLayerUpdates() {
ATRACE_NAME("Update HW Layers");
syncState();
updateLayers();
flushLayers();
// Wait for all the layer updates to be executed
AutoFence fence;
}
void OpenGLRenderer::markLayersAsBuildLayers() {
for (size_t i = 0; i < mLayerUpdates.size(); i++) {
mLayerUpdates[i]->wasBuildLayered = true;
}
}
///////////////////////////////////////////////////////////////////////////////
// State management
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {
bool restoreViewport = removed.flags & Snapshot::kFlagIsFboLayer;
bool restoreClip = removed.flags & Snapshot::kFlagClipSet;
bool restoreLayer = removed.flags & Snapshot::kFlagIsLayer;
if (restoreViewport) {
mRenderState.setViewport(getViewportWidth(), getViewportHeight());
}
if (restoreClip) {
dirtyClip();
}
if (restoreLayer) {
endMark(); // Savelayer
ATRACE_END(); // SaveLayer
startMark("ComposeLayer");
composeLayer(removed, restored);
endMark();
}
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom,
const SkPaint* paint, int flags, const SkPath* convexMask) {
// force matrix/clip isolation for layer
flags |= SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag;
const int count = saveSnapshot(flags);
if (!currentSnapshot()->isIgnored()) {
createLayer(left, top, right, bottom, paint, flags, convexMask);
}
return count;
}
void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) {
const Rect untransformedBounds(bounds);
currentTransform()->mapRect(bounds);
// Layers only make sense if they are in the framebuffer's bounds
if (bounds.intersect(*currentClipRect())) {
// We cannot work with sub-pixels in this case
bounds.snapToPixelBoundaries();
// When the layer is not an FBO, we may use glCopyTexImage so we
// need to make sure the layer does not extend outside the bounds
// of the framebuffer
const Snapshot& previous = *(currentSnapshot()->previous);
Rect previousViewport(0, 0, previous.getViewportWidth(), previous.getViewportHeight());
if (!bounds.intersect(previousViewport)) {
bounds.setEmpty();
} else if (fboLayer) {
clip.set(bounds);
mat4 inverse;
inverse.loadInverse(*currentTransform());
inverse.mapRect(clip);
clip.snapToPixelBoundaries();
if (clip.intersect(untransformedBounds)) {
clip.translate(-untransformedBounds.left, -untransformedBounds.top);
bounds.set(untransformedBounds);
} else {
clip.setEmpty();
}
}
} else {
bounds.setEmpty();
}
}
void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip,
bool fboLayer, int alpha) {
if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize ||
bounds.getHeight() > mCaches.maxTextureSize ||
(fboLayer && clip.isEmpty())) {
mSnapshot->empty = fboLayer;
} else {
mSnapshot->invisible = mSnapshot->invisible || (alpha <= 0 && fboLayer);
}
}
int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom,
const SkPaint* paint, int flags) {
const int count = saveSnapshot(flags);
if (!currentSnapshot()->isIgnored() && (flags & SkCanvas::kClipToLayer_SaveFlag)) {
// initialize the snapshot as though it almost represents an FBO layer so deferred draw
// operations will be able to store and restore the current clip and transform info, and
// quick rejection will be correct (for display lists)
Rect bounds(left, top, right, bottom);
Rect clip;
calculateLayerBoundsAndClip(bounds, clip, true);
updateSnapshotIgnoreForLayer(bounds, clip, true, getAlphaDirect(paint));
if (!currentSnapshot()->isIgnored()) {
mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f);
mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom);
mSnapshot->initializeViewport(bounds.getWidth(), bounds.getHeight());
mSnapshot->roundRectClipState = NULL;
}
}
return count;
}
/**
* Layers are viewed by Skia are slightly different than layers in image editing
* programs (for instance.) When a layer is created, previously created layers
* and the frame buffer still receive every drawing command. For instance, if a
* layer is created and a shape intersecting the bounds of the layers and the
* framebuffer is draw, the shape will be drawn on both (unless the layer was
* created with the SkCanvas::kClipToLayer_SaveFlag flag.)
*
* A way to implement layers is to create an FBO for each layer, backed by an RGBA
* texture. Unfortunately, this is inefficient as it requires every primitive to
* be drawn n + 1 times, where n is the number of active layers. In practice this
* means, for every primitive:
* - Switch active frame buffer
* - Change viewport, clip and projection matrix
* - Issue the drawing
*
* Switching rendering target n + 1 times per drawn primitive is extremely costly.
* To avoid this, layers are implemented in a different way here, at least in the
* general case. FBOs are used, as an optimization, when the "clip to layer" flag
* is set. When this flag is set we can redirect all drawing operations into a
* single FBO.
*
* This implementation relies on the frame buffer being at least RGBA 8888. When
* a layer is created, only a texture is created, not an FBO. The content of the
* frame buffer contained within the layer's bounds is copied into this texture
* using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame
* buffer and drawing continues as normal. This technique therefore treats the
* frame buffer as a scratch buffer for the layers.
*
* To compose the layers back onto the frame buffer, each layer texture
* (containing the original frame buffer data) is drawn as a simple quad over
* the frame buffer. The trick is that the quad is set as the composition
* destination in the blending equation, and the frame buffer becomes the source
* of the composition.
*
* Drawing layers with an alpha value requires an extra step before composition.
* An empty quad is drawn over the layer's region in the frame buffer. This quad
* is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the
* quad is used to multiply the colors in the frame buffer. This is achieved by
* changing the GL blend functions for the GL_FUNC_ADD blend equation to
* GL_ZERO, GL_SRC_ALPHA.
*
* Because glCopyTexImage2D() can be slow, an alternative implementation might
* be use to draw a single clipped layer. The implementation described above
* is correct in every case.
*
* (1) The frame buffer is actually not cleared right away. To allow the GPU
* to potentially optimize series of calls to glCopyTexImage2D, the frame
* buffer is left untouched until the first drawing operation. Only when
* something actually gets drawn are the layers regions cleared.
*/
bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom,
const SkPaint* paint, int flags, const SkPath* convexMask) {
LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top);
LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize());
const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag;
// Window coordinates of the layer
Rect clip;
Rect bounds(left, top, right, bottom);
calculateLayerBoundsAndClip(bounds, clip, fboLayer);
updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, getAlphaDirect(paint));
// Bail out if we won't draw in this snapshot
if (currentSnapshot()->isIgnored()) {
return false;
}
mCaches.activeTexture(0);
Layer* layer = mCaches.layerCache.get(mRenderState, bounds.getWidth(), bounds.getHeight());
if (!layer) {
return false;
}
layer->setPaint(paint);
layer->layer.set(bounds);
layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()),
bounds.getWidth() / float(layer->getWidth()), 0.0f);
layer->setBlend(true);
layer->setDirty(false);
layer->setConvexMask(convexMask); // note: the mask must be cleared before returning to the cache
// Save the layer in the snapshot
mSnapshot->flags |= Snapshot::kFlagIsLayer;
mSnapshot->layer = layer;
ATRACE_FORMAT_BEGIN("%ssaveLayer %ux%u",
fboLayer ? "" : "unclipped ",
layer->getWidth(), layer->getHeight());
startMark("SaveLayer");
if (fboLayer) {
return createFboLayer(layer, bounds, clip);
} else {
// Copy the framebuffer into the layer
layer->bindTexture();
if (!bounds.isEmpty()) {
if (layer->isEmpty()) {
// Workaround for some GL drivers. When reading pixels lying outside
// of the window we should get undefined values for those pixels.
// Unfortunately some drivers will turn the entire target texture black
// when reading outside of the window.
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->getWidth(), layer->getHeight(),
0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
layer->setEmpty(false);
}
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
bounds.left, getViewportHeight() - bounds.bottom,
bounds.getWidth(), bounds.getHeight());
// Enqueue the buffer coordinates to clear the corresponding region later
mLayers.push(new Rect(bounds));
}
}
return true;
}
bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip) {
layer->clipRect.set(clip);
layer->setFbo(mCaches.fboCache.get());
mSnapshot->region = &mSnapshot->layer->region;
mSnapshot->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer;
mSnapshot->fbo = layer->getFbo();
mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f);
mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom);
mSnapshot->initializeViewport(bounds.getWidth(), bounds.getHeight());
mSnapshot->roundRectClipState = NULL;
endTiling();
debugOverdraw(false, false);
// Bind texture to FBO
mRenderState.bindFramebuffer(layer->getFbo());
layer->bindTexture();
// Initialize the texture if needed
if (layer->isEmpty()) {
layer->allocateTexture();
layer->setEmpty(false);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
layer->getTexture(), 0);
// Expand the startTiling region by 1
startTilingCurrentClip(true, true);
// Clear the FBO, expand the clear region by 1 to get nice bilinear filtering
mCaches.enableScissor();
mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f,
clip.getWidth() + 2.0f, clip.getHeight() + 2.0f);
glClear(GL_COLOR_BUFFER_BIT);
dirtyClip();
// Change the ortho projection
mRenderState.setViewport(bounds.getWidth(), bounds.getHeight());
return true;
}
/**
* Read the documentation of createLayer() before doing anything in this method.
*/
void OpenGLRenderer::composeLayer(const Snapshot& removed, const Snapshot& restored) {
if (!removed.layer) {
ALOGE("Attempting to compose a layer that does not exist");
return;
}
Layer* layer = removed.layer;
const Rect& rect = layer->layer;
const bool fboLayer = removed.flags & Snapshot::kFlagIsFboLayer;
bool clipRequired = false;
calculateQuickRejectForScissor(rect.left, rect.top, rect.right, rect.bottom,
&clipRequired, NULL, false); // safely ignore return, should never be rejected
mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired);
if (fboLayer) {
endTiling();
// Detach the texture from the FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
layer->removeFbo(false);
// Unbind current FBO and restore previous one
mRenderState.bindFramebuffer(restored.fbo);
debugOverdraw(true, false);
startTilingCurrentClip();
}
if (!fboLayer && layer->getAlpha() < 255) {
SkPaint layerPaint;
layerPaint.setAlpha(layer->getAlpha());
layerPaint.setXfermodeMode(SkXfermode::kDstIn_Mode);
layerPaint.setColorFilter(layer->getColorFilter());
drawColorRect(rect.left, rect.top, rect.right, rect.bottom, &layerPaint, true);
// Required below, composeLayerRect() will divide by 255
layer->setAlpha(255);
}
mCaches.unbindMeshBuffer();
mCaches.activeTexture(0);
// When the layer is stored in an FBO, we can save a bit of fillrate by
// drawing only the dirty region
if (fboLayer) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *restored.transform);
composeLayerRegion(layer, rect);
} else if (!rect.isEmpty()) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom);
save(0);
// the layer contains screen buffer content that shouldn't be alpha modulated
// (and any necessary alpha modulation was handled drawing into the layer)
mSnapshot->alpha = 1.0f;
composeLayerRect(layer, rect, true);
restore();
}
dirtyClip();
// Failing to add the layer to the cache should happen only if the layer is too large
layer->setConvexMask(NULL);
if (!mCaches.layerCache.put(layer)) {
LAYER_LOGD("Deleting layer");
layer->decStrong(0);
}
}
void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) {
float alpha = getLayerAlpha(layer);
setupDraw();
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawWithTexture();
} else {
setupDrawWithExternalTexture();
}
setupDrawTextureTransform();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter(layer->getColorFilter());
setupDrawBlending(layer);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms(layer->getColorFilter());
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawTexture(layer->getTexture());
} else {
setupDrawExternalTexture(layer->getTexture());
}
if (currentTransform()->isPureTranslate() &&
!layer->getForceFilter() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight()) {
const float x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelView(kModelViewMode_TranslateAndScale, false,
x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelView(kModelViewMode_TranslateAndScale, false,
rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawTextureTransformUniforms(layer->getTexTransform());
setupDrawMesh(&mMeshVertices[0].x, &mMeshVertices[0].u);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) {
if (layer->isTextureLayer()) {
EVENT_LOGD("composeTextureLayerRect");
resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f);
drawTextureLayer(layer, rect);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
} else {
EVENT_LOGD("composeHardwareLayerRect");
const Rect& texCoords = layer->texCoords;
resetDrawTextureTexCoords(texCoords.left, texCoords.top,
texCoords.right, texCoords.bottom);
float x = rect.left;
float y = rect.top;
bool simpleTransform = currentTransform()->isPureTranslate() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight();
if (simpleTransform) {
// When we're swapping, the layer is already in screen coordinates
if (!swap) {
x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f);
y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f);
}
layer->setFilter(GL_NEAREST, true);
} else {
layer->setFilter(GL_LINEAR, true);
}
SkPaint layerPaint;
layerPaint.setAlpha(getLayerAlpha(layer) * 255);
layerPaint.setXfermodeMode(layer->getMode());
layerPaint.setColorFilter(layer->getColorFilter());
bool blend = layer->isBlend() || getLayerAlpha(layer) < 1.0f;
drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(),
layer->getTexture(), &layerPaint, blend,
&mMeshVertices[0].x, &mMeshVertices[0].u,
GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
}
}
/**
* Issues the command X, and if we're composing a save layer to the fbo or drawing a newly updated
* hardware layer with overdraw debug on, draws again to the stencil only, so that these draw
* operations are correctly counted twice for overdraw. NOTE: assumes composeLayerRegion only used
* by saveLayer's restore
*/
#define DRAW_DOUBLE_STENCIL_IF(COND, DRAW_COMMAND) { \
DRAW_COMMAND; \
if (CC_UNLIKELY(mCaches.debugOverdraw && getTargetFbo() == 0 && COND)) { \
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); \
DRAW_COMMAND; \
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); \
} \
}
#define DRAW_DOUBLE_STENCIL(DRAW_COMMAND) DRAW_DOUBLE_STENCIL_IF(true, DRAW_COMMAND)
// This class is purely for inspection. It inherits from SkShader, but Skia does not know how to
// use it. The OpenGLRenderer will look at it to find its Layer and whether it is opaque.
class LayerShader : public SkShader {
public:
LayerShader(Layer* layer, const SkMatrix* localMatrix)
: INHERITED(localMatrix)
, mLayer(layer) {
}
virtual bool asACustomShader(void** data) const {
if (data) {
*data = static_cast<void*>(mLayer);
}
return true;
}
virtual bool isOpaque() const {
return !mLayer->isBlend();
}
protected:
virtual void shadeSpan(int x, int y, SkPMColor[], int count) {
LOG_ALWAYS_FATAL("LayerShader should never be drawn with raster backend.");
}
virtual void flatten(SkWriteBuffer&) const {
LOG_ALWAYS_FATAL("LayerShader should never be flattened.");
}
virtual Factory getFactory() const {
LOG_ALWAYS_FATAL("LayerShader should never be created from a stream.");
return NULL;
}
private:
// Unowned.
Layer* mLayer;
typedef SkShader INHERITED;
};
void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) {
if (CC_UNLIKELY(layer->region.isEmpty())) return; // nothing to draw
if (layer->getConvexMask()) {
save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag);
// clip to the area of the layer the mask can be larger
clipRect(rect.left, rect.top, rect.right, rect.bottom, SkRegion::kIntersect_Op);
SkPaint paint;
paint.setAntiAlias(true);
paint.setColor(SkColorSetARGB(int(getLayerAlpha(layer) * 255), 0, 0, 0));
// create LayerShader to map SaveLayer content into subsequent draw
SkMatrix shaderMatrix;
shaderMatrix.setTranslate(rect.left, rect.bottom);
shaderMatrix.preScale(1, -1);
LayerShader layerShader(layer, &shaderMatrix);
paint.setShader(&layerShader);
// Since the drawing primitive is defined in local drawing space,
// we don't need to modify the draw matrix
const SkPath* maskPath = layer->getConvexMask();
DRAW_DOUBLE_STENCIL(drawConvexPath(*maskPath, &paint));
paint.setShader(NULL);
restore();
return;
}
if (layer->region.isRect()) {
layer->setRegionAsRect();
DRAW_DOUBLE_STENCIL(composeLayerRect(layer, layer->regionRect));
layer->region.clear();
return;
}
EVENT_LOGD("composeLayerRegion");
// standard Region based draw
size_t count;
const android::Rect* rects;
Region safeRegion;
if (CC_LIKELY(hasRectToRectTransform())) {
rects = layer->region.getArray(&count);
} else {
safeRegion = Region::createTJunctionFreeRegion(layer->region);
rects = safeRegion.getArray(&count);
}
const float alpha = getLayerAlpha(layer);
const float texX = 1.0f / float(layer->getWidth());
const float texY = 1.0f / float(layer->getHeight());
const float height = rect.getHeight();
setupDraw();
// We must get (and therefore bind) the region mesh buffer
// after we setup drawing in case we need to mess with the
// stencil buffer in setupDraw()
TextureVertex* mesh = mCaches.getRegionMesh();
uint32_t numQuads = 0;
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter(layer->getColorFilter());
setupDrawBlending(layer);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms(layer->getColorFilter());
setupDrawTexture(layer->getTexture());
if (currentTransform()->isPureTranslate()) {
const float x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelView(kModelViewMode_Translate, false,
x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelView(kModelViewMode_Translate, false,
rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawMeshIndices(&mesh[0].x, &mesh[0].u);
for (size_t i = 0; i < count; i++) {
const android::Rect* r = &rects[i];
const float u1 = r->left * texX;
const float v1 = (height - r->top) * texY;
const float u2 = r->right * texX;
const float v2 = (height - r->bottom) * texY;
// TODO: Reject quads outside of the clip
TextureVertex::set(mesh++, r->left, r->top, u1, v1);
TextureVertex::set(mesh++, r->right, r->top, u2, v1);
TextureVertex::set(mesh++, r->left, r->bottom, u1, v2);
TextureVertex::set(mesh++, r->right, r->bottom, u2, v2);
numQuads++;
if (numQuads >= gMaxNumberOfQuads) {
DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6,
GL_UNSIGNED_SHORT, NULL));
numQuads = 0;
mesh = mCaches.getRegionMesh();
}
}
if (numQuads > 0) {
DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6,
GL_UNSIGNED_SHORT, NULL));
}
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRectsDebug(layer->region);
#endif
layer->region.clear();
}
#if DEBUG_LAYERS_AS_REGIONS
void OpenGLRenderer::drawRegionRectsDebug(const Region& region) {
size_t count;
const android::Rect* rects = region.getArray(&count);
uint32_t colors[] = {
0x7fff0000, 0x7f00ff00,
0x7f0000ff, 0x7fff00ff,
};
int offset = 0;
int32_t top = rects[0].top;
for (size_t i = 0; i < count; i++) {
if (top != rects[i].top) {
offset ^= 0x2;
top = rects[i].top;
}
SkPaint paint;
paint.setColor(colors[offset + (i & 0x1)]);
Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom);
drawColorRect(r.left, r.top, r.right, r.bottom, paint);
}
}
#endif
void OpenGLRenderer::drawRegionRects(const SkRegion& region, const SkPaint& paint, bool dirty) {
Vector<float> rects;
SkRegion::Iterator it(region);
while (!it.done()) {
const SkIRect& r = it.rect();
rects.push(r.fLeft);
rects.push(r.fTop);
rects.push(r.fRight);
rects.push(r.fBottom);
it.next();
}
drawColorRects(rects.array(), rects.size(), &paint, true, dirty, false);
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom, const mat4 transform) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
transform.mapRect(bounds);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) {
if (bounds.intersect(*currentClipRect())) {
bounds.snapToPixelBoundaries();
android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom);
if (!dirty.isEmpty()) {
region->orSelf(dirty);
}
}
}
void OpenGLRenderer::issueIndexedQuadDraw(Vertex* mesh, GLsizei quadsCount) {
GLsizei elementsCount = quadsCount * 6;
while (elementsCount > 0) {
GLsizei drawCount = min(elementsCount, (GLsizei) gMaxNumberOfQuads * 6);
setupDrawIndexedVertices(&mesh[0].x);
glDrawElements(GL_TRIANGLES, drawCount, GL_UNSIGNED_SHORT, NULL);
elementsCount -= drawCount;
// Though there are 4 vertices in a quad, we use 6 indices per
// quad to draw with GL_TRIANGLES
mesh += (drawCount / 6) * 4;
}
}
void OpenGLRenderer::clearLayerRegions() {
const size_t count = mLayers.size();
if (count == 0) return;
if (!currentSnapshot()->isIgnored()) {
EVENT_LOGD("clearLayerRegions");
// Doing several glScissor/glClear here can negatively impact
// GPUs with a tiler architecture, instead we draw quads with
// the Clear blending mode
// The list contains bounds that have already been clipped
// against their initial clip rect, and the current clip
// is likely different so we need to disable clipping here
bool scissorChanged = mCaches.disableScissor();
Vertex mesh[count * 4];
Vertex* vertex = mesh;
for (uint32_t i = 0; i < count; i++) {
Rect* bounds = mLayers.itemAt(i);
Vertex::set(vertex++, bounds->left, bounds->top);
Vertex::set(vertex++, bounds->right, bounds->top);
Vertex::set(vertex++, bounds->left, bounds->bottom);
Vertex::set(vertex++, bounds->right, bounds->bottom);
delete bounds;
}
// We must clear the list of dirty rects before we
// call setupDraw() to prevent stencil setup to do
// the same thing again
mLayers.clear();
SkPaint clearPaint;
clearPaint.setXfermodeMode(SkXfermode::kClear_Mode);
setupDraw(false);
setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f);
setupDrawBlending(&clearPaint, true);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawModelView(kModelViewMode_Translate, false,
0.0f, 0.0f, 0.0f, 0.0f, true);
issueIndexedQuadDraw(&mesh[0], count);
if (scissorChanged) mCaches.enableScissor();
} else {
for (uint32_t i = 0; i < count; i++) {
delete mLayers.itemAt(i);
}
mLayers.clear();
}
}
///////////////////////////////////////////////////////////////////////////////
// State Deferral
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) {
const Rect* currentClip = currentClipRect();
const mat4* currentMatrix = currentTransform();
if (stateDeferFlags & kStateDeferFlag_Draw) {
// state has bounds initialized in local coordinates
if (!state.mBounds.isEmpty()) {
currentMatrix->mapRect(state.mBounds);
Rect clippedBounds(state.mBounds);
// NOTE: if we ever want to use this clipping info to drive whether the scissor
// is used, it should more closely duplicate the quickReject logic (in how it uses
// snapToPixelBoundaries)
if(!clippedBounds.intersect(*currentClip)) {
// quick rejected
return true;
}
state.mClipSideFlags = kClipSide_None;
if (!currentClip->contains(state.mBounds)) {
int& flags = state.mClipSideFlags;
// op partially clipped, so record which sides are clipped for clip-aware merging
if (currentClip->left > state.mBounds.left) flags |= kClipSide_Left;
if (currentClip->top > state.mBounds.top) flags |= kClipSide_Top;
if (currentClip->right < state.mBounds.right) flags |= kClipSide_Right;
if (currentClip->bottom < state.mBounds.bottom) flags |= kClipSide_Bottom;
}
state.mBounds.set(clippedBounds);
} else {
// Empty bounds implies size unknown. Label op as conservatively clipped to disable
// overdraw avoidance (since we don't know what it overlaps)
state.mClipSideFlags = kClipSide_ConservativeFull;
state.mBounds.set(*currentClip);
}
}
state.mClipValid = (stateDeferFlags & kStateDeferFlag_Clip);
if (state.mClipValid) {
state.mClip.set(*currentClip);
}
// Transform, drawModifiers, and alpha always deferred, since they are used by state operations
// (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything)
state.mMatrix.load(*currentMatrix);
state.mDrawModifiers = mDrawModifiers;
state.mAlpha = currentSnapshot()->alpha;
// always store/restore, since it's just a pointer
state.mRoundRectClipState = currentSnapshot()->roundRectClipState;
return false;
}
void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state, bool skipClipRestore) {
setMatrix(state.mMatrix);
mSnapshot->alpha = state.mAlpha;
mDrawModifiers = state.mDrawModifiers;
mSnapshot->roundRectClipState = state.mRoundRectClipState;
if (state.mClipValid && !skipClipRestore) {
mSnapshot->setClip(state.mClip.left, state.mClip.top,
state.mClip.right, state.mClip.bottom);
dirtyClip();
}
}
/**
* Merged multidraw (such as in drawText and drawBitmaps rely on the fact that no clipping is done
* in the draw path. Instead, clipping is done ahead of time - either as a single clip rect (when at
* least one op is clipped), or disabled entirely (because no merged op is clipped)
*
* This method should be called when restoreDisplayState() won't be restoring the clip
*/
void OpenGLRenderer::setupMergedMultiDraw(const Rect* clipRect) {
if (clipRect != NULL) {
mSnapshot->setClip(clipRect->left, clipRect->top, clipRect->right, clipRect->bottom);
} else {
mSnapshot->setClip(0, 0, getWidth(), getHeight());
}
dirtyClip();
mCaches.setScissorEnabled(clipRect != NULL || mScissorOptimizationDisabled);
}
///////////////////////////////////////////////////////////////////////////////
// Clipping
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setScissorFromClip() {
Rect clip(*currentClipRect());
clip.snapToPixelBoundaries();
if (mCaches.setScissor(clip.left, getViewportHeight() - clip.bottom,
clip.getWidth(), clip.getHeight())) {
mDirtyClip = false;
}
}
void OpenGLRenderer::ensureStencilBuffer() {
// Thanks to the mismatch between EGL and OpenGL ES FBO we
// cannot attach a stencil buffer to fbo0 dynamically. Let's
// just hope we have one when hasLayer() returns false.
if (hasLayer()) {
attachStencilBufferToLayer(currentSnapshot()->layer);
}
}
void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) {
// The layer's FBO is already bound when we reach this stage
if (!layer->getStencilRenderBuffer()) {
// GL_QCOM_tiled_rendering doesn't like it if a renderbuffer
// is attached after we initiated tiling. We must turn it off,
// attach the new render buffer then turn tiling back on
endTiling();
RenderBuffer* buffer = mCaches.renderBufferCache.get(
Stencil::getSmallestStencilFormat(), layer->getWidth(), layer->getHeight());
layer->setStencilRenderBuffer(buffer);
startTiling(layer->clipRect, layer->layer.getHeight());
}
}
void OpenGLRenderer::setStencilFromClip() {
if (!mCaches.debugOverdraw) {
if (!currentSnapshot()->clipRegion->isEmpty()) {
EVENT_LOGD("setStencilFromClip - enabling");
// NOTE: The order here is important, we must set dirtyClip to false
// before any draw call to avoid calling back into this method
mDirtyClip = false;
ensureStencilBuffer();
mCaches.stencil.enableWrite();
// Clear and update the stencil, but first make sure we restrict drawing
// to the region's bounds
bool resetScissor = mCaches.enableScissor();
if (resetScissor) {
// The scissor was not set so we now need to update it
setScissorFromClip();
}
mCaches.stencil.clear();
// stash and disable the outline clip state, since stencil doesn't account for outline
bool storedSkipOutlineClip = mSkipOutlineClip;
mSkipOutlineClip = true;
SkPaint paint;
paint.setColor(SK_ColorBLACK);
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
// NOTE: We could use the region contour path to generate a smaller mesh
// Since we are using the stencil we could use the red book path
// drawing technique. It might increase bandwidth usage though.
// The last parameter is important: we are not drawing in the color buffer
// so we don't want to dirty the current layer, if any
drawRegionRects(*(currentSnapshot()->clipRegion), paint, false);
if (resetScissor) mCaches.disableScissor();
mSkipOutlineClip = storedSkipOutlineClip;
mCaches.stencil.enableTest();
// Draw the region used to generate the stencil if the appropriate debug
// mode is enabled
if (mCaches.debugStencilClip == Caches::kStencilShowRegion) {
paint.setColor(0x7f0000ff);
paint.setXfermodeMode(SkXfermode::kSrcOver_Mode);
drawRegionRects(*(currentSnapshot()->clipRegion), paint);
}
} else {
EVENT_LOGD("setStencilFromClip - disabling");
mCaches.stencil.disable();
}
}
}
/**
* Returns false and sets scissor enable based upon bounds if drawing won't be clipped out.
*
* @param paint if not null, the bounds will be expanded to account for stroke depending on paint
* style, and tessellated AA ramp
*/
bool OpenGLRenderer::quickRejectSetupScissor(float left, float top, float right, float bottom,
const SkPaint* paint) {
bool snapOut = paint && paint->isAntiAlias();
if (paint && paint->getStyle() != SkPaint::kFill_Style) {
float outset = paint->getStrokeWidth() * 0.5f;
left -= outset;
top -= outset;
right += outset;
bottom += outset;
}
bool clipRequired = false;
bool roundRectClipRequired = false;
if (calculateQuickRejectForScissor(left, top, right, bottom,
&clipRequired, &roundRectClipRequired, snapOut)) {
return true;
}
// not quick rejected, so enable the scissor if clipRequired
mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired);
mSkipOutlineClip = !roundRectClipRequired;
return false;
}
void OpenGLRenderer::debugClip() {
#if DEBUG_CLIP_REGIONS
if (!currentSnapshot()->clipRegion->isEmpty()) {
SkPaint paint;
paint.setColor(0x7f00ff00);
drawRegionRects(*(currentSnapshot()->clipRegion, paint);
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Drawing commands
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setupDraw(bool clearLayer) {
// TODO: It would be best if we could do this before quickRejectSetupScissor()
// changes the scissor test state
if (clearLayer) clearLayerRegions();
// Make sure setScissor & setStencil happen at the beginning of
// this method
if (mDirtyClip) {
if (mCaches.scissorEnabled) {
setScissorFromClip();
}
setStencilFromClip();
}
mDescription.reset();
mSetShaderColor = false;
mColorSet = false;
mColorA = mColorR = mColorG = mColorB = 0.0f;
mTextureUnit = 0;
mTrackDirtyRegions = true;
// Enable debug highlight when what we're about to draw is tested against
// the stencil buffer and if stencil highlight debugging is on
mDescription.hasDebugHighlight = !mCaches.debugOverdraw &&
mCaches.debugStencilClip == Caches::kStencilShowHighlight &&
mCaches.stencil.isTestEnabled();
}
void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) {
mDescription.hasTexture = true;
mDescription.hasAlpha8Texture = isAlpha8;
}
void OpenGLRenderer::setupDrawWithTextureAndColor(bool isAlpha8) {
mDescription.hasTexture = true;
mDescription.hasColors = true;
mDescription.hasAlpha8Texture = isAlpha8;
}
void OpenGLRenderer::setupDrawWithExternalTexture() {
mDescription.hasExternalTexture = true;
}
void OpenGLRenderer::setupDrawNoTexture() {
mCaches.disableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawVertexAlpha(bool useShadowAlphaInterp) {
mDescription.hasVertexAlpha = true;
mDescription.useShadowAlphaInterp = useShadowAlphaInterp;
}
void OpenGLRenderer::setupDrawColor(int color, int alpha) {
mColorA = alpha / 255.0f;
mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f;
mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f;
mColorB = mColorA * ((color ) & 0xFF) / 255.0f;
mColorSet = true;
mSetShaderColor = mDescription.setColorModulate(mColorA);
}
void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) {
mColorA = alpha / 255.0f;
mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f;
mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f;
mColorB = mColorA * ((color ) & 0xFF) / 255.0f;
mColorSet = true;
mSetShaderColor = mDescription.setAlpha8ColorModulate(mColorR, mColorG, mColorB, mColorA);
}
void OpenGLRenderer::setupDrawTextGamma(const SkPaint* paint) {
mCaches.fontRenderer->describe(mDescription, paint);
}
void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) {
mColorA = a;
mColorR = r;
mColorG = g;
mColorB = b;
mColorSet = true;
mSetShaderColor = mDescription.setColorModulate(a);
}
void OpenGLRenderer::setupDrawShader(const SkShader* shader) {
if (shader != NULL) {
SkiaShader::describe(&mCaches, mDescription, mExtensions, *shader);
}
}
void OpenGLRenderer::setupDrawColorFilter(const SkColorFilter* filter) {
if (filter == NULL) {
return;
}
SkXfermode::Mode mode;
if (filter->asColorMode(NULL, &mode)) {
mDescription.colorOp = ProgramDescription::kColorBlend;
mDescription.colorMode = mode;
} else if (filter->asColorMatrix(NULL)) {
mDescription.colorOp = ProgramDescription::kColorMatrix;
}
}
void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) {
if (mColorSet && mode == SkXfermode::kClear_Mode) {
mColorA = 1.0f;
mColorR = mColorG = mColorB = 0.0f;
mSetShaderColor = mDescription.modulate = true;
}
}
void OpenGLRenderer::setupDrawBlending(const Layer* layer, bool swapSrcDst) {
SkXfermode::Mode mode = layer->getMode();
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
// TODO: check shader blending, once we have shader drawing support for layers.
bool blend = layer->isBlend() || getLayerAlpha(layer) < 1.0f ||
(mColorSet && mColorA < 1.0f) || isBlendedColorFilter(layer->getColorFilter());
chooseBlending(blend, mode, mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawBlending(const SkPaint* paint, bool blend, bool swapSrcDst) {
SkXfermode::Mode mode = getXfermodeDirect(paint);
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
blend |= (mColorSet && mColorA < 1.0f) ||
(getShader(paint) && !getShader(paint)->isOpaque()) ||
isBlendedColorFilter(getColorFilter(paint));
chooseBlending(blend, mode, mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawProgram() {
useProgram(mCaches.programCache.get(mDescription));
if (mDescription.hasRoundRectClip) {
// TODO: avoid doing this repeatedly, stashing state pointer in program
const RoundRectClipState* state = mSnapshot->roundRectClipState;
const Rect& innerRect = state->innerRect;
glUniform4f(mCaches.currentProgram->getUniform("roundRectInnerRectLTRB"),
innerRect.left, innerRect.top,
innerRect.right, innerRect.bottom);
glUniformMatrix4fv(mCaches.currentProgram->getUniform("roundRectInvTransform"),
1, GL_FALSE, &state->matrix.data[0]);
// add half pixel to round out integer rect space to cover pixel centers
float roundedOutRadius = state->radius + 0.5f;
glUniform1f(mCaches.currentProgram->getUniform("roundRectRadius"),
roundedOutRadius);
}
}
void OpenGLRenderer::setupDrawDirtyRegionsDisabled() {
mTrackDirtyRegions = false;
}
void OpenGLRenderer::setupDrawModelView(ModelViewMode mode, bool offset,
float left, float top, float right, float bottom, bool ignoreTransform) {
mModelViewMatrix.loadTranslate(left, top, 0.0f);
if (mode == kModelViewMode_TranslateAndScale) {
mModelViewMatrix.scale(right - left, bottom - top, 1.0f);
}
bool dirty = right - left > 0.0f && bottom - top > 0.0f;
const Matrix4& transformMatrix = ignoreTransform ? Matrix4::identity() : *currentTransform();
mCaches.currentProgram->set(mSnapshot->getOrthoMatrix(), mModelViewMatrix, transformMatrix, offset);
if (dirty && mTrackDirtyRegions) {
if (!ignoreTransform) {
dirtyLayer(left, top, right, bottom, *currentTransform());
} else {
dirtyLayer(left, top, right, bottom);
}
}
}
void OpenGLRenderer::setupDrawColorUniforms(bool hasShader) {
if ((mColorSet && !hasShader) || (hasShader && mSetShaderColor)) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawPureColorUniforms() {
if (mSetShaderColor) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawShaderUniforms(const SkShader* shader, bool ignoreTransform) {
if (shader == NULL) {
return;
}
if (ignoreTransform) {
// if ignoreTransform=true was passed to setupDrawModelView, undo currentTransform()
// because it was built into modelView / the geometry, and the description needs to
// compensate.
mat4 modelViewWithoutTransform;
modelViewWithoutTransform.loadInverse(*currentTransform());
modelViewWithoutTransform.multiply(mModelViewMatrix);
mModelViewMatrix.load(modelViewWithoutTransform);
}
SkiaShader::setupProgram(&mCaches, mModelViewMatrix, &mTextureUnit, mExtensions, *shader);
}
void OpenGLRenderer::setupDrawColorFilterUniforms(const SkColorFilter* filter) {
if (NULL == filter) {
return;
}
SkColor color;
SkXfermode::Mode mode;
if (filter->asColorMode(&color, &mode)) {
const int alpha = SkColorGetA(color);
const GLfloat a = alpha / 255.0f;
const GLfloat r = a * SkColorGetR(color) / 255.0f;
const GLfloat g = a * SkColorGetG(color) / 255.0f;
const GLfloat b = a * SkColorGetB(color) / 255.0f;
glUniform4f(mCaches.currentProgram->getUniform("colorBlend"), r, g, b, a);
return;
}
SkScalar srcColorMatrix[20];
if (filter->asColorMatrix(srcColorMatrix)) {
float colorMatrix[16];
memcpy(colorMatrix, srcColorMatrix, 4 * sizeof(float));
memcpy(&colorMatrix[4], &srcColorMatrix[5], 4 * sizeof(float));
memcpy(&colorMatrix[8], &srcColorMatrix[10], 4 * sizeof(float));
memcpy(&colorMatrix[12], &srcColorMatrix[15], 4 * sizeof(float));
// Skia uses the range [0..255] for the addition vector, but we need
// the [0..1] range to apply the vector in GLSL
float colorVector[4];
colorVector[0] = srcColorMatrix[4] / 255.0f;
colorVector[1] = srcColorMatrix[9] / 255.0f;
colorVector[2] = srcColorMatrix[14] / 255.0f;
colorVector[3] = srcColorMatrix[19] / 255.0f;
glUniformMatrix4fv(mCaches.currentProgram->getUniform("colorMatrix"), 1,
GL_FALSE, colorMatrix);
glUniform4fv(mCaches.currentProgram->getUniform("colorMatrixVector"), 1, colorVector);
return;
}
// it is an error if we ever get here
}
void OpenGLRenderer::setupDrawTextGammaUniforms() {
mCaches.fontRenderer->setupProgram(mDescription, mCaches.currentProgram);
}
void OpenGLRenderer::setupDrawSimpleMesh() {
bool force = mCaches.bindMeshBuffer();
mCaches.bindPositionVertexPointer(force, 0);
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawTexture(GLuint texture) {
if (texture) bindTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) {
bindExternalTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawTextureTransform() {
mDescription.hasTextureTransform = true;
}
void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) {
glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1,
GL_FALSE, &transform.data[0]);
}
void OpenGLRenderer::setupDrawMesh(const GLvoid* vertices,
const GLvoid* texCoords, GLuint vbo) {
bool force = false;
if (!vertices || vbo) {
force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo);
} else {
force = mCaches.unbindMeshBuffer();
}
mCaches.bindPositionVertexPointer(force, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords);
}
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawMesh(const GLvoid* vertices,
const GLvoid* texCoords, const GLvoid* colors) {
bool force = mCaches.unbindMeshBuffer();
GLsizei stride = sizeof(ColorTextureVertex);
mCaches.bindPositionVertexPointer(force, vertices, stride);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords, stride);
}
int slot = mCaches.currentProgram->getAttrib("colors");
if (slot >= 0) {
glEnableVertexAttribArray(slot);
glVertexAttribPointer(slot, 4, GL_FLOAT, GL_FALSE, stride, colors);
}
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawMeshIndices(const GLvoid* vertices,
const GLvoid* texCoords, GLuint vbo) {
bool force = false;
// If vbo is != 0 we want to treat the vertices parameter as an offset inside
// a VBO. However, if vertices is set to NULL and vbo == 0 then we want to
// use the default VBO found in Caches
if (!vertices || vbo) {
force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo);
} else {
force = mCaches.unbindMeshBuffer();
}
mCaches.bindQuadIndicesBuffer();
mCaches.bindPositionVertexPointer(force, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords);
}
}
void OpenGLRenderer::setupDrawIndexedVertices(GLvoid* vertices) {
bool force = mCaches.unbindMeshBuffer();
mCaches.bindQuadIndicesBuffer();
mCaches.bindPositionVertexPointer(force, vertices, gVertexStride);
}
///////////////////////////////////////////////////////////////////////////////
// Drawing
///////////////////////////////////////////////////////////////////////////////
status_t OpenGLRenderer::drawRenderNode(RenderNode* renderNode, Rect& dirty, int32_t replayFlags) {
status_t status;
// All the usual checks and setup operations (quickReject, setupDraw, etc.)
// will be performed by the display list itself
if (renderNode && renderNode->isRenderable()) {
// compute 3d ordering
renderNode->computeOrdering();
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
status = startFrame();
ReplayStateStruct replayStruct(*this, dirty, replayFlags);
renderNode->replay(replayStruct, 0);
return status | replayStruct.mDrawGlStatus;
}
// Don't avoid overdraw when visualizing, since that makes it harder to
// debug where it's coming from, and when the problem occurs.
bool avoidOverdraw = !mCaches.debugOverdraw;
DeferredDisplayList deferredList(*currentClipRect(), avoidOverdraw);
DeferStateStruct deferStruct(deferredList, *this, replayFlags);
renderNode->defer(deferStruct, 0);
flushLayers();
status = startFrame();
return deferredList.flush(*this, dirty) | status;
}
// Even if there is no drawing command(Ex: invisible),
// it still needs startFrame to clear buffer and start tiling.
return startFrame();
}
void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, const SkPaint* paint) {
int color = paint != NULL ? paint->getColor() : 0;
float x = left;
float y = top;
texture->setWrap(GL_CLAMP_TO_EDGE, true);
bool ignoreTransform = false;
if (currentTransform()->isPureTranslate()) {
x = (int) floorf(left + currentTransform()->getTranslateX() + 0.5f);
y = (int) floorf(top + currentTransform()->getTranslateY() + 0.5f);
ignoreTransform = true;
texture->setFilter(GL_NEAREST, true);
} else {
texture->setFilter(getFilter(paint), true);
}
// No need to check for a UV mapper on the texture object, only ARGB_8888
// bitmaps get packed in the atlas
drawAlpha8TextureMesh(x, y, x + texture->width, y + texture->height, texture->id,
paint, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset,
GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform);
}
/**
* Important note: this method is intended to draw batches of bitmaps and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
status_t OpenGLRenderer::drawBitmaps(const SkBitmap* bitmap, AssetAtlas::Entry* entry,
int bitmapCount, TextureVertex* vertices, bool pureTranslate,
const Rect& bounds, const SkPaint* paint) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(pureTranslate ? GL_NEAREST : getFilter(paint), true);
const float x = (int) floorf(bounds.left + 0.5f);
const float y = (int) floorf(bounds.top + 0.5f);
if (CC_UNLIKELY(bitmap->colorType() == kAlpha_8_SkColorType)) {
drawAlpha8TextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(),
texture->id, paint, &vertices[0].x, &vertices[0].u,
GL_TRIANGLES, bitmapCount * 6, true,
kModelViewMode_Translate, false);
} else {
drawTextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(),
texture->id, paint, texture->blend, &vertices[0].x, &vertices[0].u,
GL_TRIANGLES, bitmapCount * 6, false, true, 0,
kModelViewMode_Translate, false);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, const SkPaint* paint) {
if (quickRejectSetupScissor(0, 0, bitmap->width(), bitmap->height())) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->colorType() == kAlpha_8_SkColorType)) {
drawAlphaBitmap(texture, 0, 0, paint);
} else {
drawTextureRect(0, 0, bitmap->width(), bitmap->height(), texture, paint);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmapData(const SkBitmap* bitmap, const SkPaint* paint) {
if (quickRejectSetupScissor(0, 0, bitmap->width(), bitmap->height())) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.getTransient(bitmap);
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->colorType() == kAlpha_8_SkColorType)) {
drawAlphaBitmap(texture, 0, 0, paint);
} else {
drawTextureRect(0, 0, bitmap->width(), bitmap->height(), texture, paint);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmapMesh(const SkBitmap* bitmap, int meshWidth, int meshHeight,
const float* vertices, const int* colors, const SkPaint* paint) {
if (!vertices || currentSnapshot()->isIgnored()) {
return DrawGlInfo::kStatusDone;
}
// TODO: use quickReject on bounds from vertices
mCaches.enableScissor();
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
const uint32_t count = meshWidth * meshHeight * 6;
Vector<ColorTextureVertex> mesh; // TODO: use C++11 unique_ptr
mesh.setCapacity(count);
ColorTextureVertex* vertex = mesh.editArray();
bool cleanupColors = false;
if (!colors) {
uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1);
int* newColors = new int[colorsCount];
memset(newColors, 0xff, colorsCount * sizeof(int));
colors = newColors;
cleanupColors = true;
}
mCaches.activeTexture(0);
Texture* texture = mRenderState.assetAtlas().getEntryTexture(bitmap);
const UvMapper& mapper(getMapper(texture));
for (int32_t y = 0; y < meshHeight; y++) {
for (int32_t x = 0; x < meshWidth; x++) {
uint32_t i = (y * (meshWidth + 1) + x) * 2;
float u1 = float(x) / meshWidth;
float u2 = float(x + 1) / meshWidth;
float v1 = float(y) / meshHeight;
float v2 = float(y + 1) / meshHeight;
mapper.map(u1, v1, u2, v2);
int ax = i + (meshWidth + 1) * 2;
int ay = ax + 1;
int bx = i;
int by = bx + 1;
int cx = i + 2;
int cy = cx + 1;
int dx = i + (meshWidth + 1) * 2 + 2;
int dy = dx + 1;
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]);
left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx])));
top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy])));
right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx])));
bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy])));
}
}
if (quickRejectSetupScissor(left, top, right, bottom)) {
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDone;
}
if (!texture) {
texture = mCaches.textureCache.get(bitmap);
if (!texture) {
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDone;
}
}
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(getFilter(paint), true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
float a = alpha / 255.0f;
if (hasLayer()) {
dirtyLayer(left, top, right, bottom, *currentTransform());
}
setupDraw();
setupDrawWithTextureAndColor();
setupDrawColor(a, a, a, a);
setupDrawColorFilter(getColorFilter(paint));
setupDrawBlending(paint, true);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawModelView(kModelViewMode_TranslateAndScale, false, 0.0f, 0.0f, 1.0f, 1.0f);
setupDrawTexture(texture->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms(getColorFilter(paint));
setupDrawMesh(&mesh[0].x, &mesh[0].u, &mesh[0].r);
glDrawArrays(GL_TRIANGLES, 0, count);
int slot = mCaches.currentProgram->getAttrib("colors");
if (slot >= 0) {
glDisableVertexAttribArray(slot);
}
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmap(const SkBitmap* bitmap,
float srcLeft, float srcTop, float srcRight, float srcBottom,
float dstLeft, float dstTop, float dstRight, float dstBottom,
const SkPaint* paint) {
if (quickRejectSetupScissor(dstLeft, dstTop, dstRight, dstBottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
const float width = texture->width;
const float height = texture->height;
float u1 = fmax(0.0f, srcLeft / width);
float v1 = fmax(0.0f, srcTop / height);
float u2 = fmin(1.0f, srcRight / width);
float v2 = fmin(1.0f, srcBottom / height);
getMapper(texture).map(u1, v1, u2, v2);
mCaches.unbindMeshBuffer();
resetDrawTextureTexCoords(u1, v1, u2, v2);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
float scaleX = (dstRight - dstLeft) / (srcRight - srcLeft);
float scaleY = (dstBottom - dstTop) / (srcBottom - srcTop);
bool scaled = scaleX != 1.0f || scaleY != 1.0f;
// Apply a scale transform on the canvas only when a shader is in use
// Skia handles the ratio between the dst and src rects as a scale factor
// when a shader is set
bool useScaleTransform = getShader(paint) && scaled;
bool ignoreTransform = false;
if (CC_LIKELY(currentTransform()->isPureTranslate() && !useScaleTransform)) {
float x = (int) floorf(dstLeft + currentTransform()->getTranslateX() + 0.5f);
float y = (int) floorf(dstTop + currentTransform()->getTranslateY() + 0.5f);
dstRight = x + (dstRight - dstLeft);
dstBottom = y + (dstBottom - dstTop);
dstLeft = x;
dstTop = y;
texture->setFilter(scaled ? getFilter(paint) : GL_NEAREST, true);
ignoreTransform = true;
} else {
texture->setFilter(getFilter(paint), true);
}
if (CC_UNLIKELY(useScaleTransform)) {
save(SkCanvas::kMatrix_SaveFlag);
translate(dstLeft, dstTop);
scale(scaleX, scaleY);
dstLeft = 0.0f;
dstTop = 0.0f;
dstRight = srcRight - srcLeft;
dstBottom = srcBottom - srcTop;
}
if (CC_UNLIKELY(bitmap->colorType() == kAlpha_8_SkColorType)) {
drawAlpha8TextureMesh(dstLeft, dstTop, dstRight, dstBottom,
texture->id, paint,
&mMeshVertices[0].x, &mMeshVertices[0].u,
GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform);
} else {
drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom,
texture->id, paint, texture->blend,
&mMeshVertices[0].x, &mMeshVertices[0].u,
GL_TRIANGLE_STRIP, gMeshCount, false, ignoreTransform);
}
if (CC_UNLIKELY(useScaleTransform)) {
restore();
}
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Res_png_9patch* patch,
float left, float top, float right, float bottom, const SkPaint* paint) {
if (quickRejectSetupScissor(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
AssetAtlas::Entry* entry = mRenderState.assetAtlas().getEntry(bitmap);
const Patch* mesh = mCaches.patchCache.get(entry, bitmap->width(), bitmap->height(),
right - left, bottom - top, patch);
return drawPatch(bitmap, mesh, entry, left, top, right, bottom, paint);
}
status_t OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Patch* mesh,
AssetAtlas::Entry* entry, float left, float top, float right, float bottom,
const SkPaint* paint) {
if (quickRejectSetupScissor(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
if (CC_LIKELY(mesh && mesh->verticesCount > 0)) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(GL_LINEAR, true);
const bool pureTranslate = currentTransform()->isPureTranslate();
// Mark the current layer dirty where we are going to draw the patch
if (hasLayer() && mesh->hasEmptyQuads) {
const float offsetX = left + currentTransform()->getTranslateX();
const float offsetY = top + currentTransform()->getTranslateY();
const size_t count = mesh->quads.size();
for (size_t i = 0; i < count; i++) {
const Rect& bounds = mesh->quads.itemAt(i);
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(bounds.left + offsetX + 0.5f);
const float y = (int) floorf(bounds.top + offsetY + 0.5f);
dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight());
} else {
dirtyLayer(left + bounds.left, top + bounds.top,
left + bounds.right, top + bounds.bottom, *currentTransform());
}
}
}
bool ignoreTransform = false;
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(left + currentTransform()->getTranslateX() + 0.5f);
const float y = (int) floorf(top + currentTransform()->getTranslateY() + 0.5f);
right = x + right - left;
bottom = y + bottom - top;
left = x;
top = y;
ignoreTransform = true;
}
drawIndexedTextureMesh(left, top, right, bottom, texture->id, paint,
texture->blend, (GLvoid*) mesh->offset, (GLvoid*) mesh->textureOffset,
GL_TRIANGLES, mesh->indexCount, false, ignoreTransform,
mCaches.patchCache.getMeshBuffer(), kModelViewMode_Translate, !mesh->hasEmptyQuads);
}
return DrawGlInfo::kStatusDrew;
}
/**
* Important note: this method is intended to draw batches of 9-patch objects and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
status_t OpenGLRenderer::drawPatches(const SkBitmap* bitmap, AssetAtlas::Entry* entry,
TextureVertex* vertices, uint32_t indexCount, const SkPaint* paint) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(GL_LINEAR, true);
drawIndexedTextureMesh(0.0f, 0.0f, 1.0f, 1.0f, texture->id, paint,
texture->blend, &vertices[0].x, &vertices[0].u,
GL_TRIANGLES, indexCount, false, true, 0, kModelViewMode_Translate, false);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawVertexBuffer(float translateX, float translateY,
const VertexBuffer& vertexBuffer, const SkPaint* paint, int displayFlags) {
// not missing call to quickReject/dirtyLayer, always done at a higher level
if (!vertexBuffer.getVertexCount()) {
// no vertices to draw
return DrawGlInfo::kStatusDone;
}
Rect bounds(vertexBuffer.getBounds());
bounds.translate(translateX, translateY);
dirtyLayer(bounds.left, bounds.top, bounds.right, bounds.bottom, *currentTransform());
int color = paint->getColor();
bool isAA = paint->isAntiAlias();
setupDraw();
setupDrawNoTexture();
if (isAA) setupDrawVertexAlpha((displayFlags & kVertexBuffer_ShadowInterp));
setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha);
setupDrawColorFilter(getColorFilter(paint));
setupDrawShader(getShader(paint));
setupDrawBlending(paint, isAA);
setupDrawProgram();
setupDrawModelView(kModelViewMode_Translate, (displayFlags & kVertexBuffer_Offset),
translateX, translateY, 0, 0);
setupDrawColorUniforms(getShader(paint));
setupDrawColorFilterUniforms(getColorFilter(paint));
setupDrawShaderUniforms(getShader(paint));
const void* vertices = vertexBuffer.getBuffer();
bool force = mCaches.unbindMeshBuffer();
mCaches.bindPositionVertexPointer(true, vertices, isAA ? gAlphaVertexStride : gVertexStride);
mCaches.resetTexCoordsVertexPointer();
int alphaSlot = -1;
if (isAA) {
void* alphaCoords = ((GLbyte*) vertices) + gVertexAlphaOffset;
alphaSlot = mCaches.currentProgram->getAttrib("vtxAlpha");
// TODO: avoid enable/disable in back to back uses of the alpha attribute
glEnableVertexAttribArray(alphaSlot);
glVertexAttribPointer(alphaSlot, 1, GL_FLOAT, GL_FALSE, gAlphaVertexStride, alphaCoords);
}
const VertexBuffer::Mode mode = vertexBuffer.getMode();
if (mode == VertexBuffer::kStandard) {
mCaches.unbindIndicesBuffer();
glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getVertexCount());
} else if (mode == VertexBuffer::kOnePolyRingShadow) {
mCaches.bindShadowIndicesBuffer();
glDrawElements(GL_TRIANGLE_STRIP, ONE_POLY_RING_SHADOW_INDEX_COUNT, GL_UNSIGNED_SHORT, 0);
} else if (mode == VertexBuffer::kTwoPolyRingShadow) {
mCaches.bindShadowIndicesBuffer();
glDrawElements(GL_TRIANGLE_STRIP, TWO_POLY_RING_SHADOW_INDEX_COUNT, GL_UNSIGNED_SHORT, 0);
} else if (mode == VertexBuffer::kIndices) {
mCaches.unbindIndicesBuffer();
glDrawElements(GL_TRIANGLE_STRIP, vertexBuffer.getIndexCount(), GL_UNSIGNED_SHORT,
vertexBuffer.getIndices());
}
if (isAA) {
glDisableVertexAttribArray(alphaSlot);
}
return DrawGlInfo::kStatusDrew;
}
/**
* Renders a convex path via tessellation. For AA paths, this function uses a similar approach to
* that of AA lines in the drawLines() function. We expand the convex path by a half pixel in
* screen space in all directions. However, instead of using a fragment shader to compute the
* translucency of the color from its position, we simply use a varying parameter to define how far
* a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used.
*
* Doesn't yet support joins, caps, or path effects.
*/
status_t OpenGLRenderer::drawConvexPath(const SkPath& path, const SkPaint* paint) {
VertexBuffer vertexBuffer;
// TODO: try clipping large paths to viewport
PathTessellator::tessellatePath(path, paint, *currentTransform(), vertexBuffer);
return drawVertexBuffer(vertexBuffer, paint);
}
/**
* We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha
* and additional geometry for defining an alpha slope perimeter.
*
* Using GL_LINES can be difficult because the rasterization rules for those lines produces some
* unexpected results, and may vary between hardware devices. Previously we used a varying-base
* in-shader alpha region, but found it to be taxing on some GPUs.
*
* TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce
* memory transfer by removing need for degenerate vertices.
*/
status_t OpenGLRenderer::drawLines(const float* points, int count, const SkPaint* paint) {
if (currentSnapshot()->isIgnored() || count < 4) return DrawGlInfo::kStatusDone;
count &= ~0x3; // round down to nearest four
VertexBuffer buffer;
PathTessellator::tessellateLines(points, count, paint, *currentTransform(), buffer);
const Rect& bounds = buffer.getBounds();
if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) {
return DrawGlInfo::kStatusDone;
}
int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset;
return drawVertexBuffer(buffer, paint, displayFlags);
}
status_t OpenGLRenderer::drawPoints(const float* points, int count, const SkPaint* paint) {
if (currentSnapshot()->isIgnored() || count < 2) return DrawGlInfo::kStatusDone;
count &= ~0x1; // round down to nearest two
VertexBuffer buffer;
PathTessellator::tessellatePoints(points, count, paint, *currentTransform(), buffer);
const Rect& bounds = buffer.getBounds();
if (quickRejectSetupScissor(bounds.left, bounds.top, bounds.right, bounds.bottom)) {
return DrawGlInfo::kStatusDone;
}
int displayFlags = paint->isAntiAlias() ? 0 : kVertexBuffer_Offset;
return drawVertexBuffer(buffer, paint, displayFlags);
}
status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) {
// No need to check against the clip, we fill the clip region
if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone;
Rect clip(*currentClipRect());
clip.snapToPixelBoundaries();
SkPaint paint;
paint.setColor(color);
paint.setXfermodeMode(mode);
drawColorRect(clip.left, clip.top, clip.right, clip.bottom, &paint, true);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture,
const SkPaint* paint) {
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
const float x = left + texture->left - texture->offset;
const float y = top + texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom,
float rx, float ry, const SkPaint* p) {
if (currentSnapshot()->isIgnored()
|| quickRejectSetupScissor(left, top, right, bottom, p)
|| paintWillNotDraw(*p)) {
return DrawGlInfo::kStatusDone;
}
if (p->getPathEffect() != 0) {
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.getRoundRect(
right - left, bottom - top, rx, ry, p);
return drawShape(left, top, texture, p);
}
const VertexBuffer* vertexBuffer = mCaches.tessellationCache.getRoundRect(
*currentTransform(), *p, right - left