blob: 9277a64daa4c4430b86c70f5e3dc7c3d199519ff [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SurfaceFlinger"
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include "clz.h"
#include "LayerBase.h"
#include "LayerBlur.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
// We don't honor the premultiplied alpha flags, which means that
// premultiplied surface may be composed using a non-premultiplied
// equation. We do this because it may be a lot faster on some hardware
// The correct value is HONOR_PREMULTIPLIED_ALPHA = 1
#define HONOR_PREMULTIPLIED_ALPHA 0
namespace android {
// ---------------------------------------------------------------------------
const uint32_t LayerBase::typeInfo = 1;
const char* const LayerBase::typeID = "LayerBase";
const uint32_t LayerBaseClient::typeInfo = LayerBase::typeInfo | 2;
const char* const LayerBaseClient::typeID = "LayerBaseClient";
// ---------------------------------------------------------------------------
Vector<GLuint> LayerBase::deletedTextures;
int32_t LayerBase::sIdentity = 0;
LayerBase::LayerBase(SurfaceFlinger* flinger, DisplayID display)
: dpy(display), contentDirty(false),
mFlinger(flinger),
mTransformed(false),
mOrientation(0),
mCanUseCopyBit(false),
mTransactionFlags(0),
mPremultipliedAlpha(true),
mIdentity(uint32_t(android_atomic_inc(&sIdentity))),
mInvalidate(0)
{
const DisplayHardware& hw(flinger->graphicPlane(0).displayHardware());
mFlags = hw.getFlags();
}
LayerBase::~LayerBase()
{
}
const GraphicPlane& LayerBase::graphicPlane(int dpy) const
{
return mFlinger->graphicPlane(dpy);
}
GraphicPlane& LayerBase::graphicPlane(int dpy)
{
return mFlinger->graphicPlane(dpy);
}
void LayerBase::initStates(uint32_t w, uint32_t h, uint32_t flags)
{
uint32_t layerFlags = 0;
if (flags & ISurfaceComposer::eHidden)
layerFlags = ISurfaceComposer::eLayerHidden;
if (flags & ISurfaceComposer::eNonPremultiplied)
mPremultipliedAlpha = false;
mCurrentState.z = 0;
mCurrentState.w = w;
mCurrentState.h = h;
mCurrentState.alpha = 0xFF;
mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.transform.set(0, 0);
// drawing state & current state are identical
mDrawingState = mCurrentState;
}
void LayerBase::commitTransaction(bool skipSize) {
const uint32_t w = mDrawingState.w;
const uint32_t h = mDrawingState.h;
mDrawingState = mCurrentState;
if (skipSize) {
mDrawingState.w = w;
mDrawingState.h = h;
}
}
void LayerBase::forceVisibilityTransaction() {
// this can be called without SurfaceFlinger.mStateLock, but if we
// can atomically increment the sequence number, it doesn't matter.
android_atomic_inc(&mCurrentState.sequence);
requestTransaction();
}
bool LayerBase::requestTransaction() {
int32_t old = setTransactionFlags(eTransactionNeeded);
return ((old & eTransactionNeeded) == 0);
}
uint32_t LayerBase::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t LayerBase::setTransactionFlags(uint32_t flags) {
return android_atomic_or(flags, &mTransactionFlags);
}
void LayerBase::setSizeChanged(uint32_t w, uint32_t h) {
}
bool LayerBase::setPosition(int32_t x, int32_t y) {
if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
return false;
mCurrentState.sequence++;
mCurrentState.transform.set(x, y);
requestTransaction();
return true;
}
bool LayerBase::setLayer(uint32_t z) {
if (mCurrentState.z == z)
return false;
mCurrentState.sequence++;
mCurrentState.z = z;
requestTransaction();
return true;
}
bool LayerBase::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.w == w && mCurrentState.h == h)
return false;
setSizeChanged(w, h);
mCurrentState.w = w;
mCurrentState.h = h;
requestTransaction();
return true;
}
bool LayerBase::setAlpha(uint8_t alpha) {
if (mCurrentState.alpha == alpha)
return false;
mCurrentState.sequence++;
mCurrentState.alpha = alpha;
requestTransaction();
return true;
}
bool LayerBase::setMatrix(const layer_state_t::matrix22_t& matrix) {
// TODO: check the matrix has changed
mCurrentState.sequence++;
mCurrentState.transform.set(
matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
requestTransaction();
return true;
}
bool LayerBase::setTransparentRegionHint(const Region& transparent) {
// TODO: check the region has changed
mCurrentState.sequence++;
mCurrentState.transparentRegion = transparent;
requestTransaction();
return true;
}
bool LayerBase::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags)
return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
requestTransaction();
return true;
}
Rect LayerBase::visibleBounds() const
{
return mTransformedBounds;
}
void LayerBase::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
visibleRegionScreen = visibleRegion;
}
void LayerBase::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
coveredRegionScreen = coveredRegion;
}
uint32_t LayerBase::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
if (temp.sequence != front.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
}
// Commit the transaction
commitTransaction(flags & eRestartTransaction);
return flags;
}
Point LayerBase::getPhysicalSize() const
{
const Layer::State& front(drawingState());
return Point(front.w, front.h);
}
Transform LayerBase::getDrawingStateTransform() const
{
return drawingState().transform;
}
void LayerBase::validateVisibility(const Transform& planeTransform)
{
const Layer::State& s(drawingState());
const Transform tr(planeTransform * getDrawingStateTransform());
const bool transformed = tr.transformed();
const Point size(getPhysicalSize());
uint32_t w = size.x;
uint32_t h = size.y;
tr.transform(mVertices[0], 0, 0);
tr.transform(mVertices[1], 0, h);
tr.transform(mVertices[2], w, h);
tr.transform(mVertices[3], w, 0);
if (UNLIKELY(transformed)) {
// NOTE: here we could also punt if we have too many rectangles
// in the transparent region
if (tr.preserveRects()) {
// transform the transparent region
transparentRegionScreen = tr.transform(s.transparentRegion);
} else {
// transformation too complex, can't do the transparent region
// optimization.
transparentRegionScreen.clear();
}
} else {
transparentRegionScreen = s.transparentRegion;
}
// cache a few things...
mOrientation = tr.getOrientation();
mTransformedBounds = tr.makeBounds(w, h);
mTransformed = transformed;
mLeft = tr.tx();
mTop = tr.ty();
// see if we can/should use 2D h/w with the new configuration
mCanUseCopyBit = false;
copybit_device_t* copybit = mFlinger->getBlitEngine();
if (copybit) {
const int step = copybit->get(copybit, COPYBIT_ROTATION_STEP_DEG);
const int scaleBits = copybit->get(copybit, COPYBIT_SCALING_FRAC_BITS);
mCanUseCopyBit = true;
if ((mOrientation < 0) && (step > 1)) {
// arbitrary orientations not supported
mCanUseCopyBit = false;
} else if ((mOrientation > 0) && (step > 90)) {
// 90 deg rotations not supported
mCanUseCopyBit = false;
} else if ((tr.getType() & SkMatrix::kScale_Mask) && (scaleBits < 12)) {
// arbitrary scaling not supported
mCanUseCopyBit = false;
}
#if HONOR_PREMULTIPLIED_ALPHA
else if (needsBlending() && mPremultipliedAlpha) {
// pre-multiplied alpha not supported
mCanUseCopyBit = false;
}
#endif
else {
// here, we determined we can use copybit
if (tr.getType() & SkMatrix::kScale_Mask) {
// and we have scaling
if (!transparentRegionScreen.isRect()) {
// we punt because blending is cheap (h/w) and the region is
// complex, which may causes artifacts when copying
// scaled content
transparentRegionScreen.clear();
}
}
}
}
}
void LayerBase::lockPageFlip(bool& recomputeVisibleRegions)
{
}
void LayerBase::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
if ((android_atomic_and(~1, &mInvalidate)&1) == 1) {
outDirtyRegion.orSelf(visibleRegionScreen);
}
}
void LayerBase::finishPageFlip()
{
}
void LayerBase::invalidate()
{
if ((android_atomic_or(1, &mInvalidate)&1) == 0) {
mFlinger->signalEvent();
}
}
void LayerBase::drawRegion(const Region& reg) const
{
Region::iterator iterator(reg);
if (iterator) {
Rect r;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t fbWidth = hw.getWidth();
const int32_t fbHeight = hw.getHeight();
const GLshort vertices[][2] = { { 0, 0 }, { fbWidth, 0 },
{ fbWidth, fbHeight }, { 0, fbHeight } };
glVertexPointer(2, GL_SHORT, 0, vertices);
while (iterator.iterate(&r)) {
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
void LayerBase::draw(const Region& inClip) const
{
// invalidate the region we'll update
Region clip(inClip); // copy-on-write, so no-op most of the time
// Remove the transparent area from the clipping region
const State& s = drawingState();
if (LIKELY(!s.transparentRegion.isEmpty())) {
clip.subtract(transparentRegionScreen);
if (clip.isEmpty()) {
// usually this won't happen because this should be taken care of
// by SurfaceFlinger::computeVisibleRegions()
return;
}
}
// reset GL state
glEnable(GL_SCISSOR_TEST);
onDraw(clip);
/*
glDisable(GL_TEXTURE_2D);
glDisable(GL_DITHER);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glColor4x(0, 0x8000, 0, 0x10000);
drawRegion(transparentRegionScreen);
glDisable(GL_BLEND);
*/
}
GLuint LayerBase::createTexture() const
{
GLuint textureName = -1;
glGenTextures(1, &textureName);
glBindTexture(GL_TEXTURE_2D, textureName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (mFlags & DisplayHardware::SLOW_CONFIG) {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
} else {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
return textureName;
}
void LayerBase::clearWithOpenGL(const Region& clip) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
glColor4x(0,0,0,0);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
Rect r;
Region::iterator iterator(clip);
if (iterator) {
glEnable(GL_SCISSOR_TEST);
glVertexPointer(2, GL_FIXED, 0, mVertices);
while (iterator.iterate(&r)) {
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
void LayerBase::drawWithOpenGL(const Region& clip,
GLint textureName, const GGLSurface& t) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
const State& s(drawingState());
// bind our texture
validateTexture(textureName);
glEnable(GL_TEXTURE_2D);
// Dithering...
if (s.flags & ISurfaceComposer::eLayerDither) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
if (UNLIKELY(s.alpha < 0xFF)) {
// We have an alpha-modulation. We need to modulate all
// texture components by alpha because we're always using
// premultiplied alpha.
// If the texture doesn't have an alpha channel we can
// use REPLACE and switch to non premultiplied alpha
// blending (SRCA/ONE_MINUS_SRCA).
GLenum env, src;
if (needsBlending()) {
env = GL_MODULATE;
src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
} else {
env = GL_REPLACE;
src = GL_SRC_ALPHA;
}
const GGLfixed alpha = (s.alpha << 16)/255;
glColor4x(alpha, alpha, alpha, alpha);
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, env);
} else {
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor4x(0x10000, 0x10000, 0x10000, 0x10000);
if (needsBlending()) {
GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
if (UNLIKELY(transformed()
|| !(mFlags & DisplayHardware::DRAW_TEXTURE_EXTENSION) ))
{
//StopWatch watch("GL transformed");
Region::iterator iterator(clip);
if (iterator) {
// always use high-quality filtering with fast configurations
bool fast = !(mFlags & DisplayHardware::SLOW_CONFIG);
if (!fast && s.flags & ISurfaceComposer::eLayerFilter) {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
const GLfixed texCoords[4][2] = {
{ 0, 0 },
{ 0, 0x10000 },
{ 0x10000, 0x10000 },
{ 0x10000, 0 }
};
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
if (!(mFlags & DisplayHardware::NPOT_EXTENSION)) {
// find the smallest power-of-two that will accommodate our surface
GLuint tw = 1 << (31 - clz(t.width));
GLuint th = 1 << (31 - clz(t.height));
if (tw < t.width) tw <<= 1;
if (th < t.height) th <<= 1;
// this divide should be relatively fast because it's
// a power-of-two (optimized path in libgcc)
GLfloat ws = GLfloat(t.width) /tw;
GLfloat hs = GLfloat(t.height)/th;
glScalef(ws, hs, 1.0f);
}
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FIXED, 0, mVertices);
glTexCoordPointer(2, GL_FIXED, 0, texCoords);
Rect r;
while (iterator.iterate(&r)) {
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
if (!fast && s.flags & ISurfaceComposer::eLayerFilter) {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
} else {
Region::iterator iterator(clip);
if (iterator) {
Rect r;
GLint crop[4] = { 0, t.height, t.width, -t.height };
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CROP_RECT_OES, crop);
int x = tx();
int y = ty();
y = fbHeight - (y + t.height);
while (iterator.iterate(&r)) {
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawTexiOES(x, y, 0, t.width, t.height);
}
}
}
}
void LayerBase::validateTexture(GLint textureName) const
{
glBindTexture(GL_TEXTURE_2D, textureName);
// TODO: reload the texture if needed
// this is currently done in loadTexture() below
}
void LayerBase::loadTexture(const Region& dirty,
GLint textureName, const GGLSurface& t,
GLuint& textureWidth, GLuint& textureHeight) const
{
// TODO: defer the actual texture reload until LayerBase::validateTexture
// is called.
uint32_t flags = mFlags;
glBindTexture(GL_TEXTURE_2D, textureName);
GLuint tw = t.width;
GLuint th = t.height;
/*
* In OpenGL ES we can't specify a stride with glTexImage2D (however,
* GL_UNPACK_ALIGNMENT is 4, which in essence allows a limited form of
* stride).
* So if the stride here isn't representable with GL_UNPACK_ALIGNMENT, we
* need to do something reasonable (here creating a bigger texture).
*
* extra pixels = (((stride - width) * pixelsize) / GL_UNPACK_ALIGNMENT);
*
* This situation doesn't happen often, but some h/w have a limitation
* for their framebuffer (eg: must be multiple of 8 pixels), and
* we need to take that into account when using these buffers as
* textures.
*
* This should never be a problem with POT textures
*/
tw += (((t.stride - tw) * bytesPerPixel(t.format)) / 4);
/*
* round to POT if needed
*/
GLuint texture_w = tw;
GLuint texture_h = th;
if (!(flags & DisplayHardware::NPOT_EXTENSION)) {
// find the smallest power-of-two that will accommodate our surface
texture_w = 1 << (31 - clz(t.width));
texture_h = 1 << (31 - clz(t.height));
if (texture_w < t.width) texture_w <<= 1;
if (texture_h < t.height) texture_h <<= 1;
if (texture_w != tw || texture_h != th) {
// we can't use DIRECT_TEXTURE since we changed the size
// of the texture
flags &= ~DisplayHardware::DIRECT_TEXTURE;
}
}
if (flags & DisplayHardware::DIRECT_TEXTURE) {
// here we're guaranteed that texture_{w|h} == t{w|h}
if (t.format == GGL_PIXEL_FORMAT_RGB_565) {
glTexImage2D(GL_DIRECT_TEXTURE_2D_QUALCOMM, 0,
GL_RGB, tw, th, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, t.data);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_4444) {
glTexImage2D(GL_DIRECT_TEXTURE_2D_QUALCOMM, 0,
GL_RGBA, tw, th, 0,
GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, t.data);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_8888) {
glTexImage2D(GL_DIRECT_TEXTURE_2D_QUALCOMM, 0,
GL_RGBA, tw, th, 0,
GL_RGBA, GL_UNSIGNED_BYTE, t.data);
} else if (t.format == GGL_PIXEL_FORMAT_BGRA_8888) {
// TODO: add GL_BGRA extension
} else {
// oops, we don't handle this format, try the regular path
goto regular;
}
textureWidth = tw;
textureHeight = th;
} else {
regular:
Rect bounds(dirty.bounds());
GLvoid* data = 0;
if (texture_w!=textureWidth || texture_h!=textureHeight) {
// texture size changed, we need to create a new one
if (!textureWidth || !textureHeight) {
// this is the first time, load the whole texture
if (texture_w==tw && texture_h==th) {
// we can do it one pass
data = t.data;
} else {
// we have to create the texture first because it
// doesn't match the size of the buffer
bounds.set(Rect(tw, th));
}
}
if (t.format == GGL_PIXEL_FORMAT_RGB_565) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGB, texture_w, texture_h, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, data);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_4444) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA, texture_w, texture_h, 0,
GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, data);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_8888) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA, texture_w, texture_h, 0,
GL_RGBA, GL_UNSIGNED_BYTE, data);
} else if ( t.format == GGL_PIXEL_FORMAT_YCbCr_422_SP ||
t.format == GGL_PIXEL_FORMAT_YCbCr_420_SP) {
// just show the Y plane of YUV buffers
data = t.data;
glTexImage2D(GL_TEXTURE_2D, 0,
GL_LUMINANCE, texture_w, texture_h, 0,
GL_LUMINANCE, GL_UNSIGNED_BYTE, data);
} else {
// oops, we don't handle this format!
LOGE("layer %p, texture=%d, using format %d, which is not "
"supported by the GL", this, textureName, t.format);
textureName = -1;
}
textureWidth = texture_w;
textureHeight = texture_h;
}
if (!data && textureName>=0) {
if (t.format == GGL_PIXEL_FORMAT_RGB_565) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGB, GL_UNSIGNED_SHORT_5_6_5,
t.data + bounds.top*t.width*2);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_4444) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4,
t.data + bounds.top*t.width*2);
} else if (t.format == GGL_PIXEL_FORMAT_RGBA_8888) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGBA, GL_UNSIGNED_BYTE,
t.data + bounds.top*t.width*4);
}
}
}
}
bool LayerBase::canUseCopybit() const
{
return mCanUseCopyBit;
}
// ---------------------------------------------------------------------------
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,
Client* c, int32_t i)
: LayerBase(flinger, display), client(c),
lcblk( c ? &(c->ctrlblk->layers[i]) : 0 ),
mIndex(i)
{
if (client) {
client->bindLayer(this, i);
// Initialize this layer's control block
memset(this->lcblk, 0, sizeof(layer_cblk_t));
this->lcblk->identity = mIdentity;
Region::writeEmpty(&(this->lcblk->region[0]), sizeof(flat_region_t));
Region::writeEmpty(&(this->lcblk->region[1]), sizeof(flat_region_t));
}
}
LayerBaseClient::~LayerBaseClient()
{
if (client) {
client->free(mIndex);
}
}
int32_t LayerBaseClient::serverIndex() const {
if (client) {
return (client->cid<<16)|mIndex;
}
return 0xFFFF0000 | mIndex;
}
sp<LayerBaseClient::Surface> LayerBaseClient::getSurface() const
{
return new Surface(clientIndex(), mIdentity);
}
// ---------------------------------------------------------------------------
}; // namespace android