blob: b931313083166bffd563ff4bde1e5ec72b26da40 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import android.os.Handler;
import android.util.Log;
import android.util.SparseArray;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* <p>
* SensorManager lets you access the device's {@link android.hardware.Sensor
* sensors}. Get an instance of this class by calling
* {@link android.content.Context#getSystemService(java.lang.String)
* Context.getSystemService()} with the argument
* {@link android.content.Context#SENSOR_SERVICE}.
* </p>
* <p>
* Always make sure to disable sensors you don't need, especially when your
* activity is paused. Failing to do so can drain the battery in just a few
* hours. Note that the system will <i>not</i> disable sensors automatically when
* the screen turns off.
* </p>
* <p class="note">
* Note: Don't use this mechanism with a Trigger Sensor, have a look
* at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
* is an example of a trigger sensor.
* </p>
* <pre class="prettyprint">
* public class SensorActivity extends Activity, implements SensorEventListener {
* private final SensorManager mSensorManager;
* private final Sensor mAccelerometer;
*
* public SensorActivity() {
* mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
* mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
* }
*
* protected void onResume() {
* super.onResume();
* mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
* }
*
* protected void onPause() {
* super.onPause();
* mSensorManager.unregisterListener(this);
* }
*
* public void onAccuracyChanged(Sensor sensor, int accuracy) {
* }
*
* public void onSensorChanged(SensorEvent event) {
* }
* }
* </pre>
*
* @see SensorEventListener
* @see SensorEvent
* @see Sensor
*
*/
public abstract class SensorManager {
/** @hide */
protected static final String TAG = "SensorManager";
private static final float[] mTempMatrix = new float[16];
// Cached lists of sensors by type. Guarded by mSensorListByType.
private final SparseArray<List<Sensor>> mSensorListByType =
new SparseArray<List<Sensor>>();
// Legacy sensor manager implementation. Guarded by mSensorListByType during initialization.
private LegacySensorManager mLegacySensorManager;
/* NOTE: sensor IDs must be a power of 2 */
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION = 1 << 0;
/**
* A constant describing an accelerometer. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ACCELEROMETER = 1 << 1;
/**
* A constant describing a temperature sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TEMPERATURE = 1 << 2;
/**
* A constant describing a magnetic sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
/**
* A constant describing an ambient light sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_LIGHT = 1 << 4;
/**
* A constant describing a proximity sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_PROXIMITY = 1 << 5;
/**
* A constant describing a Tricorder See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TRICORDER = 1 << 6;
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
/**
* A constant that includes all sensors
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ALL = 0x7F;
/**
* Smallest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MIN = SENSOR_ORIENTATION;
/**
* Largest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
/**
* Index of the X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_X = 0;
/**
* Index of the Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Y = 1;
/**
* Index of the Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Z = 2;
/**
* Offset to the untransformed values in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_INDEX = 3;
/**
* Index of the untransformed X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_X = 3;
/**
* Index of the untransformed Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Y = 4;
/**
* Index of the untransformed Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Z = 5;
/** Standard gravity (g) on Earth. This value is equivalent to 1G */
public static final float STANDARD_GRAVITY = 9.80665f;
/** Sun's gravity in SI units (m/s^2) */
public static final float GRAVITY_SUN = 275.0f;
/** Mercury's gravity in SI units (m/s^2) */
public static final float GRAVITY_MERCURY = 3.70f;
/** Venus' gravity in SI units (m/s^2) */
public static final float GRAVITY_VENUS = 8.87f;
/** Earth's gravity in SI units (m/s^2) */
public static final float GRAVITY_EARTH = 9.80665f;
/** The Moon's gravity in SI units (m/s^2) */
public static final float GRAVITY_MOON = 1.6f;
/** Mars' gravity in SI units (m/s^2) */
public static final float GRAVITY_MARS = 3.71f;
/** Jupiter's gravity in SI units (m/s^2) */
public static final float GRAVITY_JUPITER = 23.12f;
/** Saturn's gravity in SI units (m/s^2) */
public static final float GRAVITY_SATURN = 8.96f;
/** Uranus' gravity in SI units (m/s^2) */
public static final float GRAVITY_URANUS = 8.69f;
/** Neptune's gravity in SI units (m/s^2) */
public static final float GRAVITY_NEPTUNE = 11.0f;
/** Pluto's gravity in SI units (m/s^2) */
public static final float GRAVITY_PLUTO = 0.6f;
/** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f;
/** Gravity on the island */
public static final float GRAVITY_THE_ISLAND = 4.815162342f;
/** Maximum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
/** Minimum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
/** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
/** Maximum luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
/** luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT = 110000.0f;
/** luminance in shade in lux */
public static final float LIGHT_SHADE = 20000.0f;
/** luminance under an overcast sky in lux */
public static final float LIGHT_OVERCAST = 10000.0f;
/** luminance at sunrise in lux */
public static final float LIGHT_SUNRISE = 400.0f;
/** luminance under a cloudy sky in lux */
public static final float LIGHT_CLOUDY = 100.0f;
/** luminance at night with full moon in lux */
public static final float LIGHT_FULLMOON = 0.25f;
/** luminance at night with no moon in lux*/
public static final float LIGHT_NO_MOON = 0.001f;
/** get sensor data as fast as possible */
public static final int SENSOR_DELAY_FASTEST = 0;
/** rate suitable for games */
public static final int SENSOR_DELAY_GAME = 1;
/** rate suitable for the user interface */
public static final int SENSOR_DELAY_UI = 2;
/** rate (default) suitable for screen orientation changes */
public static final int SENSOR_DELAY_NORMAL = 3;
/**
* The values returned by this sensor cannot be trusted, calibration is
* needed or the environment doesn't allow readings
*/
public static final int SENSOR_STATUS_UNRELIABLE = 0;
/**
* This sensor is reporting data with low accuracy, calibration with the
* environment is needed
*/
public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
/**
* This sensor is reporting data with an average level of accuracy,
* calibration with the environment may improve the readings
*/
public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
/** This sensor is reporting data with maximum accuracy */
public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_X = 1;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Y = 2;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Z = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_X = AXIS_X | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
/**
* {@hide}
*/
public SensorManager() {
}
/**
* Gets the full list of sensors that are available.
* @hide
*/
protected abstract List<Sensor> getFullSensorList();
/**
* @return available sensors.
* @deprecated This method is deprecated, use
* {@link SensorManager#getSensorList(int)} instead
*/
@Deprecated
public int getSensors() {
return getLegacySensorManager().getSensors();
}
/**
* Use this method to get the list of available sensors of a certain type.
* Make multiple calls to get sensors of different types or use
* {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
* sensors.
*
* @param type
* of sensors requested
*
* @return a list of sensors matching the asked type.
*
* @see #getDefaultSensor(int)
* @see Sensor
*/
public List<Sensor> getSensorList(int type) {
// cache the returned lists the first time
List<Sensor> list;
final List<Sensor> fullList = getFullSensorList();
synchronized (mSensorListByType) {
list = mSensorListByType.get(type);
if (list == null) {
if (type == Sensor.TYPE_ALL) {
list = fullList;
} else {
list = new ArrayList<Sensor>();
for (Sensor i : fullList) {
if (i.getType() == type)
list.add(i);
}
}
list = Collections.unmodifiableList(list);
mSensorListByType.append(type, list);
}
}
return list;
}
/**
* Use this method to get the default sensor for a given type. Note that the
* returned sensor could be a composite sensor, and its data could be
* averaged or filtered. If you need to access the raw sensors use
* {@link SensorManager#getSensorList(int) getSensorList}.
*
* @param type
* of sensors requested
*
* @return the default sensors matching the asked type.
*
* @see #getSensorList(int)
* @see Sensor
*/
public Sensor getDefaultSensor(int type) {
// TODO: need to be smarter, for now, just return the 1st sensor
List<Sensor> l = getSensorList(type);
return l.isEmpty() ? null : l.get(0);
}
/**
* Registers a listener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors) {
return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
}
/**
* Registers a SensorListener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @param rate
* rate of events. This is only a hint to the system. events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors, int rate) {
return getLegacySensorManager().registerListener(listener, sensors, rate);
}
/**
* Unregisters a listener for all sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener)}
* instead.
*
* @param listener
* a SensorListener object
*/
@Deprecated
public void unregisterListener(SensorListener listener) {
unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
* instead.
*
* @param listener
* a SensorListener object
*
* @param sensors
* a bit masks of the sensors to unregister from
*/
@Deprecated
public void unregisterListener(SensorListener listener, int sensors) {
getLegacySensorManager().unregisterListener(listener, sensors);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* <p class="note"></p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
* Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
* </p>
*
* @param listener
* a SensorEventListener object
*
* @param sensor
* the sensor to unregister from
*
* @see #unregisterListener(SensorEventListener)
* @see #registerListener(SensorEventListener, Sensor, int)
*/
public void unregisterListener(SensorEventListener listener, Sensor sensor) {
if (listener == null || sensor == null) {
return;
}
unregisterListenerImpl(listener, sensor);
}
/**
* Unregisters a listener for all sensors.
*
* @param listener
* a SensorListener object
*
* @see #unregisterListener(SensorEventListener, Sensor)
* @see #registerListener(SensorEventListener, Sensor, int)
*
*/
public void unregisterListener(SensorEventListener listener) {
if (listener == null) {
return;
}
unregisterListenerImpl(listener, null);
}
/** @hide */
protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
/**
* Registers a {@link android.hardware.SensorEventListener
* SensorEventListener} for the given sensor.
*
* <p class="note"></p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
* Use {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead.
* </p>
*
* @param listener
* A {@link android.hardware.SensorEventListener SensorEventListener}
* object.
*
* @param sensor
* The {@link android.hardware.Sensor Sensor} to register to.
*
* @param rateUs
* The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}
* or, the desired delay between events in microseconds.
* Specifying the delay in microseconds only works from Android
* 2.3 (API level 9) onwards. For earlier releases, you must use
* one of the {@code SENSOR_DELAY_*} constants.
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled.
*
* @see #registerListener(SensorEventListener, Sensor, int, Handler)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rateUs) {
return registerListener(listener, sensor, rateUs, null);
}
/**
* Enables batch mode for a sensor with the given rate and maxBatchReportLatency. If the
* underlying hardware does not support batch mode, this defaults to
* {@link #registerListener(SensorEventListener, Sensor, int)} and other parameters are
* ignored. In non-batch mode, all sensor events must be reported as soon as they are detected.
* While in batch mode, sensor events do not need to be reported as soon as they are detected.
* They can be temporarily stored in batches and reported in batches, as long as no event is
* delayed by more than "maxBatchReportLatency" microseconds. That is, all events since the
* previous batch are recorded and returned all at once. This allows to reduce the amount of
* interrupts sent to the SoC, and allows the SoC to switch to a lower power state (Idle) while
* the sensor is capturing and batching data.
* <p>
* Registering to a sensor in batch mode will not prevent the SoC from going to suspend mode. In
* this case, the sensor will continue to gather events and store it in a hardware FIFO. If the
* FIFO gets full before the AP wakes up again, some events will be lost, as the older events
* get overwritten by new events in the hardware FIFO. This can be avoided by holding a wake
* lock. If the application holds a wake lock, the SoC will not go to suspend mode, so no events
* will be lost, as the events will be reported before the FIFO gets full.
* </p>
* <p>
* Batching is always best effort. If a different application requests updates in continuous
* mode, this application will also get events in continuous mode. Batch mode updates can be
* unregistered by calling {@link #unregisterListener(SensorEventListener)}.
* </p>
* <p class="note">
* </p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
* {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* that will receive the sensor events. If the application is interested in receiving
* flush complete notifications, it should register with
* {@link android.hardware.SensorEventListener SensorEventListener2} instead.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param rateUs The desired delay between two consecutive events in microseconds. This is only
* a hint to the system. Events may be received faster or slower than the specified
* rate. Usually events are received faster. Can be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
* microseconds.
* @param maxBatchReportLatencyUs An event in the batch can be delayed by at most
* maxBatchReportLatency microseconds. More events can be batched if this value is
* large. If this is set to zero, batch mode is disabled and events are delivered in
* continuous mode as soon as they are available which is equivalent to calling
* {@link #registerListener(SensorEventListener, Sensor, int)}.
* @return <code>true</code> if batch mode is successfully enabled for this sensor,
* <code>false</code> otherwise.
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #flush(SensorEventListener)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rateUs,
int maxBatchReportLatencyUs) {
int delay = getDelay(rateUs);
return registerListenerImpl(listener, sensor, delay, null, maxBatchReportLatencyUs, 0);
}
/**
* Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
* sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
* battery usage, use {@link #registerListener(SensorEventListener, Sensor, int, int)} which
* enables batch mode for the sensor.
*
* <p class="note"></p>
* Note: Don't use this method with a one shot trigger sensor such as
* {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
* Use {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead.
* </p>
*
* @param listener
* A {@link android.hardware.SensorEventListener SensorEventListener}
* object.
*
* @param sensor
* The {@link android.hardware.Sensor Sensor} to register to.
*
* @param rateUs
* The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
* or, the desired delay between events in microseconds.
* Specifying the delay in microseconds only works from Android
* 2.3 (API level 9) onwards. For earlier releases, you must use
* one of the {@code SENSOR_DELAY_*} constants.
*
* @param handler
* The {@link android.os.Handler Handler} the
* {@link android.hardware.SensorEvent sensor events} will be
* delivered to.
*
* @return <code>true</code> if the sensor is supported and successfully enabled.
*
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rateUs,
Handler handler) {
int delay = getDelay(rateUs);
return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
}
/**
* Enables batch mode for a sensor with the given rate and maxBatchReportLatency.
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* that will receive the sensor events. If the application is interested in receiving
* flush complete notifications, it should register with
* {@link android.hardware.SensorEventListener SensorEventListener2} instead.
* @param sensor The {@link android.hardware.Sensor Sensor} to register to.
* @param rateUs The desired delay between two consecutive events in microseconds. This is only
* a hint to the system. Events may be received faster or slower than the specified
* rate. Usually events are received faster. Can be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
* microseconds.
* @param maxBatchReportLatencyUs An event in the batch can be delayed by at most
* maxBatchReportLatency microseconds. More events can be batched if this value is
* large. If this is set to zero, batch mode is disabled and events are delivered in
* continuous mode as soon as they are available which is equivalent to calling
* {@link #registerListener(SensorEventListener, Sensor, int)}.
* @param handler The {@link android.os.Handler Handler} the
* {@link android.hardware.SensorEvent sensor events} will be delivered to.
*
* @return <code>true</code> if batch mode is successfully enabled for this sensor,
* <code>false</code> otherwise.
* @see #registerListener(SensorEventListener, Sensor, int, int)
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rateUs,
int maxBatchReportLatencyUs, Handler handler) {
int delayUs = getDelay(rateUs);
return registerListenerImpl(listener, sensor, delayUs, handler, maxBatchReportLatencyUs, 0);
}
/** @hide */
protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
int delayUs, Handler handler, int maxBatchReportLatencyUs, int reservedFlags);
/**
* Flushes the batch FIFO of all the sensors registered for this listener. If there are events
* in the FIFO of the sensor, they are returned as if the batch timeout in the FIFO of the
* sensors had expired. Events are returned in the usual way through the SensorEventListener.
* This call doesn't affect the batch timeout for this sensor. This call is asynchronous and
* returns immediately.
* {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
* after all the events in the batch at the time of calling this method have been delivered
* successfully. If the hardware doesn't support flush, it still returns true and a trivial
* flush complete event is sent after the current event for all the clients registered for this
* sensor.
*
* @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
* which was previously used in a registerListener call.
* @return <code>true</code> if the flush is initiated successfully on all the sensors
* registered for this listener, false if no sensor is previously registered for this
* listener or flush on one of the sensors fails.
* @see #registerListener(SensorEventListener, Sensor, int, int)
* @throws IllegalArgumentException when listener is null.
*/
public boolean flush(SensorEventListener listener) {
return flushImpl(listener);
}
/** @hide */
protected abstract boolean flushImpl(SensorEventListener listener);
/**
* <p>
* Computes the inclination matrix <b>I</b> as well as the rotation matrix
* <b>R</b> transforming a vector from the device coordinate system to the
* world's coordinate system which is defined as a direct orthonormal basis,
* where:
* </p>
*
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points East).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards the magnetic North Pole.</li>
* <li>Z points towards the sky and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe.png"
* alt="World coordinate-system diagram." border="0" /></center>
* </p>
*
* <p>
* <hr>
* <p>
* By definition:
* <p>
* [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
* <p>
* [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
* geomagnetic field)
* <p>
* <b>R</b> is the identity matrix when the device is aligned with the
* world's coordinate system, that is, when the device's X axis points
* toward East, the Y axis points to the North Pole and the device is facing
* the sky.
*
* <p>
* <b>I</b> is a rotation matrix transforming the geomagnetic vector into
* the same coordinate space as gravity (the world's coordinate space).
* <b>I</b> is a simple rotation around the X axis. The inclination angle in
* radians can be computed with {@link #getInclination}.
* <hr>
*
* <p>
* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
* on the length of the passed array:
* <p>
* <u>If the array length is 16:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] M[ 3] \
* | M[ 4] M[ 5] M[ 6] M[ 7] |
* | M[ 8] M[ 9] M[10] M[11] |
* \ M[12] M[13] M[14] M[15] /
*</pre>
*
* This matrix is ready to be used by OpenGL ES's
* {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
* glLoadMatrixf(float[], int)}.
* <p>
* Note that because OpenGL matrices are column-major matrices you must
* transpose the matrix before using it. However, since the matrix is a
* rotation matrix, its transpose is also its inverse, conveniently, it is
* often the inverse of the rotation that is needed for rendering; it can
* therefore be used with OpenGL ES directly.
* <p>
* Also note that the returned matrices always have this form:
*
* <pre>
* / M[ 0] M[ 1] M[ 2] 0 \
* | M[ 4] M[ 5] M[ 6] 0 |
* | M[ 8] M[ 9] M[10] 0 |
* \ 0 0 0 1 /
*</pre>
*
* <p>
* <u>If the array length is 9:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] \
* | M[ 3] M[ 4] M[ 5] |
* \ M[ 6] M[ 7] M[ 8] /
*</pre>
*
* <hr>
* <p>
* The inverse of each matrix can be computed easily by taking its
* transpose.
*
* <p>
* The matrices returned by this function are meaningful only when the
* device is not free-falling and it is not close to the magnetic north. If
* the device is accelerating, or placed into a strong magnetic field, the
* returned matrices may be inaccurate.
*
* @param R
* is an array of 9 floats holding the rotation matrix <b>R</b> when
* this function returns. R can be null.
* <p>
*
* @param I
* is an array of 9 floats holding the rotation matrix <b>I</b> when
* this function returns. I can be null.
* <p>
*
* @param gravity
* is an array of 3 floats containing the gravity vector expressed in
* the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_ACCELEROMETER
* TYPE_ACCELEROMETER}.
* <p>
*
* @param geomagnetic
* is an array of 3 floats containing the geomagnetic vector
* expressed in the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* TYPE_MAGNETIC_FIELD}.
*
* @return <code>true</code> on success, <code>false</code> on failure (for
* instance, if the device is in free fall). On failure the output
* matrices are not modified.
*
* @see #getInclination(float[])
* @see #getOrientation(float[], float[])
* @see #remapCoordinateSystem(float[], int, int, float[])
*/
public static boolean getRotationMatrix(float[] R, float[] I,
float[] gravity, float[] geomagnetic) {
// TODO: move this to native code for efficiency
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
if (I != null) {
// compute the inclination matrix by projecting the geomagnetic
// vector onto the Z (gravity) and X (horizontal component
// of geomagnetic vector) axes.
final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
if (I.length == 9) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[3] = 0; I[4] = c; I[5] = s;
I[6] = 0; I[7] =-s; I[8] = c;
} else if (I.length == 16) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[4] = 0; I[5] = c; I[6] = s;
I[8] = 0; I[9] =-s; I[10]= c;
I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
I[15] = 1;
}
}
return true;
}
/**
* Computes the geomagnetic inclination angle in radians from the
* inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
*
* @param I
* inclination matrix see {@link #getRotationMatrix}.
*
* @return The geomagnetic inclination angle in radians.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see #getOrientation(float[], float[])
* @see GeomagneticField
*
*/
public static float getInclination(float[] I) {
if (I.length == 9) {
return (float)Math.atan2(I[5], I[4]);
} else {
return (float)Math.atan2(I[6], I[5]);
}
}
/**
* <p>
* Rotates the supplied rotation matrix so it is expressed in a different
* coordinate system. This is typically used when an application needs to
* compute the three orientation angles of the device (see
* {@link #getOrientation}) in a different coordinate system.
* </p>
*
* <p>
* When the rotation matrix is used for drawing (for instance with OpenGL
* ES), it usually <b>doesn't need</b> to be transformed by this function,
* unless the screen is physically rotated, in which case you can use
* {@link android.view.Display#getRotation() Display.getRotation()} to
* retrieve the current rotation of the screen. Note that because the user
* is generally free to rotate their screen, you often should consider the
* rotation in deciding the parameters to use here.
* </p>
*
* <p>
* <u>Examples:</u>
* <p>
*
* <ul>
* <li>Using the camera (Y axis along the camera's axis) for an augmented
* reality application where the rotation angles are needed:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
* </ul>
* </p>
*
* <li>Using the device as a mechanical compass when rotation is
* {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
* </ul>
* </p>
*
* Beware of the above example. This call is needed only to account for a
* rotation from its natural orientation when calculating the rotation
* angles (see {@link #getOrientation}). If the rotation matrix is also used
* for rendering, it may not need to be transformed, for instance if your
* {@link android.app.Activity Activity} is running in landscape mode.
* </ul>
*
* <p>
* Since the resulting coordinate system is orthonormal, only two axes need
* to be specified.
*
* @param inR
* the rotation matrix to be transformed. Usually it is the matrix
* returned by {@link #getRotationMatrix}.
*
* @param X
* defines on which world axis and direction the X axis of the device
* is mapped.
*
* @param Y
* defines on which world axis and direction the Y axis of the device
* is mapped.
*
* @param outR
* the transformed rotation matrix. inR and outR can be the same
* array, but it is not recommended for performance reason.
*
* @return <code>true</code> on success. <code>false</code> if the input
* parameters are incorrect, for instance if X and Y define the same
* axis. Or if inR and outR don't have the same length.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
*/
public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
float[] outR)
{
if (inR == outR) {
final float[] temp = mTempMatrix;
synchronized(temp) {
// we don't expect to have a lot of contention
if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
final int size = outR.length;
for (int i=0 ; i<size ; i++)
outR[i] = temp[i];
return true;
}
}
}
return remapCoordinateSystemImpl(inR, X, Y, outR);
}
private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
float[] outR)
{
/*
* X and Y define a rotation matrix 'r':
*
* (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0
* (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0
* r[0] ^ r[1]
*
* where the 3rd line is the vector product of the first 2 lines
*
*/
final int length = outR.length;
if (inR.length != length)
return false; // invalid parameter
if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
return false; // invalid parameter
if (((X & 0x3)==0) || ((Y & 0x3)==0))
return false; // no axis specified
if ((X & 0x3) == (Y & 0x3))
return false; // same axis specified
// Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
// this can be calculated by exclusive-or'ing X and Y; except for
// the sign inversion (+/-) which is calculated below.
int Z = X ^ Y;
// extract the axis (remove the sign), offset in the range 0 to 2.
final int x = (X & 0x3)-1;
final int y = (Y & 0x3)-1;
final int z = (Z & 0x3)-1;
// compute the sign of Z (whether it needs to be inverted)
final int axis_y = (z+1)%3;
final int axis_z = (z+2)%3;
if (((x^axis_y)|(y^axis_z)) != 0)
Z ^= 0x80;
final boolean sx = (X>=0x80);
final boolean sy = (Y>=0x80);
final boolean sz = (Z>=0x80);
// Perform R * r, in avoiding actual muls and adds.
final int rowLength = ((length==16)?4:3);
for (int j=0 ; j<3 ; j++) {
final int offset = j*rowLength;
for (int i=0 ; i<3 ; i++) {
if (x==i) outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
if (y==i) outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
if (z==i) outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
}
}
if (length == 16) {
outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
outR[15] = 1;
}
return true;
}
/**
* Computes the device's orientation based on the rotation matrix.
* <p>
* When it returns, the array values is filled with the result:
* <ul>
* <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
* <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
* <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
* </ul>
* <p>The reference coordinate-system used is different from the world
* coordinate-system defined for the rotation matrix:</p>
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points West).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards the magnetic North Pole.</li>
* <li>Z points towards the center of the Earth and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe_inverted.png"
* alt="Inverted world coordinate-system diagram." border="0" /></center>
* </p>
* <p>
* All three angles above are in <b>radians</b> and <b>positive</b> in the
* <b>counter-clockwise</b> direction.
*
* @param R
* rotation matrix see {@link #getRotationMatrix}.
*
* @param values
* an array of 3 floats to hold the result.
*
* @return The array values passed as argument.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see GeomagneticField
*/
public static float[] getOrientation(float[] R, float values[]) {
/*
* 4x4 (length=16) case:
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*
* 3x3 (length=9) case:
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
*/
if (R.length == 9) {
values[0] = (float)Math.atan2(R[1], R[4]);
values[1] = (float)Math.asin(-R[7]);
values[2] = (float)Math.atan2(-R[6], R[8]);
} else {
values[0] = (float)Math.atan2(R[1], R[5]);
values[1] = (float)Math.asin(-R[9]);
values[2] = (float)Math.atan2(-R[8], R[10]);
}
return values;
}
/**
* Computes the Altitude in meters from the atmospheric pressure and the
* pressure at sea level.
* <p>
* Typically the atmospheric pressure is read from a
* {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
* known, usually it can be retrieved from airport databases in the
* vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
* as an approximation, but absolute altitudes won't be accurate.
* </p>
* <p>
* To calculate altitude differences, you must calculate the difference
* between the altitudes at both points. If you don't know the altitude
* as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
* which will give good results considering the range of pressure typically
* involved.
* </p>
* <p>
* <code><ul>
* float altitude_difference =
* getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
* - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
* </ul></code>
* </p>
*
* @param p0 pressure at sea level
* @param p atmospheric pressure
* @return Altitude in meters
*/
public static float getAltitude(float p0, float p) {
final float coef = 1.0f / 5.255f;
return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
}
/** Helper function to compute the angle change between two rotation matrices.
* Given a current rotation matrix (R) and a previous rotation matrix
* (prevR) computes the rotation around the z,x, and y axes which
* transforms prevR to R.
* outputs a 3 element vector containing the z,x, and y angle
* change at indexes 0, 1, and 2 respectively.
* <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
* depending on the length of the passed array:
* <p>If the array length is 9, then the array elements represent this matrix
* <pre>
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*</pre>
* <p>If the array length is 16, then the array elements represent this matrix
* <pre>
* / R[ 0] R[ 1] R[ 2] R[ 3] \
* | R[ 4] R[ 5] R[ 6] R[ 7] |
* | R[ 8] R[ 9] R[10] R[11] |
* \ R[12] R[13] R[14] R[15] /
*</pre>
* @param R current rotation matrix
* @param prevR previous rotation matrix
* @param angleChange an an array of floats (z, x, and y) in which the angle change is stored
*/
public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
if(R.length == 9) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[3];
ri4 = R[4];
ri5 = R[5];
ri6 = R[6];
ri7 = R[7];
ri8 = R[8];
} else if(R.length == 16) {
ri0 = R[0];
ri1 = R[1];
ri2 = R[2];
ri3 = R[4];
ri4 = R[5];
ri5 = R[6];
ri6 = R[8];
ri7 = R[9];
ri8 = R[10];
}
if(prevR.length == 9) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[3];
pri4 = prevR[4];
pri5 = prevR[5];
pri6 = prevR[6];
pri7 = prevR[7];
pri8 = prevR[8];
} else if(prevR.length == 16) {
pri0 = prevR[0];
pri1 = prevR[1];
pri2 = prevR[2];
pri3 = prevR[4];
pri4 = prevR[5];
pri5 = prevR[6];
pri6 = prevR[8];
pri7 = prevR[9];
pri8 = prevR[10];
}
// calculate the parts of the rotation difference matrix we need
// rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
angleChange[0] = (float)Math.atan2(rd1, rd4);
angleChange[1] = (float)Math.asin(-rd7);
angleChange[2] = (float)Math.atan2(-rd6, rd8);
}
/** Helper function to convert a rotation vector to a rotation matrix.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
* 9 or 16 element rotation matrix in the array R. R must have length 9 or 16.
* If R.length == 9, the following matrix is returned:
* <pre>
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*</pre>
* If R.length == 16, the following matrix is returned:
* <pre>
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*</pre>
* @param rotationVector the rotation vector to convert
* @param R an array of floats in which to store the rotation matrix
*/
public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
float q0;
float q1 = rotationVector[0];
float q2 = rotationVector[1];
float q3 = rotationVector[2];
if (rotationVector.length == 4) {
q0 = rotationVector[3];
} else {
q0 = 1 - q1*q1 - q2*q2 - q3*q3;
q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0;
}
float sq_q1 = 2 * q1 * q1;
float sq_q2 = 2 * q2 * q2;
float sq_q3 = 2 * q3 * q3;
float q1_q2 = 2 * q1 * q2;
float q3_q0 = 2 * q3 * q0;
float q1_q3 = 2 * q1 * q3;
float q2_q0 = 2 * q2 * q0;
float q2_q3 = 2 * q2 * q3;
float q1_q0 = 2 * q1 * q0;
if(R.length == 9) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = q1_q2 + q3_q0;
R[4] = 1 - sq_q1 - sq_q3;
R[5] = q2_q3 - q1_q0;
R[6] = q1_q3 - q2_q0;
R[7] = q2_q3 + q1_q0;
R[8] = 1 - sq_q1 - sq_q2;
} else if (R.length == 16) {
R[0] = 1 - sq_q2 - sq_q3;
R[1] = q1_q2 - q3_q0;
R[2] = q1_q3 + q2_q0;
R[3] = 0.0f;
R[4] = q1_q2 + q3_q0;
R[5] = 1 - sq_q1 - sq_q3;
R[6] = q2_q3 - q1_q0;
R[7] = 0.0f;
R[8] = q1_q3 - q2_q0;
R[9] = q2_q3 + q1_q0;
R[10] = 1 - sq_q1 - sq_q2;
R[11] = 0.0f;
R[12] = R[13] = R[14] = 0.0f;
R[15] = 1.0f;
}
}
/** Helper function to convert a rotation vector to a normalized quaternion.
* Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
* quaternion in the array Q. The quaternion is stored as [w, x, y, z]
* @param rv the rotation vector to convert
* @param Q an array of floats in which to store the computed quaternion
*/
public static void getQuaternionFromVector(float[] Q, float[] rv) {
if (rv.length == 4) {
Q[0] = rv[3];
} else {
Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2];
Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0;
}
Q[1] = rv[0];
Q[2] = rv[1];
Q[3] = rv[2];
}
/**
* Requests receiving trigger events for a trigger sensor.
*
* <p>
* When the sensor detects a trigger event condition, such as significant motion in
* the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
* will be invoked once and then its request to receive trigger events will be canceled.
* To continue receiving trigger events, the application must request to receive trigger
* events again.
* </p>
*
* @param listener The listener on which the
* {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
* @param sensor The sensor to be enabled.
*
* @return true if the sensor was successfully enabled.
*
* @throws IllegalArgumentException when sensor is null or not a trigger sensor.
*/
public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
return requestTriggerSensorImpl(listener, sensor);
}
/**
* @hide
*/
protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
Sensor sensor);
/**
* Cancels receiving trigger events for a trigger sensor.
*
* <p>
* Note that a Trigger sensor will be auto disabled if
* {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
* This method is provided in case the user wants to explicitly cancel the request
* to receive trigger events.
* </p>
*
* @param listener The listener on which the
* {@link TriggerEventListener#onTrigger(TriggerEvent)}
* is delivered.It should be the same as the one used
* in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
* @param sensor The sensor for which the trigger request should be canceled.
* If null, it cancels receiving trigger for all sensors associated
* with the listener.
*
* @return true if successfully canceled.
*
* @throws IllegalArgumentException when sensor is a trigger sensor.
*/
public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
return cancelTriggerSensorImpl(listener, sensor, true);
}
/**
* @hide
*/
protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
Sensor sensor, boolean disable);
private LegacySensorManager getLegacySensorManager() {
synchronized (mSensorListByType) {
if (mLegacySensorManager == null) {
Log.i(TAG, "This application is using deprecated SensorManager API which will "
+ "be removed someday. Please consider switching to the new API.");
mLegacySensorManager = new LegacySensorManager(this);
}
return mLegacySensorManager;
}
}
private static int getDelay(int rate) {
int delay = -1;
switch (rate) {
case SENSOR_DELAY_FASTEST:
delay = 0;
break;
case SENSOR_DELAY_GAME:
delay = 20000;
break;
case SENSOR_DELAY_UI:
delay = 66667;
break;
case SENSOR_DELAY_NORMAL:
delay = 200000;
break;
default:
delay = rate;
break;
}
return delay;
}
}