blob: 690b1d66f42cb74e566ca2728324b6cea5da42f4 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ResourceType"
//#define LOG_NDEBUG 0
#include <androidfw/ByteBucketArray.h>
#include <androidfw/ResourceTypes.h>
#include <androidfw/TypeWrappers.h>
#include <utils/Atomic.h>
#include <utils/ByteOrder.h>
#include <utils/Debug.h>
#include <utils/Log.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <ctype.h>
#include <stdint.h>
#include <stddef.h>
#ifndef INT32_MAX
#define INT32_MAX ((int32_t)(2147483647))
#endif
#define STRING_POOL_NOISY(x) //x
#define XML_NOISY(x) //x
#define TABLE_NOISY(x) //x
#define TABLE_GETENTRY(x) //x
#define TABLE_SUPER_NOISY(x) //x
#define LOAD_TABLE_NOISY(x) //x
#define TABLE_THEME(x) //x
#define LIB_NOISY(x) //x
namespace android {
#ifdef HAVE_WINSOCK
#undef nhtol
#undef htonl
#ifdef HAVE_LITTLE_ENDIAN
#define ntohl(x) ( ((x) << 24) | (((x) >> 24) & 255) | (((x) << 8) & 0xff0000) | (((x) >> 8) & 0xff00) )
#define htonl(x) ntohl(x)
#define ntohs(x) ( (((x) << 8) & 0xff00) | (((x) >> 8) & 255) )
#define htons(x) ntohs(x)
#else
#define ntohl(x) (x)
#define htonl(x) (x)
#define ntohs(x) (x)
#define htons(x) (x)
#endif
#endif
#define IDMAP_MAGIC 0x504D4449
#define IDMAP_CURRENT_VERSION 0x00000001
#define APP_PACKAGE_ID 0x7f
#define SYS_PACKAGE_ID 0x01
// Standard C isspace() is only required to look at the low byte of its input, so
// produces incorrect results for UTF-16 characters. For safety's sake, assume that
// any high-byte UTF-16 code point is not whitespace.
inline int isspace16(char16_t c) {
return (c < 0x0080 && isspace(c));
}
template<typename T>
inline static T max(T a, T b) {
return a > b ? a : b;
}
// range checked; guaranteed to NUL-terminate within the stated number of available slots
// NOTE: if this truncates the dst string due to running out of space, no attempt is
// made to avoid splitting surrogate pairs.
static void strcpy16_dtoh(uint16_t* dst, const uint16_t* src, size_t avail)
{
uint16_t* last = dst + avail - 1;
while (*src && (dst < last)) {
char16_t s = dtohs(*src);
*dst++ = s;
src++;
}
*dst = 0;
}
static status_t validate_chunk(const ResChunk_header* chunk,
size_t minSize,
const uint8_t* dataEnd,
const char* name)
{
const uint16_t headerSize = dtohs(chunk->headerSize);
const uint32_t size = dtohl(chunk->size);
if (headerSize >= minSize) {
if (headerSize <= size) {
if (((headerSize|size)&0x3) == 0) {
if ((size_t)size <= (size_t)(dataEnd-((const uint8_t*)chunk))) {
return NO_ERROR;
}
ALOGW("%s data size 0x%x extends beyond resource end %p.",
name, size, (void*)(dataEnd-((const uint8_t*)chunk)));
return BAD_TYPE;
}
ALOGW("%s size 0x%x or headerSize 0x%x is not on an integer boundary.",
name, (int)size, (int)headerSize);
return BAD_TYPE;
}
ALOGW("%s size 0x%x is smaller than header size 0x%x.",
name, size, headerSize);
return BAD_TYPE;
}
ALOGW("%s header size 0x%04x is too small.",
name, headerSize);
return BAD_TYPE;
}
static void fill9patchOffsets(Res_png_9patch* patch) {
patch->xDivsOffset = sizeof(Res_png_9patch);
patch->yDivsOffset = patch->xDivsOffset + (patch->numXDivs * sizeof(int32_t));
patch->colorsOffset = patch->yDivsOffset + (patch->numYDivs * sizeof(int32_t));
}
inline void Res_value::copyFrom_dtoh(const Res_value& src)
{
size = dtohs(src.size);
res0 = src.res0;
dataType = src.dataType;
data = dtohl(src.data);
}
void Res_png_9patch::deviceToFile()
{
int32_t* xDivs = getXDivs();
for (int i = 0; i < numXDivs; i++) {
xDivs[i] = htonl(xDivs[i]);
}
int32_t* yDivs = getYDivs();
for (int i = 0; i < numYDivs; i++) {
yDivs[i] = htonl(yDivs[i]);
}
paddingLeft = htonl(paddingLeft);
paddingRight = htonl(paddingRight);
paddingTop = htonl(paddingTop);
paddingBottom = htonl(paddingBottom);
uint32_t* colors = getColors();
for (int i=0; i<numColors; i++) {
colors[i] = htonl(colors[i]);
}
}
void Res_png_9patch::fileToDevice()
{
int32_t* xDivs = getXDivs();
for (int i = 0; i < numXDivs; i++) {
xDivs[i] = ntohl(xDivs[i]);
}
int32_t* yDivs = getYDivs();
for (int i = 0; i < numYDivs; i++) {
yDivs[i] = ntohl(yDivs[i]);
}
paddingLeft = ntohl(paddingLeft);
paddingRight = ntohl(paddingRight);
paddingTop = ntohl(paddingTop);
paddingBottom = ntohl(paddingBottom);
uint32_t* colors = getColors();
for (int i=0; i<numColors; i++) {
colors[i] = ntohl(colors[i]);
}
}
size_t Res_png_9patch::serializedSize() const
{
// The size of this struct is 32 bytes on the 32-bit target system
// 4 * int8_t
// 4 * int32_t
// 3 * uint32_t
return 32
+ numXDivs * sizeof(int32_t)
+ numYDivs * sizeof(int32_t)
+ numColors * sizeof(uint32_t);
}
void* Res_png_9patch::serialize(const Res_png_9patch& patch, const int32_t* xDivs,
const int32_t* yDivs, const uint32_t* colors)
{
// Use calloc since we're going to leave a few holes in the data
// and want this to run cleanly under valgrind
void* newData = calloc(1, patch.serializedSize());
serialize(patch, xDivs, yDivs, colors, newData);
return newData;
}
void Res_png_9patch::serialize(const Res_png_9patch& patch, const int32_t* xDivs,
const int32_t* yDivs, const uint32_t* colors, void* outData)
{
uint8_t* data = (uint8_t*) outData;
memcpy(data, &patch.wasDeserialized, 4); // copy wasDeserialized, numXDivs, numYDivs, numColors
memcpy(data + 12, &patch.paddingLeft, 16); // copy paddingXXXX
data += 32;
memcpy(data, xDivs, patch.numXDivs * sizeof(int32_t));
data += patch.numXDivs * sizeof(int32_t);
memcpy(data, yDivs, patch.numYDivs * sizeof(int32_t));
data += patch.numYDivs * sizeof(int32_t);
memcpy(data, colors, patch.numColors * sizeof(uint32_t));
fill9patchOffsets(reinterpret_cast<Res_png_9patch*>(outData));
}
static bool assertIdmapHeader(const void* idmap, size_t size) {
if (reinterpret_cast<uintptr_t>(idmap) & 0x03) {
ALOGE("idmap: header is not word aligned");
return false;
}
if (size < ResTable::IDMAP_HEADER_SIZE_BYTES) {
ALOGW("idmap: header too small (%d bytes)", (uint32_t) size);
return false;
}
const uint32_t magic = htodl(*reinterpret_cast<const uint32_t*>(idmap));
if (magic != IDMAP_MAGIC) {
ALOGW("idmap: no magic found in header (is 0x%08x, expected 0x%08x)",
magic, IDMAP_MAGIC);
return false;
}
const uint32_t version = htodl(*(reinterpret_cast<const uint32_t*>(idmap) + 1));
if (version != IDMAP_CURRENT_VERSION) {
// We are strict about versions because files with this format are
// auto-generated and don't need backwards compatibility.
ALOGW("idmap: version mismatch in header (is 0x%08x, expected 0x%08x)",
version, IDMAP_CURRENT_VERSION);
return false;
}
return true;
}
class IdmapEntries {
public:
IdmapEntries() : mData(NULL) {}
bool hasEntries() const {
if (mData == NULL) {
return false;
}
return (dtohs(*mData) > 0);
}
size_t byteSize() const {
if (mData == NULL) {
return 0;
}
uint16_t entryCount = dtohs(mData[2]);
return (sizeof(uint16_t) * 4) + (sizeof(uint32_t) * static_cast<size_t>(entryCount));
}
uint8_t targetTypeId() const {
if (mData == NULL) {
return 0;
}
return dtohs(mData[0]);
}
uint8_t overlayTypeId() const {
if (mData == NULL) {
return 0;
}
return dtohs(mData[1]);
}
status_t setTo(const void* entryHeader, size_t size) {
if (reinterpret_cast<uintptr_t>(entryHeader) & 0x03) {
ALOGE("idmap: entry header is not word aligned");
return UNKNOWN_ERROR;
}
if (size < sizeof(uint16_t) * 4) {
ALOGE("idmap: entry header is too small (%u bytes)", (uint32_t) size);
return UNKNOWN_ERROR;
}
const uint16_t* header = reinterpret_cast<const uint16_t*>(entryHeader);
const uint16_t targetTypeId = dtohs(header[0]);
const uint16_t overlayTypeId = dtohs(header[1]);
if (targetTypeId == 0 || overlayTypeId == 0 || targetTypeId > 255 || overlayTypeId > 255) {
ALOGE("idmap: invalid type map (%u -> %u)", targetTypeId, overlayTypeId);
return UNKNOWN_ERROR;
}
uint16_t entryCount = dtohs(header[2]);
if (size < sizeof(uint32_t) * (entryCount + 2)) {
ALOGE("idmap: too small (%u bytes) for the number of entries (%u)",
(uint32_t) size, (uint32_t) entryCount);
return UNKNOWN_ERROR;
}
mData = header;
return NO_ERROR;
}
status_t lookup(uint16_t entryId, uint16_t* outEntryId) const {
uint16_t entryCount = dtohs(mData[2]);
uint16_t offset = dtohs(mData[3]);
if (entryId < offset) {
// The entry is not present in this idmap
return BAD_INDEX;
}
entryId -= offset;
if (entryId >= entryCount) {
// The entry is not present in this idmap
return BAD_INDEX;
}
// It is safe to access the type here without checking the size because
// we have checked this when it was first loaded.
const uint32_t* entries = reinterpret_cast<const uint32_t*>(mData) + 2;
uint32_t mappedEntry = dtohl(entries[entryId]);
if (mappedEntry == 0xffffffff) {
// This entry is not present in this idmap
return BAD_INDEX;
}
*outEntryId = static_cast<uint16_t>(mappedEntry);
return NO_ERROR;
}
private:
const uint16_t* mData;
};
status_t parseIdmap(const void* idmap, size_t size, uint8_t* outPackageId, KeyedVector<uint8_t, IdmapEntries>* outMap) {
if (!assertIdmapHeader(idmap, size)) {
return UNKNOWN_ERROR;
}
size -= ResTable::IDMAP_HEADER_SIZE_BYTES;
if (size < sizeof(uint16_t) * 2) {
ALOGE("idmap: too small to contain any mapping");
return UNKNOWN_ERROR;
}
const uint16_t* data = reinterpret_cast<const uint16_t*>(
reinterpret_cast<const uint8_t*>(idmap) + ResTable::IDMAP_HEADER_SIZE_BYTES);
uint16_t targetPackageId = dtohs(*(data++));
if (targetPackageId == 0 || targetPackageId > 255) {
ALOGE("idmap: target package ID is invalid (%02x)", targetPackageId);
return UNKNOWN_ERROR;
}
uint16_t mapCount = dtohs(*(data++));
if (mapCount == 0) {
ALOGE("idmap: no mappings");
return UNKNOWN_ERROR;
}
if (mapCount > 255) {
ALOGW("idmap: too many mappings. Only 255 are possible but %u are present", (uint32_t) mapCount);
}
while (size > sizeof(uint16_t) * 4) {
IdmapEntries entries;
status_t err = entries.setTo(data, size);
if (err != NO_ERROR) {
return err;
}
ssize_t index = outMap->add(entries.overlayTypeId(), entries);
if (index < 0) {
return NO_MEMORY;
}
data += entries.byteSize() / sizeof(uint16_t);
size -= entries.byteSize();
}
if (outPackageId != NULL) {
*outPackageId = static_cast<uint8_t>(targetPackageId);
}
return NO_ERROR;
}
Res_png_9patch* Res_png_9patch::deserialize(void* inData)
{
Res_png_9patch* patch = reinterpret_cast<Res_png_9patch*>(inData);
patch->wasDeserialized = true;
fill9patchOffsets(patch);
return patch;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ResStringPool::ResStringPool()
: mError(NO_INIT), mOwnedData(NULL), mHeader(NULL), mCache(NULL)
{
}
ResStringPool::ResStringPool(const void* data, size_t size, bool copyData)
: mError(NO_INIT), mOwnedData(NULL), mHeader(NULL), mCache(NULL)
{
setTo(data, size, copyData);
}
ResStringPool::~ResStringPool()
{
uninit();
}
void ResStringPool::setToEmpty()
{
uninit();
mOwnedData = calloc(1, sizeof(ResStringPool_header));
ResStringPool_header* header = (ResStringPool_header*) mOwnedData;
mSize = 0;
mEntries = NULL;
mStrings = NULL;
mStringPoolSize = 0;
mEntryStyles = NULL;
mStyles = NULL;
mStylePoolSize = 0;
mHeader = (const ResStringPool_header*) header;
}
status_t ResStringPool::setTo(const void* data, size_t size, bool copyData)
{
if (!data || !size) {
return (mError=BAD_TYPE);
}
uninit();
const bool notDeviceEndian = htods(0xf0) != 0xf0;
if (copyData || notDeviceEndian) {
mOwnedData = malloc(size);
if (mOwnedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(mOwnedData, data, size);
data = mOwnedData;
}
mHeader = (const ResStringPool_header*)data;
if (notDeviceEndian) {
ResStringPool_header* h = const_cast<ResStringPool_header*>(mHeader);
h->header.headerSize = dtohs(mHeader->header.headerSize);
h->header.type = dtohs(mHeader->header.type);
h->header.size = dtohl(mHeader->header.size);
h->stringCount = dtohl(mHeader->stringCount);
h->styleCount = dtohl(mHeader->styleCount);
h->flags = dtohl(mHeader->flags);
h->stringsStart = dtohl(mHeader->stringsStart);
h->stylesStart = dtohl(mHeader->stylesStart);
}
if (mHeader->header.headerSize > mHeader->header.size
|| mHeader->header.size > size) {
ALOGW("Bad string block: header size %d or total size %d is larger than data size %d\n",
(int)mHeader->header.headerSize, (int)mHeader->header.size, (int)size);
return (mError=BAD_TYPE);
}
mSize = mHeader->header.size;
mEntries = (const uint32_t*)
(((const uint8_t*)data)+mHeader->header.headerSize);
if (mHeader->stringCount > 0) {
if ((mHeader->stringCount*sizeof(uint32_t) < mHeader->stringCount) // uint32 overflow?
|| (mHeader->header.headerSize+(mHeader->stringCount*sizeof(uint32_t)))
> size) {
ALOGW("Bad string block: entry of %d items extends past data size %d\n",
(int)(mHeader->header.headerSize+(mHeader->stringCount*sizeof(uint32_t))),
(int)size);
return (mError=BAD_TYPE);
}
size_t charSize;
if (mHeader->flags&ResStringPool_header::UTF8_FLAG) {
charSize = sizeof(uint8_t);
} else {
charSize = sizeof(char16_t);
}
// There should be at least space for the smallest string
// (2 bytes length, null terminator).
if (mHeader->stringsStart >= (mSize - sizeof(uint16_t))) {
ALOGW("Bad string block: string pool starts at %d, after total size %d\n",
(int)mHeader->stringsStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
mStrings = (const void*)
(((const uint8_t*)data) + mHeader->stringsStart);
if (mHeader->styleCount == 0) {
mStringPoolSize = (mSize - mHeader->stringsStart) / charSize;
} else {
// check invariant: styles starts before end of data
if (mHeader->stylesStart >= (mSize - sizeof(uint16_t))) {
ALOGW("Bad style block: style block starts at %d past data size of %d\n",
(int)mHeader->stylesStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
// check invariant: styles follow the strings
if (mHeader->stylesStart <= mHeader->stringsStart) {
ALOGW("Bad style block: style block starts at %d, before strings at %d\n",
(int)mHeader->stylesStart, (int)mHeader->stringsStart);
return (mError=BAD_TYPE);
}
mStringPoolSize =
(mHeader->stylesStart-mHeader->stringsStart)/charSize;
}
// check invariant: stringCount > 0 requires a string pool to exist
if (mStringPoolSize == 0) {
ALOGW("Bad string block: stringCount is %d but pool size is 0\n", (int)mHeader->stringCount);
return (mError=BAD_TYPE);
}
if (notDeviceEndian) {
size_t i;
uint32_t* e = const_cast<uint32_t*>(mEntries);
for (i=0; i<mHeader->stringCount; i++) {
e[i] = dtohl(mEntries[i]);
}
if (!(mHeader->flags&ResStringPool_header::UTF8_FLAG)) {
const char16_t* strings = (const char16_t*)mStrings;
char16_t* s = const_cast<char16_t*>(strings);
for (i=0; i<mStringPoolSize; i++) {
s[i] = dtohs(strings[i]);
}
}
}
if ((mHeader->flags&ResStringPool_header::UTF8_FLAG &&
((uint8_t*)mStrings)[mStringPoolSize-1] != 0) ||
(!mHeader->flags&ResStringPool_header::UTF8_FLAG &&
((char16_t*)mStrings)[mStringPoolSize-1] != 0)) {
ALOGW("Bad string block: last string is not 0-terminated\n");
return (mError=BAD_TYPE);
}
} else {
mStrings = NULL;
mStringPoolSize = 0;
}
if (mHeader->styleCount > 0) {
mEntryStyles = mEntries + mHeader->stringCount;
// invariant: integer overflow in calculating mEntryStyles
if (mEntryStyles < mEntries) {
ALOGW("Bad string block: integer overflow finding styles\n");
return (mError=BAD_TYPE);
}
if (((const uint8_t*)mEntryStyles-(const uint8_t*)mHeader) > (int)size) {
ALOGW("Bad string block: entry of %d styles extends past data size %d\n",
(int)((const uint8_t*)mEntryStyles-(const uint8_t*)mHeader),
(int)size);
return (mError=BAD_TYPE);
}
mStyles = (const uint32_t*)
(((const uint8_t*)data)+mHeader->stylesStart);
if (mHeader->stylesStart >= mHeader->header.size) {
ALOGW("Bad string block: style pool starts %d, after total size %d\n",
(int)mHeader->stylesStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
mStylePoolSize =
(mHeader->header.size-mHeader->stylesStart)/sizeof(uint32_t);
if (notDeviceEndian) {
size_t i;
uint32_t* e = const_cast<uint32_t*>(mEntryStyles);
for (i=0; i<mHeader->styleCount; i++) {
e[i] = dtohl(mEntryStyles[i]);
}
uint32_t* s = const_cast<uint32_t*>(mStyles);
for (i=0; i<mStylePoolSize; i++) {
s[i] = dtohl(mStyles[i]);
}
}
const ResStringPool_span endSpan = {
{ htodl(ResStringPool_span::END) },
htodl(ResStringPool_span::END), htodl(ResStringPool_span::END)
};
if (memcmp(&mStyles[mStylePoolSize-(sizeof(endSpan)/sizeof(uint32_t))],
&endSpan, sizeof(endSpan)) != 0) {
ALOGW("Bad string block: last style is not 0xFFFFFFFF-terminated\n");
return (mError=BAD_TYPE);
}
} else {
mEntryStyles = NULL;
mStyles = NULL;
mStylePoolSize = 0;
}
return (mError=NO_ERROR);
}
status_t ResStringPool::getError() const
{
return mError;
}
void ResStringPool::uninit()
{
mError = NO_INIT;
if (mHeader != NULL && mCache != NULL) {
for (size_t x = 0; x < mHeader->stringCount; x++) {
if (mCache[x] != NULL) {
free(mCache[x]);
mCache[x] = NULL;
}
}
free(mCache);
mCache = NULL;
}
if (mOwnedData) {
free(mOwnedData);
mOwnedData = NULL;
}
}
/**
* Strings in UTF-16 format have length indicated by a length encoded in the
* stored data. It is either 1 or 2 characters of length data. This allows a
* maximum length of 0x7FFFFFF (2147483647 bytes), but if you're storing that
* much data in a string, you're abusing them.
*
* If the high bit is set, then there are two characters or 4 bytes of length
* data encoded. In that case, drop the high bit of the first character and
* add it together with the next character.
*/
static inline size_t
decodeLength(const char16_t** str)
{
size_t len = **str;
if ((len & 0x8000) != 0) {
(*str)++;
len = ((len & 0x7FFF) << 16) | **str;
}
(*str)++;
return len;
}
/**
* Strings in UTF-8 format have length indicated by a length encoded in the
* stored data. It is either 1 or 2 characters of length data. This allows a
* maximum length of 0x7FFF (32767 bytes), but you should consider storing
* text in another way if you're using that much data in a single string.
*
* If the high bit is set, then there are two characters or 2 bytes of length
* data encoded. In that case, drop the high bit of the first character and
* add it together with the next character.
*/
static inline size_t
decodeLength(const uint8_t** str)
{
size_t len = **str;
if ((len & 0x80) != 0) {
(*str)++;
len = ((len & 0x7F) << 8) | **str;
}
(*str)++;
return len;
}
const uint16_t* ResStringPool::stringAt(size_t idx, size_t* u16len) const
{
if (mError == NO_ERROR && idx < mHeader->stringCount) {
const bool isUTF8 = (mHeader->flags&ResStringPool_header::UTF8_FLAG) != 0;
const uint32_t off = mEntries[idx]/(isUTF8?sizeof(char):sizeof(char16_t));
if (off < (mStringPoolSize-1)) {
if (!isUTF8) {
const char16_t* strings = (char16_t*)mStrings;
const char16_t* str = strings+off;
*u16len = decodeLength(&str);
if ((uint32_t)(str+*u16len-strings) < mStringPoolSize) {
return str;
} else {
ALOGW("Bad string block: string #%d extends to %d, past end at %d\n",
(int)idx, (int)(str+*u16len-strings), (int)mStringPoolSize);
}
} else {
const uint8_t* strings = (uint8_t*)mStrings;
const uint8_t* u8str = strings+off;
*u16len = decodeLength(&u8str);
size_t u8len = decodeLength(&u8str);
// encLen must be less than 0x7FFF due to encoding.
if ((uint32_t)(u8str+u8len-strings) < mStringPoolSize) {
AutoMutex lock(mDecodeLock);
if (mCache == NULL) {
#ifndef HAVE_ANDROID_OS
STRING_POOL_NOISY(ALOGI("CREATING STRING CACHE OF %d bytes",
mHeader->stringCount*sizeof(char16_t**)));
#else
// We do not want to be in this case when actually running Android.
ALOGW("CREATING STRING CACHE OF %d bytes",
mHeader->stringCount*sizeof(char16_t**));
#endif
mCache = (char16_t**)calloc(mHeader->stringCount, sizeof(char16_t**));
if (mCache == NULL) {
ALOGW("No memory trying to allocate decode cache table of %d bytes\n",
(int)(mHeader->stringCount*sizeof(char16_t**)));
return NULL;
}
}
if (mCache[idx] != NULL) {
return mCache[idx];
}
ssize_t actualLen = utf8_to_utf16_length(u8str, u8len);
if (actualLen < 0 || (size_t)actualLen != *u16len) {
ALOGW("Bad string block: string #%lld decoded length is not correct "
"%lld vs %llu\n",
(long long)idx, (long long)actualLen, (long long)*u16len);
return NULL;
}
char16_t *u16str = (char16_t *)calloc(*u16len+1, sizeof(char16_t));
if (!u16str) {
ALOGW("No memory when trying to allocate decode cache for string #%d\n",
(int)idx);
return NULL;
}
STRING_POOL_NOISY(ALOGI("Caching UTF8 string: %s", u8str));
utf8_to_utf16(u8str, u8len, u16str);
mCache[idx] = u16str;
return u16str;
} else {
ALOGW("Bad string block: string #%lld extends to %lld, past end at %lld\n",
(long long)idx, (long long)(u8str+u8len-strings),
(long long)mStringPoolSize);
}
}
} else {
ALOGW("Bad string block: string #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint16_t)),
(int)(mStringPoolSize*sizeof(uint16_t)));
}
}
return NULL;
}
const char* ResStringPool::string8At(size_t idx, size_t* outLen) const
{
if (mError == NO_ERROR && idx < mHeader->stringCount) {
if ((mHeader->flags&ResStringPool_header::UTF8_FLAG) == 0) {
return NULL;
}
const uint32_t off = mEntries[idx]/sizeof(char);
if (off < (mStringPoolSize-1)) {
const uint8_t* strings = (uint8_t*)mStrings;
const uint8_t* str = strings+off;
*outLen = decodeLength(&str);
size_t encLen = decodeLength(&str);
if ((uint32_t)(str+encLen-strings) < mStringPoolSize) {
return (const char*)str;
} else {
ALOGW("Bad string block: string #%d extends to %d, past end at %d\n",
(int)idx, (int)(str+encLen-strings), (int)mStringPoolSize);
}
} else {
ALOGW("Bad string block: string #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint16_t)),
(int)(mStringPoolSize*sizeof(uint16_t)));
}
}
return NULL;
}
const String8 ResStringPool::string8ObjectAt(size_t idx) const
{
size_t len;
const char *str = string8At(idx, &len);
if (str != NULL) {
return String8(str, len);
}
const char16_t *str16 = stringAt(idx, &len);
if (str16 != NULL) {
return String8(str16, len);
}
return String8();
}
const ResStringPool_span* ResStringPool::styleAt(const ResStringPool_ref& ref) const
{
return styleAt(ref.index);
}
const ResStringPool_span* ResStringPool::styleAt(size_t idx) const
{
if (mError == NO_ERROR && idx < mHeader->styleCount) {
const uint32_t off = (mEntryStyles[idx]/sizeof(uint32_t));
if (off < mStylePoolSize) {
return (const ResStringPool_span*)(mStyles+off);
} else {
ALOGW("Bad string block: style #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint32_t)),
(int)(mStylePoolSize*sizeof(uint32_t)));
}
}
return NULL;
}
ssize_t ResStringPool::indexOfString(const char16_t* str, size_t strLen) const
{
if (mError != NO_ERROR) {
return mError;
}
size_t len;
if ((mHeader->flags&ResStringPool_header::UTF8_FLAG) != 0) {
STRING_POOL_NOISY(ALOGI("indexOfString UTF-8: %s", String8(str, strLen).string()));
// The string pool contains UTF 8 strings; we don't want to cause
// temporary UTF-16 strings to be created as we search.
if (mHeader->flags&ResStringPool_header::SORTED_FLAG) {
// Do a binary search for the string... this is a little tricky,
// because the strings are sorted with strzcmp16(). So to match
// the ordering, we need to convert strings in the pool to UTF-16.
// But we don't want to hit the cache, so instead we will have a
// local temporary allocation for the conversions.
char16_t* convBuffer = (char16_t*)malloc(strLen+4);
ssize_t l = 0;
ssize_t h = mHeader->stringCount-1;
ssize_t mid;
while (l <= h) {
mid = l + (h - l)/2;
const uint8_t* s = (const uint8_t*)string8At(mid, &len);
int c;
if (s != NULL) {
char16_t* end = utf8_to_utf16_n(s, len, convBuffer, strLen+3);
*end = 0;
c = strzcmp16(convBuffer, end-convBuffer, str, strLen);
} else {
c = -1;
}
STRING_POOL_NOISY(ALOGI("Looking at %s, cmp=%d, l/mid/h=%d/%d/%d\n",
(const char*)s, c, (int)l, (int)mid, (int)h));
if (c == 0) {
STRING_POOL_NOISY(ALOGI("MATCH!"));
free(convBuffer);
return mid;
} else if (c < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
free(convBuffer);
} else {
// It is unusual to get the ID from an unsorted string block...
// most often this happens because we want to get IDs for style
// span tags; since those always appear at the end of the string
// block, start searching at the back.
String8 str8(str, strLen);
const size_t str8Len = str8.size();
for (int i=mHeader->stringCount-1; i>=0; i--) {
const char* s = string8At(i, &len);
STRING_POOL_NOISY(ALOGI("Looking at %s, i=%d\n",
String8(s).string(),
i));
if (s && str8Len == len && memcmp(s, str8.string(), str8Len) == 0) {
STRING_POOL_NOISY(ALOGI("MATCH!"));
return i;
}
}
}
} else {
STRING_POOL_NOISY(ALOGI("indexOfString UTF-16: %s", String8(str, strLen).string()));
if (mHeader->flags&ResStringPool_header::SORTED_FLAG) {
// Do a binary search for the string...
ssize_t l = 0;
ssize_t h = mHeader->stringCount-1;
ssize_t mid;
while (l <= h) {
mid = l + (h - l)/2;
const char16_t* s = stringAt(mid, &len);
int c = s ? strzcmp16(s, len, str, strLen) : -1;
STRING_POOL_NOISY(ALOGI("Looking at %s, cmp=%d, l/mid/h=%d/%d/%d\n",
String8(s).string(),
c, (int)l, (int)mid, (int)h));
if (c == 0) {
STRING_POOL_NOISY(ALOGI("MATCH!"));
return mid;
} else if (c < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
} else {
// It is unusual to get the ID from an unsorted string block...
// most often this happens because we want to get IDs for style
// span tags; since those always appear at the end of the string
// block, start searching at the back.
for (int i=mHeader->stringCount-1; i>=0; i--) {
const char16_t* s = stringAt(i, &len);
STRING_POOL_NOISY(ALOGI("Looking at %s, i=%d\n",
String8(s).string(),
i));
if (s && strLen == len && strzcmp16(s, len, str, strLen) == 0) {
STRING_POOL_NOISY(ALOGI("MATCH!"));
return i;
}
}
}
}
return NAME_NOT_FOUND;
}
size_t ResStringPool::size() const
{
return (mError == NO_ERROR) ? mHeader->stringCount : 0;
}
size_t ResStringPool::styleCount() const
{
return (mError == NO_ERROR) ? mHeader->styleCount : 0;
}
size_t ResStringPool::bytes() const
{
return (mError == NO_ERROR) ? mHeader->header.size : 0;
}
bool ResStringPool::isSorted() const
{
return (mHeader->flags&ResStringPool_header::SORTED_FLAG)!=0;
}
bool ResStringPool::isUTF8() const
{
return (mHeader->flags&ResStringPool_header::UTF8_FLAG)!=0;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ResXMLParser::ResXMLParser(const ResXMLTree& tree)
: mTree(tree), mEventCode(BAD_DOCUMENT)
{
}
void ResXMLParser::restart()
{
mCurNode = NULL;
mEventCode = mTree.mError == NO_ERROR ? START_DOCUMENT : BAD_DOCUMENT;
}
const ResStringPool& ResXMLParser::getStrings() const
{
return mTree.mStrings;
}
ResXMLParser::event_code_t ResXMLParser::getEventType() const
{
return mEventCode;
}
ResXMLParser::event_code_t ResXMLParser::next()
{
if (mEventCode == START_DOCUMENT) {
mCurNode = mTree.mRootNode;
mCurExt = mTree.mRootExt;
return (mEventCode=mTree.mRootCode);
} else if (mEventCode >= FIRST_CHUNK_CODE) {
return nextNode();
}
return mEventCode;
}
int32_t ResXMLParser::getCommentID() const
{
return mCurNode != NULL ? dtohl(mCurNode->comment.index) : -1;
}
const uint16_t* ResXMLParser::getComment(size_t* outLen) const
{
int32_t id = getCommentID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
uint32_t ResXMLParser::getLineNumber() const
{
return mCurNode != NULL ? dtohl(mCurNode->lineNumber) : -1;
}
int32_t ResXMLParser::getTextID() const
{
if (mEventCode == TEXT) {
return dtohl(((const ResXMLTree_cdataExt*)mCurExt)->data.index);
}
return -1;
}
const uint16_t* ResXMLParser::getText(size_t* outLen) const
{
int32_t id = getTextID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
ssize_t ResXMLParser::getTextValue(Res_value* outValue) const
{
if (mEventCode == TEXT) {
outValue->copyFrom_dtoh(((const ResXMLTree_cdataExt*)mCurExt)->typedData);
return sizeof(Res_value);
}
return BAD_TYPE;
}
int32_t ResXMLParser::getNamespacePrefixID() const
{
if (mEventCode == START_NAMESPACE || mEventCode == END_NAMESPACE) {
return dtohl(((const ResXMLTree_namespaceExt*)mCurExt)->prefix.index);
}
return -1;
}
const uint16_t* ResXMLParser::getNamespacePrefix(size_t* outLen) const
{
int32_t id = getNamespacePrefixID();
//printf("prefix=%d event=%p\n", id, mEventCode);
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getNamespaceUriID() const
{
if (mEventCode == START_NAMESPACE || mEventCode == END_NAMESPACE) {
return dtohl(((const ResXMLTree_namespaceExt*)mCurExt)->uri.index);
}
return -1;
}
const uint16_t* ResXMLParser::getNamespaceUri(size_t* outLen) const
{
int32_t id = getNamespaceUriID();
//printf("uri=%d event=%p\n", id, mEventCode);
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getElementNamespaceID() const
{
if (mEventCode == START_TAG) {
return dtohl(((const ResXMLTree_attrExt*)mCurExt)->ns.index);
}
if (mEventCode == END_TAG) {
return dtohl(((const ResXMLTree_endElementExt*)mCurExt)->ns.index);
}
return -1;
}
const uint16_t* ResXMLParser::getElementNamespace(size_t* outLen) const
{
int32_t id = getElementNamespaceID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getElementNameID() const
{
if (mEventCode == START_TAG) {
return dtohl(((const ResXMLTree_attrExt*)mCurExt)->name.index);
}
if (mEventCode == END_TAG) {
return dtohl(((const ResXMLTree_endElementExt*)mCurExt)->name.index);
}
return -1;
}
const uint16_t* ResXMLParser::getElementName(size_t* outLen) const
{
int32_t id = getElementNameID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
size_t ResXMLParser::getAttributeCount() const
{
if (mEventCode == START_TAG) {
return dtohs(((const ResXMLTree_attrExt*)mCurExt)->attributeCount);
}
return 0;
}
int32_t ResXMLParser::getAttributeNamespaceID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->ns.index);
}
}
return -2;
}
const uint16_t* ResXMLParser::getAttributeNamespace(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNamespaceID(idx);
//printf("attribute namespace=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeNamespace 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
const char* ResXMLParser::getAttributeNamespace8(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNamespaceID(idx);
//printf("attribute namespace=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeNamespace 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.string8At(id, outLen) : NULL;
}
int32_t ResXMLParser::getAttributeNameID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->name.index);
}
}
return -1;
}
const uint16_t* ResXMLParser::getAttributeName(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNameID(idx);
//printf("attribute name=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeName 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
const char* ResXMLParser::getAttributeName8(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNameID(idx);
//printf("attribute name=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeName 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.string8At(id, outLen) : NULL;
}
uint32_t ResXMLParser::getAttributeNameResID(size_t idx) const
{
int32_t id = getAttributeNameID(idx);
if (id >= 0 && (size_t)id < mTree.mNumResIds) {
return dtohl(mTree.mResIds[id]);
}
return 0;
}
int32_t ResXMLParser::getAttributeValueStringID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->rawValue.index);
}
}
return -1;
}
const uint16_t* ResXMLParser::getAttributeStringValue(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeValueStringID(idx);
//XML_NOISY(printf("getAttributeValue 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getAttributeDataType(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
uint8_t type = attr->typedValue.dataType;
if (type != Res_value::TYPE_DYNAMIC_REFERENCE) {
return type;
}
// This is a dynamic reference. We adjust those references
// to regular references at this level, so lie to the caller.
return Res_value::TYPE_REFERENCE;
}
}
return Res_value::TYPE_NULL;
}
int32_t ResXMLParser::getAttributeData(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
if (attr->typedValue.dataType != Res_value::TYPE_DYNAMIC_REFERENCE ||
mTree.mDynamicRefTable == NULL) {
return dtohl(attr->typedValue.data);
}
uint32_t data = dtohl(attr->typedValue.data);
if (mTree.mDynamicRefTable->lookupResourceId(&data) == NO_ERROR) {
return data;
}
}
}
return 0;
}
ssize_t ResXMLParser::getAttributeValue(size_t idx, Res_value* outValue) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
outValue->copyFrom_dtoh(attr->typedValue);
if (mTree.mDynamicRefTable != NULL &&
mTree.mDynamicRefTable->lookupResourceValue(outValue) != NO_ERROR) {
return BAD_TYPE;
}
return sizeof(Res_value);
}
}
return BAD_TYPE;
}
ssize_t ResXMLParser::indexOfAttribute(const char* ns, const char* attr) const
{
String16 nsStr(ns != NULL ? ns : "");
String16 attrStr(attr);
return indexOfAttribute(ns ? nsStr.string() : NULL, ns ? nsStr.size() : 0,
attrStr.string(), attrStr.size());
}
ssize_t ResXMLParser::indexOfAttribute(const char16_t* ns, size_t nsLen,
const char16_t* attr, size_t attrLen) const
{
if (mEventCode == START_TAG) {
if (attr == NULL) {
return NAME_NOT_FOUND;
}
const size_t N = getAttributeCount();
if (mTree.mStrings.isUTF8()) {
String8 ns8, attr8;
if (ns != NULL) {
ns8 = String8(ns, nsLen);
}
attr8 = String8(attr, attrLen);
STRING_POOL_NOISY(ALOGI("indexOfAttribute UTF8 %s (%d) / %s (%d)", ns8.string(), nsLen,
attr8.string(), attrLen));
for (size_t i=0; i<N; i++) {
size_t curNsLen = 0, curAttrLen = 0;
const char* curNs = getAttributeNamespace8(i, &curNsLen);
const char* curAttr = getAttributeName8(i, &curAttrLen);
STRING_POOL_NOISY(ALOGI(" curNs=%s (%d), curAttr=%s (%d)", curNs, curNsLen,
curAttr, curAttrLen));
if (curAttr != NULL && curNsLen == nsLen && curAttrLen == attrLen
&& memcmp(attr8.string(), curAttr, attrLen) == 0) {
if (ns == NULL) {
if (curNs == NULL) {
STRING_POOL_NOISY(ALOGI(" FOUND!"));
return i;
}
} else if (curNs != NULL) {
//printf(" --> ns=%s, curNs=%s\n",
// String8(ns).string(), String8(curNs).string());
if (memcmp(ns8.string(), curNs, nsLen) == 0) {
STRING_POOL_NOISY(ALOGI(" FOUND!"));
return i;
}
}
}
}
} else {
STRING_POOL_NOISY(ALOGI("indexOfAttribute UTF16 %s (%d) / %s (%d)",
String8(ns, nsLen).string(), nsLen,
String8(attr, attrLen).string(), attrLen));
for (size_t i=0; i<N; i++) {
size_t curNsLen = 0, curAttrLen = 0;
const char16_t* curNs = getAttributeNamespace(i, &curNsLen);
const char16_t* curAttr = getAttributeName(i, &curAttrLen);
STRING_POOL_NOISY(ALOGI(" curNs=%s (%d), curAttr=%s (%d)",
String8(curNs, curNsLen).string(), curNsLen,
String8(curAttr, curAttrLen).string(), curAttrLen));
if (curAttr != NULL && curNsLen == nsLen && curAttrLen == attrLen
&& (memcmp(attr, curAttr, attrLen*sizeof(char16_t)) == 0)) {
if (ns == NULL) {
if (curNs == NULL) {
STRING_POOL_NOISY(ALOGI(" FOUND!"));
return i;
}
} else if (curNs != NULL) {
//printf(" --> ns=%s, curNs=%s\n",
// String8(ns).string(), String8(curNs).string());
if (memcmp(ns, curNs, nsLen*sizeof(char16_t)) == 0) {
STRING_POOL_NOISY(ALOGI(" FOUND!"));
return i;
}
}
}
}
}
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfID() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->idIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfClass() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->classIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfStyle() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->styleIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ResXMLParser::event_code_t ResXMLParser::nextNode()
{
if (mEventCode < 0) {
return mEventCode;
}
do {
const ResXMLTree_node* next = (const ResXMLTree_node*)
(((const uint8_t*)mCurNode) + dtohl(mCurNode->header.size));
//ALOGW("Next node: prev=%p, next=%p\n", mCurNode, next);
if (((const uint8_t*)next) >= mTree.mDataEnd) {
mCurNode = NULL;
return (mEventCode=END_DOCUMENT);
}
if (mTree.validateNode(next) != NO_ERROR) {
mCurNode = NULL;
return (mEventCode=BAD_DOCUMENT);
}
mCurNode = next;
const uint16_t headerSize = dtohs(next->header.headerSize);
const uint32_t totalSize = dtohl(next->header.size);
mCurExt = ((const uint8_t*)next) + headerSize;
size_t minExtSize = 0;
event_code_t eventCode = (event_code_t)dtohs(next->header.type);
switch ((mEventCode=eventCode)) {
case RES_XML_START_NAMESPACE_TYPE:
case RES_XML_END_NAMESPACE_TYPE:
minExtSize = sizeof(ResXMLTree_namespaceExt);
break;
case RES_XML_START_ELEMENT_TYPE:
minExtSize = sizeof(ResXMLTree_attrExt);
break;
case RES_XML_END_ELEMENT_TYPE:
minExtSize = sizeof(ResXMLTree_endElementExt);
break;
case RES_XML_CDATA_TYPE:
minExtSize = sizeof(ResXMLTree_cdataExt);
break;
default:
ALOGW("Unknown XML block: header type %d in node at %d\n",
(int)dtohs(next->header.type),
(int)(((const uint8_t*)next)-((const uint8_t*)mTree.mHeader)));
continue;
}
if ((totalSize-headerSize) < minExtSize) {
ALOGW("Bad XML block: header type 0x%x in node at 0x%x has size %d, need %d\n",
(int)dtohs(next->header.type),
(int)(((const uint8_t*)next)-((const uint8_t*)mTree.mHeader)),
(int)(totalSize-headerSize), (int)minExtSize);
return (mEventCode=BAD_DOCUMENT);
}
//printf("CurNode=%p, CurExt=%p, headerSize=%d, minExtSize=%d\n",
// mCurNode, mCurExt, headerSize, minExtSize);
return eventCode;
} while (true);
}
void ResXMLParser::getPosition(ResXMLParser::ResXMLPosition* pos) const
{
pos->eventCode = mEventCode;
pos->curNode = mCurNode;
pos->curExt = mCurExt;
}
void ResXMLParser::setPosition(const ResXMLParser::ResXMLPosition& pos)
{
mEventCode = pos.eventCode;
mCurNode = pos.curNode;
mCurExt = pos.curExt;
}
// --------------------------------------------------------------------
static volatile int32_t gCount = 0;
ResXMLTree::ResXMLTree(const DynamicRefTable* dynamicRefTable)
: ResXMLParser(*this)
, mDynamicRefTable(dynamicRefTable)
, mError(NO_INIT), mOwnedData(NULL)
{
//ALOGI("Creating ResXMLTree %p #%d\n", this, android_atomic_inc(&gCount)+1);
restart();
}
ResXMLTree::ResXMLTree()
: ResXMLParser(*this)
, mDynamicRefTable(NULL)
, mError(NO_INIT), mOwnedData(NULL)
{
//ALOGI("Creating ResXMLTree %p #%d\n", this, android_atomic_inc(&gCount)+1);
restart();
}
ResXMLTree::~ResXMLTree()
{
//ALOGI("Destroying ResXMLTree in %p #%d\n", this, android_atomic_dec(&gCount)-1);
uninit();
}
status_t ResXMLTree::setTo(const void* data, size_t size, bool copyData)
{
uninit();
mEventCode = START_DOCUMENT;
if (!data || !size) {
return (mError=BAD_TYPE);
}
if (copyData) {
mOwnedData = malloc(size);
if (mOwnedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(mOwnedData, data, size);
data = mOwnedData;
}
mHeader = (const ResXMLTree_header*)data;
mSize = dtohl(mHeader->header.size);
if (dtohs(mHeader->header.headerSize) > mSize || mSize > size) {
ALOGW("Bad XML block: header size %d or total size %d is larger than data size %d\n",
(int)dtohs(mHeader->header.headerSize),
(int)dtohl(mHeader->header.size), (int)size);
mError = BAD_TYPE;
restart();
return mError;
}
mDataEnd = ((const uint8_t*)mHeader) + mSize;
mStrings.uninit();
mRootNode = NULL;
mResIds = NULL;
mNumResIds = 0;
// First look for a couple interesting chunks: the string block
// and first XML node.
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)mHeader) + dtohs(mHeader->header.headerSize));
const ResChunk_header* lastChunk = chunk;
while (((const uint8_t*)chunk) < (mDataEnd-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) < (mDataEnd-dtohl(chunk->size))) {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header), mDataEnd, "XML");
if (err != NO_ERROR) {
mError = err;
goto done;
}
const uint16_t type = dtohs(chunk->type);
const size_t size = dtohl(chunk->size);
XML_NOISY(printf("Scanning @ %p: type=0x%x, size=0x%x\n",
(void*)(((uint32_t)chunk)-((uint32_t)mHeader)), type, size));
if (type == RES_STRING_POOL_TYPE) {
mStrings.setTo(chunk, size);
} else if (type == RES_XML_RESOURCE_MAP_TYPE) {
mResIds = (const uint32_t*)
(((const uint8_t*)chunk)+dtohs(chunk->headerSize));
mNumResIds = (dtohl(chunk->size)-dtohs(chunk->headerSize))/sizeof(uint32_t);
} else if (type >= RES_XML_FIRST_CHUNK_TYPE
&& type <= RES_XML_LAST_CHUNK_TYPE) {
if (validateNode((const ResXMLTree_node*)chunk) != NO_ERROR) {
mError = BAD_TYPE;
goto done;
}
mCurNode = (const ResXMLTree_node*)lastChunk;
if (nextNode() == BAD_DOCUMENT) {
mError = BAD_TYPE;
goto done;
}
mRootNode = mCurNode;
mRootExt = mCurExt;
mRootCode = mEventCode;
break;
} else {
XML_NOISY(printf("Skipping unknown chunk!\n"));
}
lastChunk = chunk;
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + size);
}
if (mRootNode == NULL) {
ALOGW("Bad XML block: no root element node found\n");
mError = BAD_TYPE;
goto done;
}
mError = mStrings.getError();
done:
restart();
return mError;
}
status_t ResXMLTree::getError() const
{
return mError;
}
void ResXMLTree::uninit()
{
mError = NO_INIT;
mStrings.uninit();
if (mOwnedData) {
free(mOwnedData);
mOwnedData = NULL;
}
restart();
}
status_t ResXMLTree::validateNode(const ResXMLTree_node* node) const
{
const uint16_t eventCode = dtohs(node->header.type);
status_t err = validate_chunk(
&node->header, sizeof(ResXMLTree_node),
mDataEnd, "ResXMLTree_node");
if (err >= NO_ERROR) {
// Only perform additional validation on START nodes
if (eventCode != RES_XML_START_ELEMENT_TYPE) {
return NO_ERROR;
}
const uint16_t headerSize = dtohs(node->header.headerSize);
const uint32_t size = dtohl(node->header.size);
const ResXMLTree_attrExt* attrExt = (const ResXMLTree_attrExt*)
(((const uint8_t*)node) + headerSize);
// check for sensical values pulled out of the stream so far...
if ((size >= headerSize + sizeof(ResXMLTree_attrExt))
&& ((void*)attrExt > (void*)node)) {
const size_t attrSize = ((size_t)dtohs(attrExt->attributeSize))
* dtohs(attrExt->attributeCount);
if ((dtohs(attrExt->attributeStart)+attrSize) <= (size-headerSize)) {
return NO_ERROR;
}
ALOGW("Bad XML block: node attributes use 0x%x bytes, only have 0x%x bytes\n",
(unsigned int)(dtohs(attrExt->attributeStart)+attrSize),
(unsigned int)(size-headerSize));
}
else {
ALOGW("Bad XML start block: node header size 0x%x, size 0x%x\n",
(unsigned int)headerSize, (unsigned int)size);
}
return BAD_TYPE;
}
return err;
#if 0
const bool isStart = dtohs(node->header.type) == RES_XML_START_ELEMENT_TYPE;
const uint16_t headerSize = dtohs(node->header.headerSize);
const uint32_t size = dtohl(node->header.size);
if (headerSize >= (isStart ? sizeof(ResXMLTree_attrNode) : sizeof(ResXMLTree_node))) {
if (size >= headerSize) {
if (((const uint8_t*)node) <= (mDataEnd-size)) {
if (!isStart) {
return NO_ERROR;
}
if ((((size_t)dtohs(node->attributeSize))*dtohs(node->attributeCount))
<= (size-headerSize)) {
return NO_ERROR;
}
ALOGW("Bad XML block: node attributes use 0x%x bytes, only have 0x%x bytes\n",
((int)dtohs(node->attributeSize))*dtohs(node->attributeCount),
(int)(size-headerSize));
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x extends beyond data end 0x%x\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)), (int)mSize);
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x header size 0x%x smaller than total size 0x%x\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)),
(int)headerSize, (int)size);
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x header size 0x%x too small\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)),
(int)headerSize);
return BAD_TYPE;
#endif
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
void ResTable_config::copyFromDeviceNoSwap(const ResTable_config& o) {
const size_t size = dtohl(o.size);
if (size >= sizeof(ResTable_config)) {
*this = o;
} else {
memcpy(this, &o, size);
memset(((uint8_t*)this)+size, 0, sizeof(ResTable_config)-size);
}
}
/* static */ size_t unpackLanguageOrRegion(const char in[2], const char base,
char out[4]) {
if (in[0] & 0x80) {
// The high bit is "1", which means this is a packed three letter
// language code.
// The smallest 5 bits of the second char are the first alphabet.
const uint8_t first = in[1] & 0x1f;
// The last three bits of the second char and the first two bits
// of the first char are the second alphabet.
const uint8_t second = ((in[1] & 0xe0) >> 5) + ((in[0] & 0x03) << 3);
// Bits 3 to 7 (inclusive) of the first char are the third alphabet.
const uint8_t third = (in[0] & 0x7c) >> 2;
out[0] = first + base;
out[1] = second + base;
out[2] = third + base;
out[3] = 0;
return 3;
}
if (in[0]) {
memcpy(out, in, 2);
memset(out + 2, 0, 2);
return 2;
}
memset(out, 0, 4);
return 0;
}
/* static */ void packLanguageOrRegion(const char* in, const char base,
char out[2]) {
if (in[2] == 0 || in[2] == '-') {
out[0] = in[0];
out[1] = in[1];
} else {
uint8_t first = (in[0] - base) & 0x007f;
uint8_t second = (in[1] - base) & 0x007f;
uint8_t third = (in[2] - base) & 0x007f;
out[0] = (0x80 | (third << 2) | (second >> 3));
out[1] = ((second << 5) | first);
}
}
void ResTable_config::packLanguage(const char* language) {
packLanguageOrRegion(language, 'a', this->language);
}
void ResTable_config::packRegion(const char* region) {
packLanguageOrRegion(region, '0', this->country);
}
size_t ResTable_config::unpackLanguage(char language[4]) const {
return unpackLanguageOrRegion(this->language, 'a', language);
}
size_t ResTable_config::unpackRegion(char region[4]) const {
return unpackLanguageOrRegion(this->country, '0', region);
}
void ResTable_config::copyFromDtoH(const ResTable_config& o) {
copyFromDeviceNoSwap(o);
size = sizeof(ResTable_config);
mcc = dtohs(mcc);
mnc = dtohs(mnc);
density = dtohs(density);
screenWidth = dtohs(screenWidth);
screenHeight = dtohs(screenHeight);
sdkVersion = dtohs(sdkVersion);
minorVersion = dtohs(minorVersion);
smallestScreenWidthDp = dtohs(smallestScreenWidthDp);
screenWidthDp = dtohs(screenWidthDp);
screenHeightDp = dtohs(screenHeightDp);
}
void ResTable_config::swapHtoD() {
size = htodl(size);
mcc = htods(mcc);
mnc = htods(mnc);
density = htods(density);
screenWidth = htods(screenWidth);
screenHeight = htods(screenHeight);
sdkVersion = htods(sdkVersion);
minorVersion = htods(minorVersion);
smallestScreenWidthDp = htods(smallestScreenWidthDp);
screenWidthDp = htods(screenWidthDp);
screenHeightDp = htods(screenHeightDp);
}
/* static */ inline int compareLocales(const ResTable_config &l, const ResTable_config &r) {
if (l.locale != r.locale) {
// NOTE: This is the old behaviour with respect to comparison orders.
// The diff value here doesn't make much sense (given our bit packing scheme)
// but it's stable, and that's all we need.
return l.locale - r.locale;
}
// The language & region are equal, so compare the scripts and variants.
int script = memcmp(l.localeScript, r.localeScript, sizeof(l.localeScript));
if (script) {
return script;
}
// The language, region and script are equal, so compare variants.
//
// This should happen very infrequently (if at all.)
return memcmp(l.localeVariant, r.localeVariant, sizeof(l.localeVariant));
}
int ResTable_config::compare(const ResTable_config& o) const {
int32_t diff = (int32_t)(imsi - o.imsi);
if (diff != 0) return diff;
diff = compareLocales(*this, o);
if (diff != 0) return diff;
diff = (int32_t)(screenType - o.screenType);
if (diff != 0) return diff;
diff = (int32_t)(input - o.input);
if (diff != 0) return diff;
diff = (int32_t)(screenSize - o.screenSize);
if (diff != 0) return diff;
diff = (int32_t)(version - o.version);
if (diff != 0) return diff;
diff = (int32_t)(screenLayout - o.screenLayout);
if (diff != 0) return diff;
diff = (int32_t)(uiMode - o.uiMode);
if (diff != 0) return diff;
diff = (int32_t)(smallestScreenWidthDp - o.smallestScreenWidthDp);
if (diff != 0) return diff;
diff = (int32_t)(screenSizeDp - o.screenSizeDp);
return (int)diff;
}
int ResTable_config::compareLogical(const ResTable_config& o) const {
if (mcc != o.mcc) {
return mcc < o.mcc ? -1 : 1;
}
if (mnc != o.mnc) {
return mnc < o.mnc ? -1 : 1;
}
int diff = compareLocales(*this, o);
if (diff < 0) {
return -1;
}
if (diff > 0) {
return 1;
}
if ((screenLayout & MASK_LAYOUTDIR) != (o.screenLayout & MASK_LAYOUTDIR)) {
return (screenLayout & MASK_LAYOUTDIR) < (o.screenLayout & MASK_LAYOUTDIR) ? -1 : 1;
}
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
return smallestScreenWidthDp < o.smallestScreenWidthDp ? -1 : 1;
}
if (screenWidthDp != o.screenWidthDp) {
return screenWidthDp < o.screenWidthDp ? -1 : 1;
}
if (screenHeightDp != o.screenHeightDp) {
return screenHeightDp < o.screenHeightDp ? -1 : 1;
}
if (screenWidth != o.screenWidth) {
return screenWidth < o.screenWidth ? -1 : 1;
}
if (screenHeight != o.screenHeight) {
return screenHeight < o.screenHeight ? -1 : 1;
}
if (density != o.density) {
return density < o.density ? -1 : 1;
}
if (orientation != o.orientation) {
return orientation < o.orientation ? -1 : 1;
}
if (touchscreen != o.touchscreen) {
return touchscreen < o.touchscreen ? -1 : 1;
}
if (input != o.input) {
return input < o.input ? -1 : 1;
}
if (screenLayout != o.screenLayout) {
return screenLayout < o.screenLayout ? -1 : 1;
}
if (uiMode != o.uiMode) {
return uiMode < o.uiMode ? -1 : 1;
}
if (version != o.version) {
return version < o.version ? -1 : 1;
}
return 0;
}
int ResTable_config::diff(const ResTable_config& o) const {
int diffs = 0;
if (mcc != o.mcc) diffs |= CONFIG_MCC;
if (mnc != o.mnc) diffs |= CONFIG_MNC;
if (orientation != o.orientation) diffs |= CONFIG_ORIENTATION;
if (density != o.density) diffs |= CONFIG_DENSITY;
if (touchscreen != o.touchscreen) diffs |= CONFIG_TOUCHSCREEN;
if (((inputFlags^o.inputFlags)&(MASK_KEYSHIDDEN|MASK_NAVHIDDEN)) != 0)
diffs |= CONFIG_KEYBOARD_HIDDEN;
if (keyboard != o.keyboard) diffs |= CONFIG_KEYBOARD;
if (navigation != o.navigation) diffs |= CONFIG_NAVIGATION;
if (screenSize != o.screenSize) diffs |= CONFIG_SCREEN_SIZE;
if (version != o.version) diffs |= CONFIG_VERSION;
if ((screenLayout & MASK_LAYOUTDIR) != (o.screenLayout & MASK_LAYOUTDIR)) diffs |= CONFIG_LAYOUTDIR;
if ((screenLayout & ~MASK_LAYOUTDIR) != (o.screenLayout & ~MASK_LAYOUTDIR)) diffs |= CONFIG_SCREEN_LAYOUT;
if (uiMode != o.uiMode) diffs |= CONFIG_UI_MODE;
if (smallestScreenWidthDp != o.smallestScreenWidthDp) diffs |= CONFIG_SMALLEST_SCREEN_SIZE;
if (screenSizeDp != o.screenSizeDp) diffs |= CONFIG_SCREEN_SIZE;
const int diff = compareLocales(*this, o);
if (diff) diffs |= CONFIG_LOCALE;
return diffs;
}
int ResTable_config::isLocaleMoreSpecificThan(const ResTable_config& o) const {
if (locale || o.locale) {
if (language[0] != o.language[0]) {
if (!language[0]) return -1;
if (!o.language[0]) return 1;
}
if (country[0] != o.country[0]) {
if (!country[0]) return -1;
if (!o.country[0]) return 1;
}
}
// There isn't a well specified "importance" order between variants and
// scripts. We can't easily tell whether, say "en-Latn-US" is more or less
// specific than "en-US-POSIX".
//
// We therefore arbitrarily decide to give priority to variants over
// scripts since it seems more useful to do so. We will consider
// "en-US-POSIX" to be more specific than "en-Latn-US".
const int score = ((localeScript[0] != 0) ? 1 : 0) +
((localeVariant[0] != 0) ? 2 : 0);
const int oScore = ((o.localeScript[0] != 0) ? 1 : 0) +
((o.localeVariant[0] != 0) ? 2 : 0);
return score - oScore;
}
bool ResTable_config::isMoreSpecificThan(const ResTable_config& o) const {
// The order of the following tests defines the importance of one
// configuration parameter over another. Those tests first are more
// important, trumping any values in those following them.
if (imsi || o.imsi) {
if (mcc != o.mcc) {
if (!mcc) return false;
if (!o.mcc) return true;
}
if (mnc != o.mnc) {
if (!mnc) return false;
if (!o.mnc) return true;
}
}
if (locale || o.locale) {
const int diff = isLocaleMoreSpecificThan(o);
if (diff < 0) {
return false;
}
if (diff > 0) {
return true;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_LAYOUTDIR) != 0) {
if (!(screenLayout & MASK_LAYOUTDIR)) return false;
if (!(o.screenLayout & MASK_LAYOUTDIR)) return true;
}
}
if (smallestScreenWidthDp || o.smallestScreenWidthDp) {
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
if (!smallestScreenWidthDp) return false;
if (!o.smallestScreenWidthDp) return true;
}
}
if (screenSizeDp || o.screenSizeDp) {
if (screenWidthDp != o.screenWidthDp) {
if (!screenWidthDp) return false;
if (!o.screenWidthDp) return true;
}
if (screenHeightDp != o.screenHeightDp) {
if (!screenHeightDp) return false;
if (!o.screenHeightDp) return true;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_SCREENSIZE) != 0) {
if (!(screenLayout & MASK_SCREENSIZE)) return false;
if (!(o.screenLayout & MASK_SCREENSIZE)) return true;
}
if (((screenLayout^o.screenLayout) & MASK_SCREENLONG) != 0) {
if (!(screenLayout & MASK_SCREENLONG)) return false;
if (!(o.screenLayout & MASK_SCREENLONG)) return true;
}
}
if (orientation != o.orientation) {
if (!orientation) return false;
if (!o.orientation) return true;
}
if (uiMode || o.uiMode) {
if (((uiMode^o.uiMode) & MASK_UI_MODE_TYPE) != 0) {
if (!(uiMode & MASK_UI_MODE_TYPE)) return false;
if (!(o.uiMode & MASK_UI_MODE_TYPE)) return true;
}
if (((uiMode^o.uiMode) & MASK_UI_MODE_NIGHT) != 0) {
if (!(uiMode & MASK_UI_MODE_NIGHT)) return false;
if (!(o.uiMode & MASK_UI_MODE_NIGHT)) return true;
}
}
// density is never 'more specific'
// as the default just equals 160
if (touchscreen != o.touchscreen) {
if (!touchscreen) return false;
if (!o.touchscreen) return true;
}
if (input || o.input) {
if (((inputFlags^o.inputFlags) & MASK_KEYSHIDDEN) != 0) {
if (!(inputFlags & MASK_KEYSHIDDEN)) return false;
if (!(o.inputFlags & MASK_KEYSHIDDEN)) return true;
}
if (((inputFlags^o.inputFlags) & MASK_NAVHIDDEN) != 0) {
if (!(inputFlags & MASK_NAVHIDDEN)) return false;
if (!(o.inputFlags & MASK_NAVHIDDEN)) return true;
}
if (keyboard != o.keyboard) {
if (!keyboard) return false;
if (!o.keyboard) return true;
}
if (navigation != o.navigation) {
if (!navigation) return false;
if (!o.navigation) return true;
}
}
if (screenSize || o.screenSize) {
if (screenWidth != o.screenWidth) {
if (!screenWidth) return false;
if (!o.screenWidth) return true;
}
if (screenHeight != o.screenHeight) {
if (!screenHeight) return false;
if (!o.screenHeight) return true;
}
}
if (version || o.version) {
if (sdkVersion != o.sdkVersion) {
if (!sdkVersion) return false;
if (!o.sdkVersion) return true;
}
if (minorVersion != o.minorVersion) {
if (!minorVersion) return false;
if (!o.minorVersion) return true;
}
}
return false;
}
bool ResTable_config::isBetterThan(const ResTable_config& o,
const ResTable_config* requested) const {
if (requested) {
if (imsi || o.imsi) {
if ((mcc != o.mcc) && requested->mcc) {
return (mcc);
}
if ((mnc != o.mnc) && requested->mnc) {
return (mnc);
}
}
if (locale || o.locale) {
if ((language[0] != o.language[0]) && requested->language[0]) {
return (language[0]);
}
if ((country[0] != o.country[0]) && requested->country[0]) {
return (country[0]);
}
}
if (localeScript[0] || o.localeScript[0]) {
if (localeScript[0] != o.localeScript[0] && requested->localeScript[0]) {
return localeScript[0];
}
}
if (localeVariant[0] || o.localeVariant[0]) {
if (localeVariant[0] != o.localeVariant[0] && requested->localeVariant[0]) {
return localeVariant[0];
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_LAYOUTDIR) != 0
&& (requested->screenLayout & MASK_LAYOUTDIR)) {
int myLayoutDir = screenLayout & MASK_LAYOUTDIR;
int oLayoutDir = o.screenLayout & MASK_LAYOUTDIR;
return (myLayoutDir > oLayoutDir);
}
}
if (smallestScreenWidthDp || o.smallestScreenWidthDp) {
// The configuration closest to the actual size is best.
// We assume that larger configs have already been filtered
// out at this point. That means we just want the largest one.
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
return smallestScreenWidthDp > o.smallestScreenWidthDp;
}
}
if (screenSizeDp || o.screenSizeDp) {
// "Better" is based on the sum of the difference between both
// width and height from the requested dimensions. We are
// assuming the invalid configs (with smaller dimens) have
// already been filtered. Note that if a particular dimension
// is unspecified, we will end up with a large value (the
// difference between 0 and the requested dimension), which is
// good since we will prefer a config that has specified a
// dimension value.
int myDelta = 0, otherDelta = 0;
if (requested->screenWidthDp) {
myDelta += requested->screenWidthDp - screenWidthDp;
otherDelta += requested->screenWidthDp - o.screenWidthDp;
}
if (requested->screenHeightDp) {
myDelta += requested->screenHeightDp - screenHeightDp;
otherDelta += requested->screenHeightDp - o.screenHeightDp;
}
//ALOGI("Comparing this %dx%d to other %dx%d in %dx%d: myDelta=%d otherDelta=%d",
// screenWidthDp, screenHeightDp, o.screenWidthDp, o.screenHeightDp,
// requested->screenWidthDp, requested->screenHeightDp, myDelta, otherDelta);
if (myDelta != otherDelta) {
return myDelta < otherDelta;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_SCREENSIZE) != 0
&& (requested->screenLayout & MASK_SCREENSIZE)) {
// A little backwards compatibility here: undefined is
// considered equivalent to normal. But only if the
// requested size is at least normal; otherwise, small
// is better than the default.
int mySL = (screenLayout & MASK_SCREENSIZE);
int oSL = (o.screenLayout & MASK_SCREENSIZE);
int fixedMySL = mySL;
int fixedOSL = oSL;
if ((requested->screenLayout & MASK_SCREENSIZE) >= SCREENSIZE_NORMAL) {
if (fixedMySL == 0) fixedMySL = SCREENSIZE_NORMAL;
if (fixedOSL == 0) fixedOSL = SCREENSIZE_NORMAL;
}
// For screen size, the best match is the one that is
// closest to the requested screen size, but not over
// (the not over part is dealt with in match() below).
if (fixedMySL == fixedOSL) {
// If the two are the same, but 'this' is actually
// undefined, then the other is really a better match.
if (mySL == 0) return false;
return true;
}
if (fixedMySL != fixedOSL) {
return fixedMySL > fixedOSL;
}
}
if (((screenLayout^o.screenLayout) & MASK_SCREENLONG) != 0
&& (requested->screenLayout & MASK_SCREENLONG)) {
return (screenLayout & MASK_SCREENLONG);
}
}
if ((orientation != o.orientation) && requested->orientation) {
return (orientation);
}
if (uiMode || o.uiMode) {
if (((uiMode^o.uiMode) & MASK_UI_MODE_TYPE) != 0
&& (requested->uiMode & MASK_UI_MODE_TYPE)) {
return (uiMode & MASK_UI_MODE_TYPE);
}
if (((uiMode^o.uiMode) & MASK_UI_MODE_NIGHT) != 0
&& (requested->uiMode & MASK_UI_MODE_NIGHT)) {
return (uiMode & MASK_UI_MODE_NIGHT);
}
}
if (screenType || o.screenType) {
if (density != o.density) {
// Use the system default density (DENSITY_MEDIUM, 160dpi) if none specified.
const int thisDensity = density ? density : int(ResTable_config::DENSITY_MEDIUM);
const int otherDensity = o.density ? o.density : int(ResTable_config::DENSITY_MEDIUM);
// We always prefer DENSITY_ANY over scaling a density bucket.
if (thisDensity == ResTable_config::DENSITY_ANY) {
return true;
} else if (otherDensity == ResTable_config::DENSITY_ANY) {
return false;
}
int requestedDensity = requested->density;
if (requested->density == 0 ||
requested->density == ResTable_config::DENSITY_ANY) {
requestedDensity = ResTable_config::DENSITY_MEDIUM;
}
// DENSITY_ANY is now dealt with. We should look to
// pick a density bucket and potentially scale it.
// Any density is potentially useful
// because the system will scale it. Scaling down
// is generally better than scaling up.
int h = thisDensity;
int l = otherDensity;
bool bImBigger = true;
if (l > h) {
int t = h;
h = l;
l = t;
bImBigger = false;
}
if (requestedDensity >= h) {
// requested value higher than both l and h, give h
return bImBigger;
}
if (l >= requestedDensity) {
// requested value lower than both l and h, give l
return !bImBigger;
}
// saying that scaling down is 2x better than up
if (((2 * l) - requestedDensity) * h > requestedDensity * requestedDensity) {
return !bImBigger;
} else {
return bImBigger;
}
}
if ((touchscreen != o.touchscreen) && requested->touchscreen) {
return (touchscreen);
}
}
if (input || o.input) {
const int keysHidden = inputFlags & MASK_KEYSHIDDEN;
const int oKeysHidden = o.inputFlags & MASK_KEYSHIDDEN;
if (keysHidden != oKeysHidden) {
const int reqKeysHidden =
requested->inputFlags & MASK_KEYSHIDDEN;
if (reqKeysHidden) {
if (!keysHidden) return false;
if (!oKeysHidden) return true;
// For compatibility, we count KEYSHIDDEN_NO as being
// the same as KEYSHIDDEN_SOFT. Here we disambiguate
// these by making an exact match more specific.
if (reqKeysHidden == keysHidden) return true;
if (reqKeysHidden == oKeysHidden) return false;
}
}
const int navHidden = inputFlags & MASK_NAVHIDDEN;
const int oNavHidden = o.inputFlags & MASK_NAVHIDDEN;
if (navHidden != oNavHidden) {
const int reqNavHidden =
requested->inputFlags & MASK_NAVHIDDEN;
if (reqNavHidden) {
if (!navHidden) return false;
if (!oNavHidden) return true;
}
}
if ((keyboard != o.keyboard) && requested->keyboard) {
return (keyboard);
}
if ((navigation != o.navigation) && requested->navigation) {
return (navigation);
}
}
if (screenSize || o.screenSize) {
// "Better" is based on the sum of the difference between both
// width and height from the requested dimensions. We are
// assuming the invalid configs (with smaller sizes) have
// already been filtered. Note that if a particular dimension
// is unspecified, we will end up with a large value (the
// difference between 0 and the requested dimension), which is
// good since we will prefer a config that has specified a
// size value.
int myDelta = 0, otherDelta = 0;
if (requested->screenWidth) {
myDelta += requested->screenWidth - screenWidth;
otherDelta += requested->screenWidth - o.screenWidth;
}
if (requested->screenHeight) {
myDelta += requested->screenHeight - screenHeight;
otherDelta += requested->screenHeight - o.screenHeight;
}
if (myDelta != otherDelta) {
return myDelta < otherDelta;
}
}
if (version || o.version) {
if ((sdkVersion != o.sdkVersion) && requested->sdkVersion) {
return (sdkVersion > o.sdkVersion);
}
if ((minorVersion != o.minorVersion) &&
requested->minorVersion) {
return (minorVersion);
}
}
return false;
}
return isMoreSpecificThan(o);
}
bool ResTable_config::match(const ResTable_config& settings) const {
if (imsi != 0) {
if (mcc != 0 && mcc != settings.mcc) {
return false;
}
if (mnc != 0 && mnc != settings.mnc) {
return false;
}
}
if (locale != 0) {
// Don't consider the script & variants when deciding matches.
//
// If we two configs differ only in their script or language, they
// can be weeded out in the isMoreSpecificThan test.
if (language[0] != 0
&& (language[0] != settings.language[0]
|| language[1] != settings.language[1])) {
return false;
}
if (country[0] != 0
&& (country[0] != settings.country[0]
|| country[1] != settings.country[1])) {
return false;
}
}
if (screenConfig != 0) {
const int layoutDir = screenLayout&MASK_LAYOUTDIR;
const int setLayoutDir = settings.screenLayout&MASK_LAYOUTDIR;
if (layoutDir != 0 && layoutDir != setLayoutDir) {
return false;
}
const int screenSize = screenLayout&MASK_SCREENSIZE;
const int setScreenSize = settings.screenLayout&MASK_SCREENSIZE;
// Any screen sizes for larger screens than the setting do not
// match.
if (screenSize != 0 && screenSize > setScreenSize) {
return false;
}
const int screenLong = screenLayout&MASK_SCREENLONG;
const int setScreenLong = settings.screenLayout&MASK_SCREENLONG;
if (screenLong != 0 && screenLong != setScreenLong) {
return false;
}
const int uiModeType = uiMode&MASK_UI_MODE_TYPE;
const int setUiModeType = settings.uiMode&MASK_UI_MODE_TYPE;
if (uiModeType != 0 && uiModeType != setUiModeType) {
return false;
}
const int uiModeNight = uiMode&MASK_UI_MODE_NIGHT;
const int setUiModeNight = settings.uiMode&MASK_UI_MODE_NIGHT;
if (uiModeNight != 0 && uiModeNight != setUiModeNight) {
return false;
}
if (smallestScreenWidthDp != 0
&& smallestScreenWidthDp > settings.smallestScreenWidthDp) {
return false;
}
}
if (screenSizeDp != 0) {
if (screenWidthDp != 0 && screenWidthDp > settings.screenWidthDp) {
//ALOGI("Filtering out width %d in requested %d", screenWidthDp, settings.screenWidthDp);
return false;
}
if (screenHeightDp != 0 && screenHeightDp > settings.screenHeightDp) {
//ALOGI("Filtering out height %d in requested %d", screenHeightDp, settings.screenHeightDp);
return false;
}
}
if (screenType != 0) {
if (orientation != 0 && orientation != settings.orientation) {
return false;
}
// density always matches - we can scale it. See isBetterThan
if (touchscreen != 0 && touchscreen != settings.touchscreen) {
return false;
}
}
if (input != 0) {
const int keysHidden = inputFlags&MASK_KEYSHIDDEN;
const int setKeysHidden = settings.inputFlags&MASK_KEYSHIDDEN;
if (keysHidden != 0 && keysHidden != setKeysHidden) {
// For compatibility, we count a request for KEYSHIDDEN_NO as also
// matching the more recent KEYSHIDDEN_SOFT. Basically
// KEYSHIDDEN_NO means there is some kind of keyboard available.
//ALOGI("Matching keysHidden: have=%d, config=%d\n", keysHidden, setKeysHidden);
if (keysHidden != KEYSHIDDEN_NO || setKeysHidden != KEYSHIDDEN_SOFT) {
//ALOGI("No match!");
return false;
}
}
const int navHidden = inputFlags&MASK_NAVHIDDEN;
const int setNavHidden = settings.inputFlags&MASK_NAVHIDDEN;
if (navHidden != 0 && navHidden != setNavHidden) {
return false;
}
if (keyboard != 0 && keyboard != settings.keyboard) {
return false;
}
if (navigation != 0 && navigation != settings.navigation) {
return false;
}
}
if (screenSize != 0) {
if (screenWidth != 0 && screenWidth > settings.screenWidth) {
return false;
}
if (screenHeight != 0 && screenHeight > settings.screenHeight) {
return false;
}
}
if (version != 0) {
if (sdkVersion != 0 && sdkVersion > settings.sdkVersion) {
return false;
}
if (minorVersion != 0 && minorVersion != settings.minorVersion) {
return false;
}
}
return true;
}
void ResTable_config::getBcp47Locale(char str[RESTABLE_MAX_LOCALE_LEN]) const {
memset(str, 0, RESTABLE_MAX_LOCALE_LEN);
// This represents the "any" locale value, which has traditionally been
// represented by the empty string.
if (!language[0] && !country[0]) {
return;
}
size_t charsWritten = 0;
if (language[0]) {
charsWritten += unpackLanguage(str);
}
if (localeScript[0]) {
if (charsWritten) {
str[charsWritten++] = '-';
}
memcpy(str + charsWritten, localeScript, sizeof(localeScript));
charsWritten += sizeof(localeScript);
}
if (country[0]) {
if (charsWritten) {
str[charsWritten++] = '-';
}
charsWritten += unpackRegion(str + charsWritten);
}
if (localeVariant[0]) {
if (charsWritten) {
str[charsWritten++] = '-';
}
memcpy(str + charsWritten, localeVariant, sizeof(localeVariant));
}
}
/* static */ inline bool assignLocaleComponent(ResTable_config* config,
const char* start, size_t size) {
switch (size) {
case 0:
return false;
case 2:
case 3:
config->language[0] ? config->packRegion(start) : config->packLanguage(start);
break;
case 4:
config->localeScript[0] = toupper(start[0]);
for (size_t i = 1; i < 4; ++i) {
config->localeScript[i] = tolower(start[i]);
}
break;
case 5:
case 6:
case 7:
case 8:
for (size_t i = 0; i < size; ++i) {
config->localeVariant[i] = tolower(start[i]);
}
break;
default:
return false;
}
return true;
}
void ResTable_config::setBcp47Locale(const char* in) {
locale = 0;
memset(localeScript, 0, sizeof(localeScript));
memset(localeVariant, 0, sizeof(localeVariant));
const char* separator = in;
const char* start = in;
while ((separator = strchr(start, '-')) != NULL) {
const size_t size = separator - start;
if (!assignLocaleComponent(this, start, size)) {
fprintf(stderr, "Invalid BCP-47 locale string: %s", in);
}
start = (separator + 1);
}
const size_t size = in + strlen(in) - start;
assignLocaleComponent(this, start, size);
}
String8 ResTable_config::toString() const {
String8 res;
if (mcc != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("mcc%d", dtohs(mcc));
}
if (mnc != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("mnc%d", dtohs(mnc));
}
char localeStr[RESTABLE_MAX_LOCALE_LEN];
getBcp47Locale(localeStr);
if (strlen(localeStr) > 0) {
if (res.size() > 0) res.append("-");
res.append(localeStr);
}
if ((screenLayout&MASK_LAYOUTDIR) != 0) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_LAYOUTDIR) {
case ResTable_config::LAYOUTDIR_LTR:
res.append("ldltr");
break;
case ResTable_config::LAYOUTDIR_RTL:
res.append("ldrtl");
break;
default:
res.appendFormat("layoutDir=%d",
dtohs(screenLayout&ResTable_config::MASK_LAYOUTDIR));
break;
}
}
if (smallestScreenWidthDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("sw%ddp", dtohs(smallestScreenWidthDp));
}
if (screenWidthDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("w%ddp", dtohs(screenWidthDp));
}
if (screenHeightDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("h%ddp", dtohs(screenHeightDp));
}
if ((screenLayout&MASK_SCREENSIZE) != SCREENSIZE_ANY) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_SCREENSIZE) {
case ResTable_config::SCREENSIZE_SMALL:
res.append("small");
break;
case ResTable_config::SCREENSIZE_NORMAL:
res.append("normal");
break;
case ResTable_config::SCREENSIZE_LARGE:
res.append("large");
break;
case ResTable_config::SCREENSIZE_XLARGE:
res.append("xlarge");
break;
default:
res.appendFormat("screenLayoutSize=%d",
dtohs(screenLayout&ResTable_config::MASK_SCREENSIZE));
break;
}
}
if ((screenLayout&MASK_SCREENLONG) != 0) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_SCREENLONG) {
case ResTable_config::SCREENLONG_NO:
res.append("notlong");
break;
case ResTable_config::SCREENLONG_YES:
res.append("long");
break;
default:
res.appendFormat("screenLayoutLong=%d",
dtohs(screenLayout&ResTable_config::MASK_SCREENLONG));
break;
}
}
if (orientation != ORIENTATION_ANY) {
if (res.size() > 0) res.append("-");
switch (orientation) {
case ResTable_config::ORIENTATION_PORT:
res.append("port");
break;
case ResTable_config::ORIENTATION_LAND:
res.append("land");
break;
case ResTable_config::ORIENTATION_SQUARE:
res.append("square");
break;
default:
res.appendFormat("orientation=%d", dtohs(orientation));
break;
}
}
if ((uiMode&MASK_UI_MODE_TYPE) != UI_MODE_TYPE_ANY) {
if (res.size() > 0) res.append("-");
switch (uiMode&ResTable_config::MASK_UI_MODE_TYPE) {
case ResTable_config::UI_MODE_TYPE_DESK:
res.append("desk");
break;
case ResTable_config::UI_MODE_TYPE_CAR:
res.append("car");
break;
case ResTable_config::UI_MODE_TYPE_TELEVISION:
res.append("television");
break;
case ResTable_config::UI_MODE_TYPE_APPLIANCE:
res.append("appliance");
break;
case ResTable_config::UI_MODE_TYPE_WATCH:
res.append("watch");
break;
default:
res.appendFormat("uiModeType=%d",
dtohs(screenLayout&ResTable_config::MASK_UI_MODE_TYPE));
break;
}
}
if ((uiMode&MASK_UI_MODE_NIGHT) != 0) {
if (res.size() > 0) res.append("-");
switch (uiMode&ResTable_config::MASK_UI_MODE_NIGHT) {
case ResTable_config::UI_MODE_NIGHT_NO:
res.append("notnight");
break;
case ResTable_config::UI_MODE_NIGHT_YES:
res.append("night");
break;
default:
res.appendFormat("uiModeNight=%d",
dtohs(uiMode&MASK_UI_MODE_NIGHT));
break;
}
}
if (density != DENSITY_DEFAULT) {
if (res.size() > 0) res.append("-");
switch (density) {
case ResTable_config::DENSITY_LOW:
res.append("ldpi");
break;
case ResTable_config::DENSITY_MEDIUM:
res.append("mdpi");
break;
case ResTable_config::DENSITY_TV:
res.append("tvdpi");
break;
case ResTable_config::DENSITY_HIGH:
res.append("hdpi");
break;
case ResTable_config::DENSITY_XHIGH:
res.append("xhdpi");
break;
case ResTable_config::DENSITY_XXHIGH:
res.append("xxhdpi");
break;
case ResTable_config::DENSITY_XXXHIGH:
res.append("xxxhdpi");
break;
case ResTable_config::DENSITY_NONE:
res.append("nodpi");
break;
case ResTable_config::DENSITY_ANY:
res.append("anydpi");
break;
default:
res.appendFormat("%ddpi", dtohs(density));
break;
}
}
if (touchscreen != TOUCHSCREEN_ANY) {
if (res.size() > 0) res.append("-");
switch (touchscreen) {
case ResTable_config::TOUCHSCREEN_NOTOUCH:
res.append("notouch");
break;
case ResTable_config::TOUCHSCREEN_FINGER:
res.append("finger");
break;
case ResTable_config::TOUCHSCREEN_STYLUS:
res.append("stylus");
break;
default:
res.appendFormat("touchscreen=%d", dtohs(touchscreen));
break;
}
}
if ((inputFlags&MASK_KEYSHIDDEN) != 0) {
if (res.size() > 0) res.append("-");
switch (inputFlags&MASK_KEYSHIDDEN) {
case ResTable_config::KEYSHIDDEN_NO:
res.append("keysexposed");
break;
case ResTable_config::KEYSHIDDEN_YES:
res.append("keyshidden");
break;
case ResTable_config::KEYSHIDDEN_SOFT:
res.append("keyssoft");
break;
}
}
if (keyboard != KEYBOARD_ANY) {
if (res.size() > 0) res.append("-");
switch (keyboard) {
case ResTable_config::KEYBOARD_NOKEYS:
res.append("nokeys");
break;
case ResTable_config::KEYBOARD_QWERTY:
res.append("qwerty");
break;
case ResTable_config::KEYBOARD_12KEY:
res.append("12key");
break;
default:
res.appendFormat("keyboard=%d", dtohs(keyboard));
break;
}
}
if ((inputFlags&MASK_NAVHIDDEN) != 0) {
if (res.size() > 0) res.append("-");
switch (inputFlags&MASK_NAVHIDDEN) {
case ResTable_config::NAVHIDDEN_NO:
res.append("navexposed");
break;
case ResTable_config::NAVHIDDEN_YES:
res.append("navhidden");
break;
default:
res.appendFormat("inputFlagsNavHidden=%d",
dtohs(inputFlags&MASK_NAVHIDDEN));
break;
}
}
if (navigation != NAVIGATION_ANY) {
if (res.size() > 0) res.append("-");
switch (navigation) {
case ResTable_config::NAVIGATION_NONAV:
res.append("nonav");
break;
case ResTable_config::NAVIGATION_DPAD:
res.append("dpad");
break;
case ResTable_config::NAVIGATION_TRACKBALL:
res.append("trackball");
break;
case ResTable_config::NAVIGATION_WHEEL:
res.append("wheel");
break;
default:
res.appendFormat("navigation=%d", dtohs(navigation));
break;
}
}
if (screenSize != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("%dx%d", dtohs(screenWidth), dtohs(screenHeight));
}
if (version != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("v%d", dtohs(sdkVersion));
if (minorVersion != 0) {
res.appendFormat(".%d", dtohs(minorVersion));
}
}
return res;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
struct ResTable::Header
{
Header(ResTable* _owner) : owner(_owner), ownedData(NULL), header(NULL),
resourceIDMap(NULL), resourceIDMapSize(0) { }
~Header()
{
free(resourceIDMap);
}
const ResTable* const owner;
void* ownedData;
const ResTable_header* header;
size_t size;
const uint8_t* dataEnd;
size_t index;
int32_t cookie;
ResStringPool values;
uint32_t* resourceIDMap;
size_t resourceIDMapSize;
};
struct ResTable::Entry {
ResTable_config config;
const ResTable_entry* entry;
const ResTable_type* type;
uint32_t specFlags;
const Package* package;
StringPoolRef typeStr;
StringPoolRef keyStr;
};
struct ResTable::Type
{
Type(const Header* _header, const Package* _package, size_t count)
: header(_header), package(_package), entryCount(count),
typeSpec(NULL), typeSpecFlags(NULL) { }
const Header* const header;
const Package* const package;
const size_t entryCount;
const ResTable_typeSpec* typeSpec;
const uint32_t* typeSpecFlags;
IdmapEntries idmapEntries;
Vector<const ResTable_type*> configs;
};
struct ResTable::Package
{
Package(ResTable* _owner, const Header* _header, const ResTable_package* _package)
: owner(_owner), header(_header), package(_package), typeIdOffset(0) {
if (dtohs(package->header.headerSize) == sizeof(package)) {
// The package structure is the same size as the definition.
// This means it contains the typeIdOffset field.
typeIdOffset = package->typeIdOffset;
}
}
const ResTable* const owner;
const Header* const header;
const ResTable_package* const package;
ResStringPool typeStrings;
ResStringPool keyStrings;
size_t typeIdOffset;
};
// A group of objects describing a particular resource package.
// The first in 'package' is always the root object (from the resource
// table that defined the package); the ones after are skins on top of it.
struct ResTable::PackageGroup
{
PackageGroup(ResTable* _owner, const String16& _name, uint32_t _id)
: owner(_owner)
, name(_name)
, id(_id)
, largestTypeId(0)
, bags(NULL)
, dynamicRefTable(static_cast<uint8_t>(_id))
{ }
~PackageGroup() {
clearBagCache();
const size_t numTypes = types.size();
for (size_t i = 0; i < numTypes; i++) {
const TypeList& typeList = types[i];
const size_t numInnerTypes = typeList.size();
for (size_t j = 0; j < numInnerTypes; j++) {
if (typeList[j]->package->owner == owner) {
delete typeList[j];
}
}
}
const size_t N = packages.size();
for (size_t i=0; i<N; i++) {
Package* pkg = packages[i];
if (pkg->owner == owner) {
delete pkg;
}
}
}
void clearBagCache() {
if (bags) {
TABLE_NOISY(printf("bags=%p\n", bags));
for (size_t i = 0; i < bags->size(); i++) {
TABLE_NOISY(printf("type=%d\n", i));
const TypeList& typeList = types[i];
if (!typeList.isEmpty()) {
bag_set** typeBags = bags->get(i);
TABLE_NOISY(printf("typeBags=%p\n", typeBags));
if (typeBags) {
const size_t N = typeList[0]->entryCount;
TABLE_NOISY(printf("type->entryCount=%x\n", N));
for (size_t j=0; j<N; j++) {
if (typeBags[j] && typeBags[j] != (bag_set*)0xFFFFFFFF)
free(typeBags[j]);
}
free(typeBags);
}
}
}
delete bags;
bags = NULL;
}
}
ssize_t findType16(const char16_t* type, size_t len) const {
const size_t N = packages.size();
for (size_t i = 0; i < N; i++) {
ssize_t index = packages[i]->typeStrings.indexOfString(type, len);
if (index >= 0) {
return index + packages[i]->typeIdOffset;
}
}
return -1;
}
const ResTable* const owner;
String16 const name;
uint32_t const id;
// This is mainly used to keep track of the loaded packages
// and to clean them up properly. Accessing resources happens from
// the 'types' array.
Vector<Package*> packages;
ByteBucketArray<TypeList> types;
uint8_t largestTypeId;
// Computed attribute bags, first indexed by the type and second
// by the entry in that type.
ByteBucketArray<bag_set**>* bags;
// The table mapping dynamic references to resolved references for
// this package group.
// TODO: We may be able to support dynamic references in overlays
// by having these tables in a per-package scope rather than
// per-package-group.
DynamicRefTable dynamicRefTable;
};
struct ResTable::bag_set
{
size_t numAttrs; // number in array
size_t availAttrs; // total space in array
uint32_t typeSpecFlags;
// Followed by 'numAttr' bag_entry structures.
};
ResTable::Theme::Theme(const ResTable& table)
: mTable(table)
{
memset(mPackages, 0, sizeof(mPackages));
}
ResTable::Theme::~Theme()
{
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
package_info* pi = mPackages[i];
if (pi != NULL) {
free_package(pi);
}
}
}
void ResTable::Theme::free_package(package_info* pi)
{
for (size_t j = 0; j <= Res_MAXTYPE; j++) {
theme_entry* te = pi->types[j].entries;
if (te != NULL) {
free(te);
}
}
free(pi);
}
ResTable::Theme::package_info* ResTable::Theme::copy_package(package_info* pi)
{
package_info* newpi = (package_info*)malloc(sizeof(package_info));
for (size_t j = 0; j <= Res_MAXTYPE; j++) {
size_t cnt = pi->types[j].numEntries;
newpi->types[j].numEntries = cnt;
theme_entry* te = pi->types[j].entries;
if (te != NULL) {
theme_entry* newte = (theme_entry*)malloc(cnt*sizeof(theme_entry));
newpi->types[j].entries = newte;
memcpy(newte, te, cnt*sizeof(theme_entry));
} else {
newpi->types[j].entries = NULL;
}
}
return newpi;
}
status_t ResTable::Theme::applyStyle(uint32_t resID, bool force)
{
const bag_entry* bag;
uint32_t bagTypeSpecFlags = 0;
mTable.lock();
const ssize_t N = mTable.getBagLocked(resID, &bag, &bagTypeSpecFlags);
TABLE_NOISY(ALOGV("Applying style 0x%08x to theme %p, count=%d", resID, this, N));
if (N < 0) {
mTable.unlock();
return N;
}
uint32_t curPackage = 0xffffffff;
ssize_t curPackageIndex = 0;
package_info* curPI = NULL;
uint32_t curType = 0xffffffff;
size_t numEntries = 0;
theme_entry* curEntries = NULL;
const bag_entry* end = bag + N;
while (bag < end) {
const uint32_t attrRes = bag->map.name.ident;
const uint32_t p = Res_GETPACKAGE(attrRes);
const uint32_t t = Res_GETTYPE(attrRes);
const uint32_t e = Res_GETENTRY(attrRes);
if (curPackage != p) {
const ssize_t pidx = mTable.getResourcePackageIndex(attrRes);
if (pidx < 0) {
ALOGE("Style contains key with bad package: 0x%08x\n", attrRes);
bag++;
continue;
}
curPackage = p;
curPackageIndex = pidx;
curPI = mPackages[pidx];
if (curPI == NULL) {
PackageGroup* const grp = mTable.mPackageGroups[pidx];
curPI = (package_info*)malloc(sizeof(package_info));
memset(curPI, 0, sizeof(*curPI));
mPackages[pidx] = curPI;
}
curType = 0xffffffff;
}
if (curType != t) {
if (t > Res_MAXTYPE) {
ALOGE("Style contains key with bad type: 0x%08x\n", attrRes);
bag++;
continue;
}
curType = t;
curEntries = curPI->types[t].entries;
if (curEntries == NULL) {
PackageGroup* const grp = mTable.mPackageGroups[curPackageIndex];
const TypeList& typeList = grp->types[t];
int cnt = typeList.isEmpty() ? 0 : typeList[0]->entryCount;
curEntries = (theme_entry*)malloc(cnt*sizeof(theme_entry));
memset(curEntries, Res_value::TYPE_NULL, cnt*sizeof(theme_entry));
curPI->types[t].numEntries = cnt;
curPI->types[t].entries = curEntries;
}
numEntries = curPI->types[t].numEntries;
}
if (e >= numEntries) {
ALOGE("Style contains key with bad entry: 0x%08x\n", attrRes);
bag++;
continue;
}
theme_entry* curEntry = curEntries + e;
TABLE_NOISY(ALOGV("Attr 0x%08x: type=0x%x, data=0x%08x; curType=0x%x",
attrRes, bag->map.value.dataType, bag->map.value.data,
curEntry->value.dataType));
if (force || curEntry->value.dataType == Res_value::TYPE_NULL) {
curEntry->stringBlock = bag->stringBlock;
curEntry->typeSpecFlags |= bagTypeSpecFlags;
curEntry->value = bag->map.value;
}
bag++;
}
mTable.unlock();
//ALOGI("Applying style 0x%08x (force=%d) theme %p...\n", resID, force, this);
//dumpToLog();
return NO_ERROR;
}
status_t ResTable::Theme::setTo(const Theme& other)
{
//ALOGI("Setting theme %p from theme %p...\n", this, &other);
//dumpToLog();
//other.dumpToLog();
if (&mTable == &other.mTable) {
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
if (mPackages[i] != NULL) {
free_package(mPackages[i]);
}
if (other.mPackages[i] != NULL) {
mPackages[i] = copy_package(other.mPackages[i]);
} else {
mPackages[i] = NULL;
}
}
} else {
// @todo: need to really implement this, not just copy
// the system package (which is still wrong because it isn't
// fixing up resource references).
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
if (mPackages[i] != NULL) {
free_package(mPackages[i]);
}
if (i == 0 && other.mPackages[i] != NULL) {
mPackages[i] = copy_package(other.mPackages[i]);
} else {
mPackages[i] = NULL;
}
}
}
//ALOGI("Final theme:");
//dumpToLog();
return NO_ERROR;
}
ssize_t ResTable::Theme::getAttribute(uint32_t resID, Res_value* outValue,
uint32_t* outTypeSpecFlags) const
{
int cnt = 20;
if (outTypeSpecFlags != NULL) *outTypeSpecFlags = 0;
do {
const ssize_t p = mTable.getResourcePackageIndex(resID);
const uint32_t t = Res_GETTYPE(resID);
const uint32_t e = Res_GETENTRY(resID);
TABLE_THEME(ALOGI("Looking up attr 0x%08x in theme %p", resID, this));
if (p >= 0) {
const package_info* const pi = mPackages[p];
TABLE_THEME(ALOGI("Found package: %p", pi));
if (pi != NULL) {
TABLE_THEME(ALOGI("Desired type index is %ld in avail %d", t, Res_MAXTYPE + 1));
if (t <= Res_MAXTYPE) {
const type_info& ti = pi->types[t];
TABLE_THEME(ALOGI("Desired entry index is %ld in avail %d", e, ti.numEntries));
if (e < ti.numEntries) {
const theme_entry& te = ti.entries[e];
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags |= te.typeSpecFlags;
}
TABLE_THEME(ALOGI("Theme value: type=0x%x, data=0x%08x",
te.value.dataType, te.value.data));
const uint8_t type = te.value.dataType;
if (type == Res_value::TYPE_ATTRIBUTE) {
if (cnt > 0) {
cnt--;
resID = te.value.data;
continue;
}
ALOGW("Too many attribute references, stopped at: 0x%08x\n", resID);
return BAD_INDEX;
} else if (type != Res_value::TYPE_NULL) {
*outValue = te.value;
return te.stringBlock;
}
return BAD_INDEX;
}
}
}
}
break;
} while (true);
return BAD_INDEX;
}
ssize_t ResTable::Theme::resolveAttributeReference(Res_value* inOutValue,
ssize_t blockIndex, uint32_t* outLastRef,
uint32_t* inoutTypeSpecFlags, ResTable_config* inoutConfig) const
{
//printf("Resolving type=0x%x\n", inOutValue->dataType);
if (inOutValue->dataType == Res_value::TYPE_ATTRIBUTE) {
uint32_t newTypeSpecFlags;
blockIndex = getAttribute(inOutValue->data, inOutValue, &newTypeSpecFlags);
TABLE_THEME(ALOGI("Resolving attr reference: blockIndex=%d, type=0x%x, data=%p\n",
(int)blockIndex, (int)inOutValue->dataType, (void*)inOutValue->data));
if (inoutTypeSpecFlags != NULL) *inoutTypeSpecFlags |= newTypeSpecFlags;
//printf("Retrieved attribute new type=0x%x\n", inOutValue->dataType);
if (blockIndex < 0) {
return blockIndex;
}
}
return mTable.resolveReference(inOutValue, blockIndex, outLastRef,
inoutTypeSpecFlags, inoutConfig);
}
void ResTable::Theme::dumpToLog() const
{
ALOGI("Theme %p:\n", this);
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
package_info* pi = mPackages[i];
if (pi == NULL) continue;
ALOGI(" Package #0x%02x:\n", (int)(i + 1));
for (size_t j = 0; j <= Res_MAXTYPE; j++) {
type_info& ti = pi->types[j];
if (ti.numEntries == 0) continue;
ALOGI(" Type #0x%02x:\n", (int)(j + 1));
for (size_t k = 0; k < ti.numEntries; k++) {
const theme_entry& te = ti.entries[k];
if (te.value.dataType == Res_value::TYPE_NULL) continue;
ALOGI(" 0x%08x: t=0x%x, d=0x%08x (block=%d)\n",
(int)Res_MAKEID(i, j, k),
te.value.dataType, (int)te.value.data, (int)te.stringBlock);
}
}
}
}
ResTable::ResTable()
: mError(NO_INIT), mNextPackageId(2)
{
memset(&mParams, 0, sizeof(mParams));
memset(mPackageMap, 0, sizeof(mPackageMap));
//ALOGI("Creating ResTable %p\n", this);
}
ResTable::ResTable(const void* data, size_t size, const int32_t cookie, bool copyData)
: mError(NO_INIT), mNextPackageId(2)
{
memset(&mParams, 0, sizeof(mParams));
memset(mPackageMap, 0, sizeof(mPackageMap));
addInternal(data, size, NULL, 0, cookie, copyData);
LOG_FATAL_IF(mError != NO_ERROR, "Error parsing resource table");
//ALOGI("Creating ResTable %p\n", this);
}
ResTable::~ResTable()
{
//ALOGI("Destroying ResTable in %p\n", this);
uninit();
}
inline ssize_t ResTable::getResourcePackageIndex(uint32_t resID) const
{
return ((ssize_t)mPackageMap[Res_GETPACKAGE(resID)+1])-1;
}
status_t ResTable::add(const void* data, size_t size, const int32_t cookie, bool copyData) {
return addInternal(data, size, NULL, 0, cookie, copyData);
}
status_t ResTable::add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
const int32_t cookie, bool copyData) {
return addInternal(data, size, idmapData, idmapDataSize, cookie, copyData);
}
status_t ResTable::add(Asset* asset, const int32_t cookie, bool copyData) {
const void* data = asset->getBuffer(true);
if (data == NULL) {
ALOGW("Unable to get buffer of resource asset file");
return UNKNOWN_ERROR;
}
return addInternal(data, static_cast<size_t>(asset->getLength()), NULL, 0, cookie, copyData);
}
status_t ResTable::add(Asset* asset, Asset* idmapAsset, const int32_t cookie, bool copyData) {
const void* data = asset->getBuffer(true);
if (data == NULL) {
ALOGW("Unable to get buffer of resource asset file");
return UNKNOWN_ERROR;
}
size_t idmapSize = 0;
const void* idmapData = NULL;
if (idmapAsset != NULL) {
idmapData = idmapAsset->getBuffer(true);
if (idmapData == NULL) {
ALOGW("Unable to get buffer of idmap asset file");
return UNKNOWN_ERROR;
}
idmapSize = static_cast<size_t>(idmapAsset->getLength());
}
return addInternal(data, static_cast<size_t>(asset->getLength()),
idmapData, idmapSize, cookie, copyData);
}
status_t ResTable::add(ResTable* src)
{
mError = src->mError;
for (size_t i=0; i<src->mHeaders.size(); i++) {
mHeaders.add(src->mHeaders[i]);
}
for (size_t i=0; i<src->mPackageGroups.size(); i++) {
PackageGroup* srcPg = src->mPackageGroups[i];
PackageGroup* pg = new PackageGroup(this, srcPg->name, srcPg->id);
for (size_t j=0; j<srcPg->packages.size(); j++) {
pg->packages.add(srcPg->packages[j]);
}
for (size_t j = 0; j < srcPg->types.size(); j++) {
if (srcPg->types[j].isEmpty()) {
continue;
}
TypeList& typeList = pg->types.editItemAt(j);
typeList.appendVector(srcPg->types[j]);
}
pg->dynamicRefTable.addMappings(srcPg->dynamicRefTable);
pg->largestTypeId = max(pg->largestTypeId, srcPg->largestTypeId);
mPackageGroups.add(pg);
}
memcpy(mPackageMap, src->mPackageMap, sizeof(mPackageMap));
return mError;
}
status_t ResTable::addEmpty(const int32_t cookie) {
Header* header = new Header(this);
header->index = mHeaders.size();
header->cookie = cookie;
header->values.setToEmpty();
header->ownedData = calloc(1, sizeof(ResTable_header));
ResTable_header* resHeader = (ResTable_header*) header->ownedData;
resHeader->header.type = RES_TABLE_TYPE;
resHeader->header.headerSize = sizeof(ResTable_header);
resHeader->header.size = sizeof(ResTable_header);
header->header = (const ResTable_header*) resHeader;
mHeaders.add(header);
return (mError=NO_ERROR);
}
status_t ResTable::addInternal(const void* data, size_t dataSize, const void* idmapData, size_t idmapDataSize,
const int32_t cookie, bool copyData)
{
if (!data) {
return NO_ERROR;
}
if (dataSize < sizeof(ResTable_header)) {
ALOGE("Invalid data. Size(%d) is smaller than a ResTable_header(%d).",
(int) dataSize, (int) sizeof(ResTable_header));
return UNKNOWN_ERROR;
}
Header* header = new Header(this);
header->index = mHeaders.size();
header->cookie = cookie;
if (idmapData != NULL) {
header->resourceIDMap = (uint32_t*) malloc(idmapDataSize);
if (header->resourceIDMap == NULL) {
delete header;
return (mError = NO_MEMORY);
}
memcpy(header->resourceIDMap, idmapData, idmapDataSize);
header->resourceIDMapSize = idmapDataSize;
}
mHeaders.add(header);
const bool notDeviceEndian = htods(0xf0) != 0xf0;
LOAD_TABLE_NOISY(
ALOGV("Adding resources to ResTable: data=%p, size=0x%x, cookie=%d, copy=%d "
"idmap=%p\n", data, dataSize, cookie, copyData, idmap));
if (copyData || notDeviceEndian) {
header->ownedData = malloc(dataSize);
if (header->ownedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(header->ownedData, data, dataSize);
data = header->ownedData;
}
header->header = (const ResTable_header*)data;
header->size = dtohl(header->header->header.size);
//ALOGI("Got size 0x%x, again size 0x%x, raw size 0x%x\n", header->size,
// dtohl(header->header->header.size), header->header->header.size);
LOAD_TABLE_NOISY(ALOGV("Loading ResTable @%p:\n", header->header));
if (dtohs(header->header->header.headerSize) > header->size
|| header->size > dataSize) {
ALOGW("Bad resource table: header size 0x%x or total size 0x%x is larger than data size 0x%x\n",
(int)dtohs(header->header->header.headerSize),
(int)header->size, (int)dataSize);
return (mError=BAD_TYPE);
}
if (((dtohs(header->header->header.headerSize)|header->size)&0x3) != 0) {
ALOGW("Bad resource table: header size 0x%x or total size 0x%x is not on an integer boundary\n",
(int)dtohs(header->header->header.headerSize),
(int)header->size);
return (mError=BAD_TYPE);
}
header->dataEnd = ((const uint8_t*)header->header) + header->size;
// Iterate through all chunks.
size_t curPackage = 0;
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)header->header)
+ dtohs(header->header->header.headerSize));
while (((const uint8_t*)chunk) <= (header->dataEnd-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) <= (header->dataEnd-dtohl(chunk->size))) {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header), header->dataEnd, "ResTable");
if (err != NO_ERROR) {
return (mError=err);
}
TABLE_NOISY(ALOGV("Chunk: type=0x%x, headerSize=0x%x, size=0x%x, pos=%p\n",
dtohs(chunk->type), dtohs(chunk->headerSize), dtohl(chunk->size),
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header))));
const size_t csize = dtohl(chunk->size);
const uint16_t ctype = dtohs(chunk->type);
if (ctype == RES_STRING_POOL_TYPE) {
if (header->values.getError() != NO_ERROR) {
// Only use the first string chunk; ignore any others that
// may appear.
status_t err = header->values.setTo(chunk, csize);
if (err != NO_ERROR) {
return (mError=err);
}
} else {
ALOGW("Multiple string chunks found in resource table.");
}
} else if (ctype == RES_TABLE_PACKAGE_TYPE) {
if (curPackage >= dtohl(header->header->packageCount)) {
ALOGW("More package chunks were found than the %d declared in the header.",
dtohl(header->header->packageCount));
return (mError=BAD_TYPE);
}
if (parsePackage((ResTable_package*)chunk, header) != NO_ERROR) {
return mError;
}
curPackage++;
} else {
ALOGW("Unknown chunk type 0x%x in table at %p.\n",
ctype,
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header)));
}
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + csize);
}
if (curPackage < dtohl(header->header->packageCount)) {
ALOGW("Fewer package chunks (%d) were found than the %d declared in the header.",
(int)curPackage, dtohl(header->header->packageCount));
return (mError=BAD_TYPE);
}
mError = header->values.getError();
if (mError != NO_ERROR) {
ALOGW("No string values found in resource table!");
}
TABLE_NOISY(ALOGV("Returning from add with mError=%d\n", mError));
return mError;
}
status_t ResTable::getError() const
{
return mError;
}
void ResTable::uninit()
{
mError = NO_INIT;
size_t N = mPackageGroups.size();
for (size_t i=0; i<N; i++) {
PackageGroup* g = mPackageGroups[i];
delete g;
}
N = mHeaders.size();
for (size_t i=0; i<N; i++) {
Header* header = mHeaders[i];
if (header->owner == this) {
if (header->ownedData) {
free(header->ownedData);
}
delete header;
}
}
mPackageGroups.clear();
mHeaders.clear();
}
bool ResTable::getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const
{
if (mError != NO_ERROR) {
return false;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
if (Res_GETPACKAGE(resID)+1 == 0) {
ALOGW("No package identifier when getting name for resource number 0x%08x", resID);
} else {
ALOGW("No known package when getting name for resource number 0x%08x", resID);
}
return false;
}
if (t < 0) {
ALOGW("No type identifier when getting name for resource number 0x%08x", resID);
return false;
}
const PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting name for resource number 0x%08x", resID);
return false;
}
Entry entry;
status_t err = getEntry(grp, t, e, NULL, &entry);
if (err != NO_ERROR) {
return false;
}
outName->package = grp->name.string();
outName->packageLen = grp->name.size();
if (allowUtf8) {
outName->type8 = entry.typeStr.string8(&outName->typeLen);
outName->name8 = entry.keyStr.string8(&outName->nameLen);
} else {
outName->type8 = NULL;
outName->name8 = NULL;
}
if (outName->type8 == NULL) {
outName->type = entry.typeStr.string16(&outName->typeLen);
// If we have a bad index for some reason, we should abort.
if (outName->type == NULL) {
return false;
}
}
if (outName->name8 == NULL) {
outName->name = entry.keyStr.string16(&outName->nameLen);
// If we have a bad index for some reason, we should abort.
if (outName->name == NULL) {
return false;
}
}
return true;
}
ssize_t ResTable::getResource(uint32_t resID, Res_value* outValue, bool mayBeBag, uint16_t density,
uint32_t* outSpecFlags, ResTable_config* outConfig) const
{
if (mError != NO_ERROR) {
return mError;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
if (Res_GETPACKAGE(resID)+1 == 0) {
ALOGW("No package identifier when getting value for resource number 0x%08x", resID);
} else {
ALOGW("No known package when getting value for resource number 0x%08x", resID);
}
return BAD_INDEX;
}
if (t < 0) {
ALOGW("No type identifier when getting value for resource number 0x%08x", resID);
return BAD_INDEX;
}
const PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting value for resource number 0x%08x", resID);
return BAD_INDEX;
}
// Allow overriding density
ResTable_config desiredConfig = mParams;
if (density > 0) {
desiredConfig.density = density;
}
Entry entry;
status_t err = getEntry(grp, t, e, &desiredConfig, &entry);
if (err != NO_ERROR) {
ALOGW("Failure getting entry for 0x%08x (t=%d e=%d) (error %d)\n",
resID, t, e, err);
return err;
}
if ((dtohs(entry.entry->flags) & ResTable_entry::FLAG_COMPLEX) != 0) {
if (!mayBeBag) {
ALOGW("Requesting resource 0x%08x failed because it is complex\n", resID);
}
return BAD_VALUE;
}
const Res_value* value = reinterpret_cast<const Res_value*>(
reinterpret_cast<const uint8_t*>(entry.entry) + entry.entry->size);
outValue->size = dtohs(value->size);
outValue->res0 = value->res0;
outValue->dataType = value->dataType;
outValue->data = dtohl(value->data);
// The reference may be pointing to a resource in a shared library. These
// references have build-time generated package IDs. These ids may not match
// the actual package IDs of the corresponding packages in this ResTable.
// We need to fix the package ID based on a mapping.
if (grp->dynamicRefTable.lookupResourceValue(outValue) != NO_ERROR) {
ALOGW("Failed to resolve referenced package: 0x%08x", outValue->data);
return BAD_VALUE;
}
TABLE_NOISY(size_t len;
printf("Found value: pkg=%d, type=%d, str=%s, int=%d\n",
entry.package->header->index,
outValue->dataType,
outValue->dataType == Res_value::TYPE_STRING
? String8(entry.package->header->values.stringAt(
outValue->data, &len)).string()
: "",
outValue->data));
if (outSpecFlags != NULL) {
*outSpecFlags = entry.specFlags;
}
if (outConfig != NULL) {
*outConfig = entry.config;
}
return entry.package->header->index;
}
ssize_t ResTable::resolveReference(Res_value* value, ssize_t blockIndex,
uint32_t* outLastRef, uint32_t* inoutTypeSpecFlags,
ResTable_config* outConfig) const
{
int count=0;
while (blockIndex >= 0 && value->dataType == Res_value::TYPE_REFERENCE
&& value->data != 0 && count < 20) {
if (outLastRef) *outLastRef = value->data;
uint32_t lastRef = value->data;
uint32_t newFlags = 0;
const ssize_t newIndex = getResource(value->data, value, true, 0, &newFlags,
outConfig);
if (newIndex == BAD_INDEX) {
return BAD_INDEX;
}
TABLE_THEME(ALOGI("Resolving reference %p: newIndex=%d, type=0x%x, data=%p\n",
(void*)lastRef, (int)newIndex, (int)value->dataType, (void*)value->data));
//printf("Getting reference 0x%08x: newIndex=%d\n", value->data, newIndex);
if (inoutTypeSpecFlags != NULL) *inoutTypeSpecFlags |= newFlags;
if (newIndex < 0) {
// This can fail if the resource being referenced is a style...
// in this case, just return the reference, and expect the
// caller to deal with.
return blockIndex;
}
blockIndex = newIndex;
count++;
}
return blockIndex;
}
const char16_t* ResTable::valueToString(
const Res_value* value, size_t stringBlock,
char16_t /*tmpBuffer*/ [TMP_BUFFER_SIZE], size_t* outLen) const
{
if (!value) {
return NULL;
}
if (value->dataType == value->TYPE_STRING) {
return getTableStringBlock(stringBlock)->stringAt(value->data, outLen);
}
// XXX do int to string conversions.
return NULL;
}
ssize_t ResTable::lockBag(uint32_t resID, const bag_entry** outBag) const
{
mLock.lock();
ssize_t err = getBagLocked(resID, outBag);
if (err < NO_ERROR) {
//printf("*** get failed! unlocking\n");
mLock.unlock();
}
return err;
}
void ResTable::unlockBag(const bag_entry* /*bag*/) const
{
//printf("<<< unlockBag %p\n", this);
mLock.unlock();
}
void ResTable::lock() const
{
mLock.lock();
}
void ResTable::unlock() const
{
mLock.unlock();
}
ssize_t ResTable::getBagLocked(uint32_t resID, const bag_entry** outBag,
uint32_t* outTypeSpecFlags) const
{
if (mError != NO_ERROR) {
return mError;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
ALOGW("Invalid package identifier when getting bag for resource number 0x%08x", resID);
return BAD_INDEX;
}
if (t < 0) {
ALOGW("No type identifier when getting bag for resource number 0x%08x", resID);
return BAD_INDEX;
}
//printf("Get bag: id=0x%08x, p=%d, t=%d\n", resID, p, t);
PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting bag for resource number 0x%08x", resID);
return BAD_INDEX;
}
const TypeList& typeConfigs = grp->types[t];
if (typeConfigs.isEmpty()) {
ALOGW("Type identifier 0x%x does not exist.", t+1);
return BAD_INDEX;
}
const size_t NENTRY = typeConfigs[0]->entryCount;
if (e >= (int)NENTRY) {
ALOGW("Entry identifier 0x%x is larger than entry count 0x%x",
e, (int)typeConfigs[0]->entryCount);
return BAD_INDEX;
}
// First see if we've already computed this bag...
if (grp->bags) {
bag_set** typeSet = grp->bags->get(t);
if (typeSet) {
bag_set* set = typeSet[e];
if (set) {
if (set != (bag_set*)0xFFFFFFFF) {
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags = set->typeSpecFlags;
}
*outBag = (bag_entry*)(set+1);
//ALOGI("Found existing bag for: %p\n", (void*)resID);
return set->numAttrs;
}
ALOGW("Attempt to retrieve bag 0x%08x which is invalid or in a cycle.",
resID);
return BAD_INDEX;
}
}
}
// Bag not found, we need to compute it!
if (!grp->bags) {
grp->bags = new ByteBucketArray<bag_set**>();
if (!grp->bags) return NO_MEMORY;
}
bag_set** typeSet = grp->bags->get(t);
if (!typeSet) {
typeSet = (bag_set**)calloc(NENTRY, sizeof(bag_set*));
if (!typeSet) return NO_MEMORY;
grp->bags->set(t, typeSet);
}
// Mark that we are currently working on this one.
typeSet[e] = (bag_set*)0xFFFFFFFF;
TABLE_NOISY(ALOGI("Building bag: %p\n", (void*)resID));
// Now collect all bag attributes
Entry entry;
status_t err = getEntry(grp, t, e, &mParams, &entry);
if (err != NO_ERROR) {
return err;
}
const uint16_t entrySize = dtohs(entry.entry->size);
const uint32_t parent = entrySize >= sizeof(ResTable_map_entry)
? dtohl(((const ResTable_map_entry*)entry.entry)->parent.ident) : 0;
const uint32_t count = entrySize >= sizeof(ResTable_map_entry)
? dtohl(((const ResTable_map_entry*)entry.entry)->count) : 0;
size_t N = count;
TABLE_NOISY(ALOGI("Found map: size=%p parent=%p count=%d\n",
entrySize, parent, count));
// If this map inherits from another, we need to start
// with its parent's values. Otherwise start out empty.
TABLE_NOISY(printf("Creating new bag, entrySize=0x%08x, parent=0x%08x\n",
entrySize, parent));
// This is what we are building.
bag_set* set = NULL;
if (parent) {
uint32_t resolvedParent = parent;
// Bags encode a parent reference without using the standard
// Res_value structure. That means we must always try to
// resolve a parent reference in case it is actually a
// TYPE_DYNAMIC_REFERENCE.
status_t err = grp->dynamicRefTable.lookupResourceId(&resolvedParent);
if (err != NO_ERROR) {
ALOGE("Failed resolving bag parent id 0x%08x", parent);
return UNKNOWN_ERROR;
}
const bag_entry* parentBag;
uint32_t parentTypeSpecFlags = 0;
const ssize_t NP = getBagLocked(resolvedParent, &parentBag, &parentTypeSpecFlags);
const size_t NT = ((NP >= 0) ? NP : 0) + N;
set = (bag_set*)malloc(sizeof(bag_set)+sizeof(bag_entry)*NT);
if (set == NULL) {
return NO_MEMORY;
}
if (NP > 0) {
memcpy(set+1, parentBag, NP*sizeof(bag_entry));
set->numAttrs = NP;
TABLE_NOISY(ALOGI("Initialized new bag with %d inherited attributes.\n", NP));
} else {
TABLE_NOISY(ALOGI("Initialized new bag with no inherited attributes.\n"));
set->numAttrs = 0;
}
set->availAttrs = NT;
set->typeSpecFlags = parentTypeSpecFlags;
} else {
set = (bag_set*)malloc(sizeof(bag_set)+sizeof(bag_entry)*N);
if (set == NULL) {
return NO_MEMORY;
}
set->numAttrs = 0;
set->availAttrs = N;
set->typeSpecFlags = 0;
}
set->typeSpecFlags |= entry.specFlags;
// Now merge in the new attributes...
size_t curOff = (reinterpret_cast<uintptr_t>(entry.entry) - reinterpret_cast<uintptr_t>(entry.type))
+ dtohs(entry.entry->size);
const ResTable_map* map;
bag_entry* entries = (bag_entry*)(set+1);
size_t curEntry = 0;
uint32_t pos = 0;
TABLE_NOISY(ALOGI("Starting with set %p, entries=%p, avail=%d\n",
set, entries, set->availAttrs));
while (pos < count) {
TABLE_NOISY(printf("Now at %p\n", (void*)curOff));
if (curOff > (dtohl(entry.type->header.size)-sizeof(ResTable_map))) {
ALOGW("ResTable_map at %d is beyond type chunk data %d",
(int)curOff, dtohl(entry.type->header.size));
return BAD_TYPE;
}
map = (const ResTable_map*)(((const uint8_t*)entry.type) + curOff);
N++;
uint32_t newName = htodl(map->name.ident);
if (!Res_INTERNALID(newName)) {
// Attributes don't have a resource id as the name. They specify
// other data, which would be wrong to change via a lookup.
if (grp->dynamicRefTable.lookupResourceId(&newName) != NO_ERROR) {
ALOGE("Failed resolving ResTable_map name at %d with ident 0x%08x",
(int) curOff, (int) newName);
return UNKNOWN_ERROR;
}
}
bool isInside;
uint32_t oldName = 0;
while ((isInside=(curEntry < set->numAttrs))
&& (oldName=entries[curEntry].map.name.ident) < newName) {
TABLE_NOISY(printf("#%d: Keeping existing attribute: 0x%08x\n",
curEntry, entries[curEntry].map.name.ident));
curEntry++;
}
if ((!isInside) || oldName != newName) {
// This is a new attribute... figure out what to do with it.
if (set->numAttrs >= set->availAttrs) {
// Need to alloc more memory...
const size_t newAvail = set->availAttrs+N;
set = (bag_set*)realloc(set,
sizeof(bag_set)
+ sizeof(bag_entry)*newAvail);
if (set == NULL) {
return NO_MEMORY;
}
set->availAttrs = newAvail;
entries = (bag_entry*)(set+1);
TABLE_NOISY(printf("Reallocated set %p, entries=%p, avail=%d\n",
set, entries, set->availAttrs));
}
if (isInside) {
// Going in the middle, need to make space.
memmove(entries+curEntry+1, entries+curEntry,
sizeof(bag_entry)*(set->numAttrs-curEntry));
set->numAttrs++;
}
TABLE_NOISY(printf("#%d: Inserting new attribute: 0x%08x\n",
curEntry, newName));
} else {
TABLE_NOISY(printf("#%d: Replacing existing attribute: 0x%08x\n",
curEntry, oldName));
}
bag_entry* cur = entries+curEntry;
cur->stringBlock = entry.package->header->index;
cur->map.name.ident = newName;
cur->map.value.copyFrom_dtoh(map->value);
status_t err = grp->dynamicRefTable.lookupResourceValue(&cur->map.value);
if (err != NO_ERROR) {
ALOGE("Reference item(0x%08x) in bag could not be resolved.", cur->map.value.data);
return UNKNOWN_ERROR;
}
TABLE_NOISY(printf("Setting entry #%d %p: block=%d, name=0x%08x, type=%d, data=0x%08x\n",
curEntry, cur, cur->stringBlock, cur->map.name.ident,
cur->map.value.dataType, cur->map.value.data));
// On to the next!
curEntry++;
pos++;
const size_t size = dtohs(map->value.size);
curOff += size + sizeof(*map)-sizeof(map->value);
};
if (curEntry > set->numAttrs) {
set->numAttrs = curEntry;
}
// And this is it...
typeSet[e] = set;
if (set) {
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags = set->typeSpecFlags;
}
*outBag = (bag_entry*)(set+1);
TABLE_NOISY(ALOGI("Returning %d attrs\n", set->numAttrs));
return set->numAttrs;
}
return BAD_INDEX;
}
void ResTable::setParameters(const ResTable_config* params)
{
mLock.lock();
TABLE_GETENTRY(ALOGI("Setting parameters: %s\n", params->toString().string()));
mParams = *params;
for (size_t i=0; i<mPackageGroups.size(); i++) {
TABLE_NOISY(ALOGI("CLEARING BAGS FOR GROUP %d!", i));
mPackageGroups[i]->clearBagCache();
}
mLock.unlock();
}
void ResTable::getParameters(ResTable_config* params) const
{
mLock.lock();
*params = mParams;
mLock.unlock();
}
struct id_name_map {
uint32_t id;
size_t len;
char16_t name[6];
};
const static id_name_map ID_NAMES[] = {
{ ResTable_map::ATTR_TYPE, 5, { '^', 't', 'y', 'p', 'e' } },
{ ResTable_map::ATTR_L10N, 5, { '^', 'l', '1', '0', 'n' } },
{ ResTable_map::ATTR_MIN, 4, { '^', 'm', 'i', 'n' } },
{ ResTable_map::ATTR_MAX, 4, { '^', 'm', 'a', 'x' } },
{ ResTable_map::ATTR_OTHER, 6, { '^', 'o', 't', 'h', 'e', 'r' } },
{ ResTable_map::ATTR_ZERO, 5, { '^', 'z', 'e', 'r', 'o' } },
{ ResTable_map::ATTR_ONE, 4, { '^', 'o', 'n', 'e' } },
{ ResTable_map::ATTR_TWO, 4, { '^', 't', 'w', 'o' } },
{ ResTable_map::ATTR_FEW, 4, { '^', 'f', 'e', 'w' } },
{ ResTable_map::ATTR_MANY, 5, { '^', 'm', 'a', 'n', 'y' } },
};
uint32_t ResTable::identifierForName(const char16_t* name, size_t nameLen,
const char16_t* type, size_t typeLen,
const char16_t* package,
size_t packageLen,
uint32_t* outTypeSpecFlags) const
{
TABLE_SUPER_NOISY(printf("Identifier for name: error=%d\n", mError));
// Check for internal resource identifier as the very first thing, so
// that we will always find them even when there are no resources.
if (name[0] == '^') {
const int N = (sizeof(ID_NAMES)/sizeof(ID_NAMES[0]));
size_t len;
for (int i=0; i<N; i++) {
const id_name_map* m = ID_NAMES + i;
len = m->len;
if (len != nameLen) {
continue;
}
for (size_t j=1; j<len; j++) {
if (m->name[j] != name[j]) {
goto nope;
}
}
if (outTypeSpecFlags) {
*outTypeSpecFlags = ResTable_typeSpec::SPEC_PUBLIC;
}
return m->id;
nope:
;
}
if (nameLen > 7) {
if (name[1] == 'i' && name[2] == 'n'
&& name[3] == 'd' && name[4] == 'e' && name[5] == 'x'
&& name[6] == '_') {
int index = atoi(String8(name + 7, nameLen - 7).string());
if (Res_CHECKID(index)) {
ALOGW("Array resource index: %d is too large.",
index);
return 0;
}
if (outTypeSpecFlags) {
*outTypeSpecFlags = ResTable_typeSpec::SPEC_PUBLIC;
}
return Res_MAKEARRAY(index);
}
}
return 0;
}
if (mError != NO_ERROR) {
return 0;
}
bool fakePublic = false;
// Figure out the package and type we are looking in...
const char16_t* packageEnd = NULL;
const char16_t* typeEnd = NULL;
const char16_t* const nameEnd = name+nameLen;
const char16_t* p = name;
while (p < nameEnd) {
if (*p == ':') packageEnd = p;
else if (*p == '/') typeEnd = p;
p++;
}
if (*name == '@') {
name++;
if (*name == '*') {
fakePublic = true;
name++;
}
}
if (name >= nameEnd) {
return 0;
}
if (packageEnd) {
package = name;
packageLen = packageEnd-name;
name = packageEnd+1;
} else if (!package) {
return 0;
}
if (typeEnd) {
type = name;
typeLen = typeEnd-name;
name = typeEnd+1;
} else if (!type) {
return 0;
}
if (name >= nameEnd) {
return 0;
}
nameLen = nameEnd-name;
TABLE_NOISY(printf("Looking for identifier: type=%s, name=%s, package=%s\n",
String8(type, typeLen).string(),
String8(name, nameLen).string(),
String8(package, packageLen).string()));
const size_t NG = mPackageGroups.size();
for (size_t ig=0; ig<NG; ig++) {
const PackageGroup* group = mPackageGroups[ig];
if (strzcmp16(package, packageLen,
group->name.string(), group->name.size())) {
TABLE_NOISY(printf("Skipping package group: %s\n", String8(group->name).string()));
continue;
}
const ssize_t ti = group->findType16(type, typeLen);
if (ti < 0) {
TABLE_NOISY(printf("Type not found in package %s\n", String8(group->name).string()));
continue;
}
const TypeList& typeList = group->types[ti];
if (typeList.isEmpty()) {
TABLE_NOISY(printf("Expected type structure not found in package %s for index %d\n",
String8(group->name).string(), ti));
continue;
}
const size_t typeCount = typeList.size();
for (size_t i = 0; i < typeCount; i++) {
const Type* t = typeList[i];
const ssize_t ei = t->package->keyStrings.indexOfString(name, nameLen);
if (ei < 0) {
continue;
}
const size_t configCount = t->configs.size();
for (size_t j = 0; j < configCount; j++) {
const TypeVariant tv(t->configs[j]);
for (TypeVariant::iterator iter = tv.beginEntries();
iter != tv.endEntries();
iter++) {
const ResTable_entry* entry = *iter;
if (entry == NULL) {
continue;
}
if (dtohl(entry->key.index) == (size_t) ei) {
uint32_t resId = Res_MAKEID(group->id - 1, ti, iter.index());
if (outTypeSpecFlags) {
Entry result;
if (getEntry(group, ti, iter.index(), NULL, &result) != NO_ERROR) {
ALOGW("Failed to find spec flags for %s:%s/%s (0x%08x)",
String8(group->name).string(),
String8(String16(type, typeLen)).string(),
String8(String16(name, nameLen)).string(),
resId);
return 0;
}
*outTypeSpecFlags = result.specFlags;
if (fakePublic) {
*outTypeSpecFlags |= ResTable_typeSpec::SPEC_PUBLIC;
}
}
return resId;
}
}
}
}
break;
}
return 0;
}
bool ResTable::expandResourceRef(const uint16_t* refStr, size_t refLen,
String16* outPackage,
String16* outType,
String16* outName,
const String16* defType,
const String16* defPackage,
const char** outErrorMsg,
bool* outPublicOnly)
{
const char16_t* packageEnd = NULL;
const char16_t* typeEnd = NULL;
const char16_t* p = refStr;
const char16_t* const end = p + refLen;
while (p < end) {
if (*p == ':') packageEnd = p;
else if (*p == '/') {
typeEnd = p;
break;
}
p++;
}
p = refStr;
if (*p == '@') p++;
if (outPublicOnly != NULL) {
*outPublicOnly = true;
}
if (*p == '*') {
p++;
if (outPublicOnly != NULL) {
*outPublicOnly = false;
}
}
if (packageEnd) {
*outPackage = String16(p, packageEnd-p);
p = packageEnd+1;
} else {
if (!defPackage) {
if (outErrorMsg) {
*outErrorMsg = "No resource package specified";
}
return false;
}
*outPackage = *defPackage;
}
if (typeEnd) {
*outType = String16(p, typeEnd-p);
p = typeEnd+1;
} else {
if (!defType) {
if (outErrorMsg) {
*outErrorMsg = "No resource type specified";
}
return false;
}
*outType = *defType;
}
*outName = String16(p, end-p);
if(**outPackage == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource package cannot be an empty string";
}
return false;
}
if(**outType == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource type cannot be an empty string";
}
return false;
}
if(**outName == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource id cannot be an empty string";
}
return false;
}
return true;
}
static uint32_t get_hex(char c, bool* outError)
{
if (c >= '0' && c <= '9') {
return c - '0';
} else if (c >= 'a' && c <= 'f') {
return c - 'a' + 0xa;
} else if (c >= 'A' && c <= 'F') {
return c - 'A' + 0xa;
}
*outError = true;
return 0;
}
struct unit_entry
{
const char* name;
size_t len;
uint8_t type;
uint32_t unit;
float scale;
};
static const unit_entry unitNames[] = {
{ "px", strlen("px"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_PX, 1.0f },
{ "dip", strlen("dip"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_DIP, 1.0f },
{ "dp", strlen("dp"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_DIP, 1.0f },
{ "sp", strlen("sp"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_SP, 1.0f },
{ "pt", strlen("pt"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_PT, 1.0f },
{ "in", strlen("in"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_IN, 1.0f },
{ "mm", strlen("mm"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_MM, 1.0f },
{ "%", strlen("%"), Res_value::TYPE_FRACTION, Res_value::COMPLEX_UNIT_FRACTION, 1.0f/100 },
{ "%p", strlen("%p"), Res_value::TYPE_FRACTION, Res_value::COMPLEX_UNIT_FRACTION_PARENT, 1.0f/100 },
{ NULL, 0, 0, 0, 0 }
};
static bool parse_unit(const char* str, Res_value* outValue,
float* outScale, const char** outEnd)
{
const char* end = str;
while (*end != 0 && !isspace((unsigned char)*end)) {
end++;
}
const size_t len = end-str;
const char* realEnd = end;
while (*realEnd != 0 && isspace((unsigned char)*realEnd)) {
realEnd++;
}
if (*realEnd != 0) {
return false;
}
const unit_entry* cur = unitNames;
while (cur->name) {
if (len == cur->len && strncmp(cur->name, str, len) == 0) {
outValue->dataType = cur->type;
outValue->data = cur->unit << Res_value::COMPLEX_UNIT_SHIFT;
*outScale = cur->scale;
*outEnd = end;
//printf("Found unit %s for %s\n", cur->name, str);
return true;
}
cur++;
}
return false;
}
bool ResTable::stringToInt(const char16_t* s, size_t len, Res_value* outValue)
{
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
if (len <= 0) {
return false;
}
size_t i = 0;
int32_t val = 0;
bool neg = false;
if (*s == '-') {
neg = true;
i++;
}
if (s[i] < '0' || s[i] > '9') {
return false;
}
// Decimal or hex?
if (s[i] == '0' && s[i+1] == 'x') {
if (outValue)
outValue->dataType = outValue->TYPE_INT_HEX;
i += 2;
bool error = false;
while (i < len && !error) {
val = (val*16) + get_hex(s[i], &error);
i++;
}
if (error) {
return false;
}
} else {
if (outValue)
outValue->dataType = outValue->TYPE_INT_DEC;
while (i < len) {
if (s[i] < '0' || s[i] > '9') {
return false;
}
val = (val*10) + s[i]-'0';
i++;
}
}
if (neg) val = -val;
while (i < len && isspace16(s[i])) {
i++;
}
if (i == len) {
if (outValue)
outValue->data = val;
return true;
}
return false;
}
bool ResTable::stringToFloat(const char16_t* s, size_t len, Res_value* outValue)
{
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
if (len <= 0) {
return false;
}
char buf[128];
int i=0;
while (len > 0 && *s != 0 && i < 126) {
if (*s > 255) {
return false;
}
buf[i++] = *s++;
len--;
}
if (len > 0) {
return false;
}
if (buf[0] < '0' && buf[0] > '9' && buf[0] != '.') {
return false;
}
buf[i] = 0;
const char* end;
float f = strtof(buf, (char**)&end);
if (*end != 0 && !isspace((unsigned char)*end)) {
// Might be a unit...
float scale;
if (parse_unit(end, outValue, &scale, &end)) {
f *= scale;
const bool neg = f < 0;
if (neg) f = -f;
uint64_t bits = (uint64_t)(f*(1<<23)+.5f);
uint32_t radix;
uint32_t shift;
if ((bits&0x7fffff) == 0) {
// Always use 23p0 if there is no fraction, just to make
// things easier to read.
radix = Res_value::COMPLEX_RADIX_23p0;
shift = 23;
} else if ((bits&0xffffffffff800000LL) == 0) {
// Magnitude is zero -- can fit in 0 bits of precision.
radix = Res_value::COMPLEX_RADIX_0p23;
shift = 0;
} else if ((bits&0xffffffff80000000LL) == 0) {
// Magnitude can fit in 8 bits of precision.
radix = Res_value::COMPLEX_RADIX_8p15;
shift = 8;
} else if ((bits&0xffffff8000000000LL) == 0) {
// Magnitude can fit in 16 bits of precision.
radix = Res_value::COMPLEX_RADIX_16p7;
shift = 16;
} else {
// Magnitude needs entire range, so no fractional part.
radix = Res_value::COMPLEX_RADIX_23p0;
shift = 23;
}
int32_t mantissa = (int32_t)(
(bits>>shift) & Res_value::COMPLEX_MANTISSA_MASK);
if (neg) {
mantissa = (-mantissa) & Res_value::COMPLEX_MANTISSA_MASK;
}
outValue->data |=
(radix<<Res_value::COMPLEX_RADIX_SHIFT)
| (mantissa<<Res_value::COMPLEX_MANTISSA_SHIFT);
//printf("Input value: %f 0x%016Lx, mult: %f, radix: %d, shift: %d, final: 0x%08x\n",
// f * (neg ? -1 : 1), bits, f*(1<<23),
// radix, shift, outValue->data);
return true;
}
return false;
}
while (*end != 0 && isspace((unsigned char)*end)) {
end++;
}
if (*end == 0) {
if (outValue) {
outValue->dataType = outValue->TYPE_FLOAT;
*(float*)(&outValue->data) = f;
return true;
}
}
return false;
}
bool ResTable::stringToValue(Res_value* outValue, String16* outString,
const char16_t* s, size_t len,
bool preserveSpaces, bool coerceType,
uint32_t attrID,
const String16* defType,
const String16* defPackage,
Accessor* accessor,
void* accessorCookie,
uint32_t attrType,
bool enforcePrivate) const
{
bool localizationSetting = accessor != NULL && accessor->getLocalizationSetting();
const char* errorMsg = NULL;
outValue->size = sizeof(Res_value);
outValue->res0 = 0;
// First strip leading/trailing whitespace. Do this before handling
// escapes, so they can be used to force whitespace into the string.
if (!preserveSpaces) {
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
while (len > 0 && isspace16(s[len-1])) {
len--;
}
// If the string ends with '\', then we keep the space after it.
if (len > 0 && s[len-1] == '\\' && s[len] != 0) {
len++;
}
}
//printf("Value for: %s\n", String8(s, len).string());
uint32_t l10nReq = ResTable_map::L10N_NOT_REQUIRED;
uint32_t attrMin = 0x80000000, attrMax = 0x7fffffff;
bool fromAccessor = false;
if (attrID != 0 && !Res_INTERNALID(attrID)) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("For attr 0x%08x got bag of %d\n", attrID, cnt);
if (cnt >= 0) {
while (cnt > 0) {
//printf("Entry 0x%08x = 0x%08x\n", bag->map.name.ident, bag->map.value.data);
switch (bag->map.name.ident) {
case ResTable_map::ATTR_TYPE:
attrType = bag->map.value.data;
break;
case ResTable_map::ATTR_MIN:
attrMin = bag->map.value.data;
break;
case ResTable_map::ATTR_MAX:
attrMax = bag->map.value.data;
break;
case ResTable_map::ATTR_L10N:
l10nReq = bag->map.value.data;
break;
}
bag++;
cnt--;
}
unlockBag(bag);
} else if (accessor && accessor->getAttributeType(attrID, &attrType)) {
fromAccessor = true;
if (attrType == ResTable_map::TYPE_ENUM
|| attrType == ResTable_map::TYPE_FLAGS
|| attrType == ResTable_map::TYPE_INTEGER) {
accessor->getAttributeMin(attrID, &attrMin);
accessor->getAttributeMax(attrID, &attrMax);
}
if (localizationSetting) {
l10nReq = accessor->getAttributeL10N(attrID);
}
}
}
const bool canStringCoerce =
coerceType && (attrType&ResTable_map::TYPE_STRING) != 0;
if (*s == '@') {
outValue->dataType = outValue->TYPE_REFERENCE;
// Note: we don't check attrType here because the reference can
// be to any other type; we just need to count on the client making
// sure the referenced type is correct.
//printf("Looking up ref: %s\n", String8(s, len).string());
// It's a reference!
if (len == 5 && s[1]=='n' && s[2]=='u' && s[3]=='l' && s[4]=='l') {
outValue->data = 0;
return true;
} else {
bool createIfNotFound = false;
const char16_t* resourceRefName;
int resourceNameLen;
if (len > 2 && s[1] == '+') {
createIfNotFound = true;
resourceRefName = s + 2;
resourceNameLen = len - 2;
} else if (len > 2 && s[1] == '*') {
enforcePrivate = false;
resourceRefName = s + 2;
resourceNameLen = len - 2;
} else {
createIfNotFound = false;
resourceRefName = s + 1;
resourceNameLen = len - 1;
}
String16 package, type, name;
if (!expandResourceRef(resourceRefName,resourceNameLen, &package, &type, &name,
defType, defPackage, &errorMsg)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return false;
}
uint32_t specFlags = 0;
uint32_t rid = identifierForName(name.string(), name.size(), type.string(),
type.size(), package.string(), package.size(), &specFlags);
if (rid != 0) {
if (enforcePrivate) {
if (accessor == NULL || accessor->getAssetsPackage() != package) {
if ((specFlags&ResTable_typeSpec::SPEC_PUBLIC) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Resource is not public.");
}
return false;
}
}
}
if (accessor) {
rid = Res_MAKEID(
accessor->getRemappedPackage(Res_GETPACKAGE(rid)),
Res_GETTYPE(rid), Res_GETENTRY(rid));
TABLE_NOISY(printf("Incl %s:%s/%s: 0x%08x\n",
String8(package).string(), String8(type).string(),
String8(name).string(), rid));
}
uint32_t packageId = Res_GETPACKAGE(rid) + 1;
if (packageId != APP_PACKAGE_ID && packageId != SYS_PACKAGE_ID) {
outValue->dataType = Res_value::TYPE_DYNAMIC_REFERENCE;
}
outValue->data = rid;
return true;
}
if (accessor) {
uint32_t rid = accessor->getCustomResourceWithCreation(package, type, name,
createIfNotFound);
if (rid != 0) {
TABLE_NOISY(printf("Pckg %s:%s/%s: 0x%08x\n",
String8(package).string(), String8(type).string(),
String8(name).string(), rid));
uint32_t packageId = Res_GETPACKAGE(rid) + 1;
if (packageId == 0x00) {
outValue->data = rid;
outValue->dataType = Res_value::TYPE_DYNAMIC_REFERENCE;
return true;
} else if (packageId == APP_PACKAGE_ID || packageId == SYS_PACKAGE_ID) {
// We accept packageId's generated as 0x01 in order to support
// building the android system resources
outValue->data = rid;
return true;
}
}
}
}
if (accessor != NULL) {
accessor->reportError(accessorCookie, "No resource found that matches the given name");
}
return false;
}
// if we got to here, and localization is required and it's not a reference,
// complain and bail.
if (l10nReq == ResTable_map::L10N_SUGGESTED) {
if (localizationSetting) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "This attribute must be localized.");
}
}
}
if (*s == '#') {
// It's a color! Convert to an integer of the form 0xaarrggbb.
uint32_t color = 0;
bool error = false;
if (len == 4) {
outValue->dataType = outValue->TYPE_INT_COLOR_RGB4;
color |= 0xFF000000;
color |= get_hex(s[1], &error) << 20;
color |= get_hex(s[1], &error) << 16;
color |= get_hex(s[2], &error) << 12;
color |= get_hex(s[2], &error) << 8;
color |= get_hex(s[3], &error) << 4;
color |= get_hex(s[3], &error);
} else if (len == 5) {
outValue->dataType = outValue->TYPE_INT_COLOR_ARGB4;
color |= get_hex(s[1], &error) << 28;
color |= get_hex(s[1], &error) << 24;
color |= get_hex(s[2], &error) << 20;
color |= get_hex(s[2], &error) << 16;
color |= get_hex(s[3], &error) << 12;
color |= get_hex(s[3], &error) << 8;
color |= get_hex(s[4], &error) << 4;
color |= get_hex(s[4], &error);
} else if (len == 7) {
outValue->dataType = outValue->TYPE_INT_COLOR_RGB8;
color |= 0xFF000000;
color |= get_hex(s[1], &error) << 20;
color |= get_hex(s[2], &error) << 16;
color |= get_hex(s[3], &error) << 12;
color |= get_hex(s[4], &error) << 8;
color |= get_hex(s[5], &error) << 4;
color |= get_hex(s[6], &error);
} else if (len == 9) {
outValue->dataType = outValue->TYPE_INT_COLOR_ARGB8;
color |= get_hex(s[1], &error) << 28;
color |= get_hex(s[2], &error) << 24;
color |= get_hex(s[3], &error) << 20;
color |= get_hex(s[4], &error) << 16;
color |= get_hex(s[5], &error) << 12;
color |= get_hex(s[6], &error) << 8;
color |= get_hex(s[7], &error) << 4;
color |= get_hex(s[8], &error);
} else {
error = true;
}
if (!error) {
if ((attrType&ResTable_map::TYPE_COLOR) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie,
"Color types not allowed");
}
return false;
}
} else {
outValue->data = color;
//printf("Color input=%s, output=0x%x\n", String8(s, len).string(), color);
return true;
}
} else {
if ((attrType&ResTable_map::TYPE_COLOR) != 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Color value not valid --"
" must be #rgb, #argb, #rrggbb, or #aarrggbb");
}
#if 0
fprintf(stderr, "%s: Color ID %s value %s is not valid\n",
"Resource File", //(const char*)in->getPrintableSource(),
String8(*curTag).string(),
String8(s, len).string());
#endif
return false;
}
}
}
if (*s == '?') {
outValue->dataType = outValue->TYPE_ATTRIBUTE;
// Note: we don't check attrType here because the reference can
// be to any other type; we just need to count on the client making
// sure the referenced type is correct.
//printf("Looking up attr: %s\n", String8(s, len).string());
static const String16 attr16("attr");
String16 package, type, name;
if (!expandResourceRef(s+1, len-1, &package, &type, &name,
&attr16, defPackage, &errorMsg)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return false;
}
//printf("Pkg: %s, Type: %s, Name: %s\n",
// String8(package).string(), String8(type).string(),
// String8(name).string());
uint32_t specFlags = 0;
uint32_t rid =
identifierForName(name.string(), name.size(),
type.string(), type.size(),
package.string(), package.size(), &specFlags);
if (rid != 0) {
if (enforcePrivate) {
if ((specFlags&ResTable_typeSpec::SPEC_PUBLIC) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Attribute is not public.");
}
return false;
}
}
if (!accessor) {
outValue->data = rid;
return true;
}
rid = Res_MAKEID(
accessor->getRemappedPackage(Res_GETPACKAGE(rid)),
Res_GETTYPE(rid), Res_GETENTRY(rid));
//printf("Incl %s:%s/%s: 0x%08x\n",
// String8(package).string(), String8(type).string(),
// String8(name).string(), rid);
outValue->data = rid;
return true;
}
if (accessor) {
uint32_t rid = accessor->getCustomResource(package, type, name);
if (rid != 0) {
//printf("Mine %s:%s/%s: 0x%08x\n",
// String8(package).string(), String8(type).string(),
// String8(name).string(), rid);
outValue->data = rid;
return true;
}
}
if (accessor != NULL) {
accessor->reportError(accessorCookie, "No resource found that matches the given name");
}
return false;
}
if (stringToInt(s, len, outValue)) {
if ((attrType&ResTable_map::TYPE_INTEGER) == 0) {
// If this type does not allow integers, but does allow floats,
// fall through on this error case because the float type should
// be able to accept any integer value.
if (!canStringCoerce && (attrType&ResTable_map::TYPE_FLOAT) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Integer types not allowed");
}
return false;
}
} else {
if (((int32_t)outValue->data) < ((int32_t)attrMin)
|| ((int32_t)outValue->data) > ((int32_t)attrMax)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Integer value out of range");
}
return false;
}
return true;
}
}
if (stringToFloat(s, len, outValue)) {
if (outValue->dataType == Res_value::TYPE_DIMENSION) {
if ((attrType&ResTable_map::TYPE_DIMENSION) != 0) {
return true;
}
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Dimension types not allowed");
}
return false;
}
} else if (outValue->dataType == Res_value::TYPE_FRACTION) {
if ((attrType&ResTable_map::TYPE_FRACTION) != 0) {
return true;
}
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Fraction types not allowed");
}
return false;
}
} else if ((attrType&ResTable_map::TYPE_FLOAT) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Float types not allowed");
}
return false;
}
} else {
return true;
}
}
if (len == 4) {
if ((s[0] == 't' || s[0] == 'T') &&
(s[1] == 'r' || s[1] == 'R') &&
(s[2] == 'u' || s[2] == 'U') &&
(s[3] == 'e' || s[3] == 'E')) {
if ((attrType&ResTable_map::TYPE_BOOLEAN) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Boolean types not allowed");
}
return false;
}
} else {
outValue->dataType = outValue->TYPE_INT_BOOLEAN;
outValue->data = (uint32_t)-1;
return true;
}
}
}
if (len == 5) {
if ((s[0] == 'f' || s[0] == 'F') &&
(s[1] == 'a' || s[1] == 'A') &&
(s[2] == 'l' || s[2] == 'L') &&
(s[3] == 's' || s[3] == 'S') &&
(s[4] == 'e' || s[4] == 'E')) {
if ((attrType&ResTable_map::TYPE_BOOLEAN) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Boolean types not allowed");
}
return false;
}
} else {
outValue->dataType = outValue->TYPE_INT_BOOLEAN;
outValue->data = 0;
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_ENUM) != 0) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("Got %d for enum\n", cnt);
if (cnt >= 0) {
resource_name rname;
while (cnt > 0) {
if (!Res_INTERNALID(bag->map.name.ident)) {
//printf("Trying attr #%08x\n", bag->map.name.ident);
if (getResourceName(bag->map.name.ident, false, &rname)) {
#if 0
printf("Matching %s against %s (0x%08x)\n",
String8(s, len).string(),
String8(rname.name, rname.nameLen).string(),
bag->map.name.ident);
#endif
if (strzcmp16(s, len, rname.name, rname.nameLen) == 0) {
outValue->dataType = bag->map.value.dataType;
outValue->data = bag->map.value.data;
unlockBag(bag);
return true;
}
}
}
bag++;
cnt--;
}
unlockBag(bag);
}
if (fromAccessor) {
if (accessor->getAttributeEnum(attrID, s, len, outValue)) {
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_FLAGS) != 0) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("Got %d for flags\n", cnt);
if (cnt >= 0) {
bool failed = false;
resource_name rname;
outValue->dataType = Res_value::TYPE_INT_HEX;
outValue->data = 0;
const char16_t* end = s + len;
const char16_t* pos = s;
while (pos < end && !failed) {
const char16_t* start = pos;
pos++;
while (pos < end && *pos != '|') {
pos++;
}
//printf("Looking for: %s\n", String8(start, pos-start).string());
const bag_entry* bagi = bag;
ssize_t i;
for (i=0; i<cnt; i++, bagi++) {
if (!Res_INTERNALID(bagi->map.name.ident)) {
//printf("Trying attr #%08x\n", bagi->map.name.ident);
if (getResourceName(bagi->map.name.ident, false, &rname)) {
#if 0
printf("Matching %s against %s (0x%08x)\n",
String8(start,pos-start).string(),
String8(rname.name, rname.nameLen).string(),
bagi->map.name.ident);
#endif
if (strzcmp16(start, pos-start, rname.name, rname.nameLen) == 0) {
outValue->data |= bagi->map.value.data;
break;
}
}
}
}
if (i >= cnt) {
// Didn't find this flag identifier.
failed = true;
}
if (pos < end) {
pos++;
}
}
unlockBag(bag);
if (!failed) {
//printf("Final flag value: 0x%lx\n", outValue->data);
return true;
}
}
if (fromAccessor) {
if (accessor->getAttributeFlags(attrID, s, len, outValue)) {
//printf("Final flag value: 0x%lx\n", outValue->data);
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_STRING) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "String types not allowed");
}
return false;
}
// Generic string handling...
outValue->dataType = outValue->TYPE_STRING;
if (outString) {
bool failed = collectString(outString, s, len, preserveSpaces, &errorMsg);
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return failed;
}
return true;
}
bool ResTable::collectString(String16* outString,
const char16_t* s, size_t len,
bool preserveSpaces,
const char** outErrorMsg,
bool append)
{
String16 tmp;
char quoted = 0;
const char16_t* p = s;
while (p < (s+len)) {
while (p < (s+len)) {
const char16_t c = *p;
if (c == '\\') {
break;
}
if (!preserveSpaces) {
if (quoted == 0 && isspace16(c)
&& (c != ' ' || isspace16(*(p+1)))) {
break;
}
if (c == '"' && (quoted == 0 || quoted == '"')) {
break;
}
if (c == '\'' && (quoted == 0 || quoted == '\'')) {
/*
* In practice, when people write ' instead of \'
* in a string, they are doing it by accident
* instead of really meaning to use ' as a quoting
* character. Warn them so they don't lose it.
*/
if (outErrorMsg) {
*outErrorMsg = "Apostrophe not preceded by \\";
}
return false;
}
}
p++;
}
if (p < (s+len)) {
if (p > s) {
tmp.append(String16(s, p-s));
}
if (!preserveSpaces && (*p == '"' || *p == '\'')) {
if (quoted == 0) {
quoted = *p;
} else {
quoted = 0;
}
p++;
} else if (!preserveSpaces && isspace16(*p)) {
// Space outside of a quote -- consume all spaces and
// leave a single plain space char.
tmp.append(String16(" "));
p++;
while (p < (s+len) && isspace16(*p)) {
p++;
}
} else if (*p == '\\') {
p++;
if (p < (s+len)) {
switch (*p) {
case 't':
tmp.append(String16("\t"));
break;
case 'n':
tmp.append(String16("\n"));
break;
case '#':
tmp.append(String16("#"));
break;
case '@':
tmp.append(String16("@"));
break;
case '?':
tmp.append(String16("?"));
break;
case '"':
tmp.append(String16("\""));
break;
case '\'':
tmp.append(String16("'"));
break;
case '\\':
tmp.append(String16("\\"));
break;
case 'u':
{
char16_t chr = 0;
int i = 0;
while (i < 4 && p[1] != 0) {
p++;
i++;
int c;
if (*p >= '0' && *p <= '9') {
c = *p - '0';
} else if (*p >= 'a' && *p <= 'f') {
c = *p - 'a' + 10;
} else if (*p >= 'A' && *p <= 'F') {
c = *p - 'A' + 10;
} else {
if (outErrorMsg) {
*outErrorMsg = "Bad character in \\u unicode escape sequence";
}
return false;
}
chr = (chr<<4) | c;
}
tmp.append(String16(&chr, 1));
} break;
default:
// ignore unknown escape chars.
break;
}
p++;
}
}
len -= (p-s);
s = p;
}
}
if (tmp.size() != 0) {
if (len > 0) {
tmp.append(String16(s, len));
}
if (append) {
outString->append(tmp);
} else {
outString->setTo(tmp);
}
} else {
if (append) {
outString->append(String16(s, len));
} else {
outString->setTo(s, len);
}
}
return true;
}
size_t ResTable::getBasePackageCount() const
{
if (mError != NO_ERROR) {
return 0;
}
return mPackageGroups.size();
}
const String16 ResTable::getBasePackageName(size_t idx) const
{
if (mError != NO_ERROR) {
return String16();
}
LOG_FATAL_IF(idx >= mPackageGroups.size(),
"Requested package index %d past package count %d",
(int)idx, (int)mPackageGroups.size());
return mPackageGroups[idx]->name;
}
uint32_t ResTable::getBasePackageId(size_t idx) const
{
if (mError != NO_ERROR) {
return 0;
}
LOG_FATAL_IF(idx >= mPackageGroups.size(),
"Requested package index %d past package count %d",
(int)idx, (int)mPackageGroups.size());
return mPackageGroups[idx]->id;
}
uint32_t ResTable::getLastTypeIdForPackage(size_t idx) const
{
if (mError != NO_ERROR) {
return 0;
}
LOG_FATAL_IF(idx >= mPackageGroups.size(),
"Requested package index %d past package count %d",
(int)idx, (int)mPackageGroups.size());
const PackageGroup* const group = mPackageGroups[idx];
return group->largestTypeId;
}
size_t ResTable::getTableCount() const
{
return mHeaders.size();
}
const ResStringPool* ResTable::getTableStringBlock(size_t index) const
{
return &mHeaders[index]->values;
}
int32_t ResTable::getTableCookie(size_t index) const
{
return mHeaders[index]->cookie;
}
const DynamicRefTable* ResTable::getDynamicRefTableForCookie(int32_t cookie) const
{
const size_t N = mPackageGroups.size();
for (size_t i = 0; i < N; i++) {
const PackageGroup* pg = mPackageGroups[i];
size_t M = pg->packages.size();
for (size_t j = 0; j < M; j++) {
if (pg->packages[j]->header->cookie == cookie) {
return &pg->dynamicRefTable;
}
}
}
return NULL;
}
void ResTable::getConfigurations(Vector<ResTable_config>* configs) const
{
const size_t packageCount = mPackageGroups.size();
for (size_t i = 0; i < packageCount; i++) {
const PackageGroup* packageGroup = mPackageGroups[i];
const size_t typeCount = packageGroup->types.size();
for (size_t j = 0; j < typeCount; j++) {
const TypeList& typeList = packageGroup->types[j];
const size_t numTypes = typeList.size();
for (size_t k = 0; k < numTypes; k++) {
const Type* type = typeList[k];
const size_t numConfigs = type->configs.size();
for (size_t m = 0; m < numConfigs; m++) {
const ResTable_type* config = type->configs[m];
ResTable_config cfg;
memset(&cfg, 0, sizeof(ResTable_config));
cfg.copyFromDtoH(config->config);
// only insert unique
const size_t N = configs->size();
size_t n;
for (n = 0; n < N; n++) {
if (0 == (*configs)[n].compare(cfg)) {
break;
}
}
// if we didn't find it
if (n == N) {
configs->add(cfg);
}
}
}
}
}
}
void ResTable::getLocales(Vector<String8>* locales) const
{
Vector<ResTable_config> configs;
ALOGV("calling getConfigurations");
getConfigurations(&configs);
ALOGV("called getConfigurations size=%d", (int)configs.size());
const size_t I = configs.size();
char locale[RESTABLE_MAX_LOCALE_LEN];
for (size_t i=0; i<I; i++) {
configs[i].getBcp47Locale(locale);
const size_t J = locales->size();
size_t j;
for (j=0; j<J; j++) {
if (0 == strcmp(locale, (*locales)[j].string())) {
break;
}
}
if (j == J) {
locales->add(String8(locale));
}
}
}
StringPoolRef::StringPoolRef(const ResStringPool* pool, uint32_t index)
: mPool(pool), mIndex(index) {}
StringPoolRef::StringPoolRef()
: mPool(NULL), mIndex(0) {}
const char* StringPoolRef::string8(size_t* outLen) const {
if (mPool != NULL) {
return mPool->string8At(mIndex, outLen);
}
if (outLen != NULL) {
*outLen = 0;
}
return NULL;
}
const char16_t* StringPoolRef::string16(size_t* outLen) const {
if (mPool != NULL) {
return mPool->stringAt(mIndex, outLen);
}
if (outLen != NULL) {
*outLen = 0;
}
return NULL;
}
status_t ResTable::getEntry(
const PackageGroup* packageGroup, int typeIndex, int entryIndex,
const ResTable_config* config,
Entry* outEntry) const
{
const TypeList& typeList = packageGroup->types[typeIndex];
if (typeList.isEmpty()) {
ALOGV("Skipping entry type index 0x%02x because type is NULL!\n", typeIndex);
return BAD_TYPE;
}
const ResTable_type* bestType = NULL;
uint32_t bestOffset = ResTable_type::NO_ENTRY;
const Package* bestPackage = NULL;
uint32_t specFlags = 0;
uint8_t actualTypeIndex = typeIndex;
ResTable_config bestConfig;
memset(&bestConfig, 0, sizeof(bestConfig));
// Iterate over the Types of each package.
const size_t typeCount = typeList.size();
for (size_t i = 0; i < typeCount; i++) {
const Type* const typeSpec = typeList[i];
int realEntryIndex = entryIndex;
int realTypeIndex = typeIndex;
bool currentTypeIsOverlay = false;
// Runtime overlay packages provide a mapping of app resource
// ID to package resource ID.
if (typeSpec->idmapEntries.hasEntries()) {
uint16_t overlayEntryIndex;
if (typeSpec->idmapEntries.lookup(entryIndex, &overlayEntryIndex) != NO_ERROR) {
// No such mapping exists
continue;
}
realEntryIndex = overlayEntryIndex;
realTypeIndex = typeSpec->idmapEntries.overlayTypeId() - 1;
currentTypeIsOverlay = true;
}
if (static_cast<size_t>(realEntryIndex) >= typeSpec->entryCount) {
ALOGW("For resource 0x%08x, entry index(%d) is beyond type entryCount(%d)",
Res_MAKEID(packageGroup->id - 1, typeIndex, entryIndex),
entryIndex, static_cast<int>(typeSpec->entryCount));
// We should normally abort here, but some legacy apps declare
// resources in the 'android' package (old bug in AAPT).
continue;
}
// Aggregate all the flags for each package that defines this entry.
if (typeSpec->typeSpecFlags != NULL) {
specFlags |= dtohl(typeSpec->typeSpecFlags[realEntryIndex]);
} else {
specFlags = -1;
}
const size_t numConfigs = typeSpec->configs.size();
for (size_t c = 0; c < numConfigs; c++) {
const ResTable_type* const thisType = typeSpec->configs[c];
if (thisType == NULL) {
continue;
}
ResTable_config thisConfig;
thisConfig.copyFromDtoH(thisType->config);
// Check to make sure this one is valid for the current parameters.
if (config != NULL && !thisConfig.match(*config)) {
continue;
}
// Check if there is the desired entry in this type.
const uint8_t* const end = reinterpret_cast<const uint8_t*>(thisType)
+ dtohl(thisType->header.size);
const uint32_t* const eindex = reinterpret_cast<const uint32_t*>(
reinterpret_cast<const uint8_t*>(thisType) + dtohs(thisType->header.headerSize));
uint32_t thisOffset = dtohl(eindex[realEntryIndex]);
if (thisOffset == ResTable_type::NO_ENTRY) {
// There is no entry for this index and configuration.
continue;
}
if (bestType != NULL) {
// Check if this one is less specific than the last found. If so,
// we will skip it. We check starting with things we most care
// about to those we least care about.
if (!thisConfig.isBetterThan(bestConfig, config)) {
if (!currentTypeIsOverlay || thisConfig.compare(bestConfig) != 0) {
continue;
}
}
}
bestType = thisType;
bestOffset = thisOffset;
bestConfig = thisConfig;
bestPackage = typeSpec->package;
actualTypeIndex = realTypeIndex;
// If no config was specified, any type will do, so skip
if (config == NULL) {
break;
}
}
}
if (bestType == NULL) {
return BAD_INDEX;
}
bestOffset += dtohl(bestType->entriesStart);
if (bestOffset > (dtohl(bestType->header.size)-sizeof(ResTable_entry))) {
ALOGW("ResTable_entry at 0x%x is beyond type chunk data 0x%x",
bestOffset, dtohl(bestType->header.size));
return BAD_TYPE;
}
if ((bestOffset & 0x3) != 0) {
ALOGW("ResTable_entry at 0x%x is not on an integer boundary", bestOffset);
return BAD_TYPE;
}
const ResTable_entry* const entry = reinterpret_cast<const ResTable_entry*>(
reinterpret_cast<const uint8_t*>(bestType) + bestOffset);
if (dtohs(entry->size) < sizeof(*entry)) {
ALOGW("ResTable_entry size 0x%x is too small", dtohs(entry->size));
return BAD_TYPE;
}
if (outEntry != NULL) {
outEntry->entry = entry;
outEntry->config = bestConfig;
outEntry->type = bestType;
outEntry->specFlags = specFlags;
outEntry->package = bestPackage;
outEntry->typeStr = StringPoolRef(&bestPackage->typeStrings, actualTypeIndex - bestPackage->typeIdOffset);
outEntry->keyStr = StringPoolRef(&bestPackage->keyStrings, dtohl(entry->key.index));
}
return NO_ERROR;
}
status_t ResTable::parsePackage(const ResTable_package* const pkg,
const Header* const header)
{
const uint8_t* base = (const uint8_t*)pkg;
status_t err = validate_chunk(&pkg->header, sizeof(*pkg) - sizeof(pkg->typeIdOffset),
header->dataEnd, "ResTable_package");
if (err != NO_ERROR) {
return (mError=err);
}
const uint32_t pkgSize = dtohl(pkg->header.size);
if (dtohl(pkg->typeStrings) >= pkgSize) {
ALOGW("ResTable_package type strings at 0x%x are past chunk size 0x%x.",
dtohl(pkg->typeStrings), pkgSize);
return (mError=BAD_TYPE);
}
if ((dtohl(pkg->typeStrings)&0x3) != 0) {
ALOGW("ResTable_package type strings at 0x%x is not on an integer boundary.",
dtohl(pkg->typeStrings));
return (mError=BAD_TYPE);
}
if (dtohl(pkg->keyStrings) >= pkgSize) {
ALOGW("ResTable_package key strings at 0x%x are past chunk size 0x%x.",
dtohl(pkg->keyStrings), pkgSize);
return (mError=BAD_TYPE);
}
if ((dtohl(pkg->keyStrings)&0x3) != 0) {
ALOGW("ResTable_package key strings at 0x%x is not on an integer boundary.",
dtohl(pkg->keyStrings));
return (mError=BAD_TYPE);
}
uint32_t id = dtohl(pkg->id);
KeyedVector<uint8_t, IdmapEntries> idmapEntries;
if (header->resourceIDMap != NULL) {
uint8_t targetPackageId = 0;
status_t err = parseIdmap(header->resourceIDMap, header->resourceIDMapSize, &targetPackageId, &idmapEntries);
if (err != NO_ERROR) {
ALOGW("Overlay is broken");
return (mError=err);
}
id = targetPackageId;
}
if (id >= 256) {
LOG_ALWAYS_FATAL("Package id out of range");
return NO_ERROR;
} else if (id == 0) {
// This is a library so assign an ID
id = mNextPackageId++;
}
PackageGroup* group = NULL;
Package* package = new Package(this, header, pkg);
if (package == NULL) {
return (mError=NO_MEMORY);
}
err = package->typeStrings.setTo(base+dtohl(pkg->typeStrings),
header->dataEnd-(base+dtohl(pkg->typeStrings)));
if (err != NO_ERROR) {
delete group;
delete package;
return (mError=err);
}
err = package->keyStrings.setTo(base+dtohl(pkg->keyStrings),
header->dataEnd-(base+dtohl(pkg->keyStrings)));
if (err != NO_ERROR) {
delete group;
delete package;
return (mError=err);
}
size_t idx = mPackageMap[id];
if (idx == 0) {
idx = mPackageGroups.size() + 1;
char16_t tmpName[sizeof(pkg->name)/sizeof(char16_t)];
strcpy16_dtoh(tmpName, pkg->name, sizeof(pkg->name)/sizeof(char16_t));
group = new PackageGroup(this, String16(tmpName), id);
if (group == NULL) {
delete package;
return (mError=NO_MEMORY);
}
err = mPackageGroups.add(group);
if (err < NO_ERROR) {
return (mError=err);
}
mPackageMap[id] = static_cast<uint8_t>(idx);
// Find all packages that reference this package
size_t N = mPackageGroups.size();
for (size_t i = 0; i < N; i++) {
mPackageGroups[i]->dynamicRefTable.addMapping(
group->name, static_cast<uint8_t>(group->id));
}
} else {
group = mPackageGroups.itemAt(idx - 1);
if (group == NULL) {
return (mError=UNKNOWN_ERROR);
}
}
err = group->packages.add(package);
if (err < NO_ERROR) {
return (mError=err);
}
// Iterate through all chunks.
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)pkg)
+ dtohs(pkg->header.headerSize));
const uint8_t* endPos = ((const uint8_t*)pkg) + dtohs(pkg->header.size);
while (((const uint8_t*)chunk) <= (endPos-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) <= (endPos-dtohl(chunk->size))) {
TABLE_NOISY(ALOGV("PackageChunk: type=0x%x, headerSize=0x%x, size=0x%x, pos=%p\n",
dtohs(chunk->type), dtohs(chunk->headerSize), dtohl(chunk->size),
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header))));
const size_t csize = dtohl(chunk->size);
const uint16_t ctype = dtohs(chunk->type);
if (ctype == RES_TABLE_TYPE_SPEC_TYPE) {
const ResTable_typeSpec* typeSpec = (const ResTable_typeSpec*)(chunk);
err = validate_chunk(&typeSpec->header, sizeof(*typeSpec),
endPos, "ResTable_typeSpec");
if (err != NO_ERROR) {
return (mError=err);
}
const size_t typeSpecSize = dtohl(typeSpec->header.size);
const size_t newEntryCount = dtohl(typeSpec->entryCount);
LOAD_TABLE_NOISY(printf("TypeSpec off %p: type=0x%x, headerSize=0x%x, size=%p\n",
(void*)(base-(const uint8_t*)chunk),
dtohs(typeSpec->header.type),
dtohs(typeSpec->header.headerSize),
(void*)typeSpecSize));
// look for block overrun or int overflow when multiplying by 4
if ((dtohl(typeSpec->entryCount) > (INT32_MAX/sizeof(uint32_t))
|| dtohs(typeSpec->header.headerSize)+(sizeof(uint32_t)*newEntryCount)
> typeSpecSize)) {
ALOGW("ResTable_typeSpec entry index to %p extends beyond chunk end %p.",
(void*)(dtohs(typeSpec->header.headerSize) + (sizeof(uint32_t)*newEntryCount)),
(void*)typeSpecSize);
return (mError=BAD_TYPE);
}
if (typeSpec->id == 0) {
ALOGW("ResTable_type has an id of 0.");
return (mError=BAD_TYPE);
}
if (newEntryCount > 0) {
uint8_t typeIndex = typeSpec->id - 1;
ssize_t idmapIndex = idmapEntries.indexOfKey(typeSpec->id);
if (idmapIndex >= 0) {
typeIndex = idmapEntries[idmapIndex].targetTypeId() - 1;
}
TypeList& typeList = group->types.editItemAt(typeIndex);
if (!typeList.isEmpty()) {
const Type* existingType = typeList[0];
if (existingType->entryCount != newEntryCount && idmapIndex < 0) {
ALOGW("ResTable_typeSpec entry count inconsistent: given %d, previously %d",
(int) newEntryCount, (int) existingType->entryCount);
// We should normally abort here, but some legacy apps declare
// resources in the 'android' package (old bug in AAPT).
}
}
Type* t = new Type(header, package, newEntryCount);
t->typeSpec = typeSpec;
t->typeSpecFlags = (const uint32_t*)(
((const uint8_t*)typeSpec) + dtohs(typeSpec->header.headerSize));
if (idmapIndex >= 0) {
t->idmapEntries = idmapEntries[idmapIndex];
}
typeList.add(t);
group->largestTypeId = max(group->largestTypeId, typeSpec->id);
} else {
ALOGV("Skipping empty ResTable_typeSpec for type %d", typeSpec->id);
}
} else if (ctype == RES_TABLE_TYPE_TYPE) {
const ResTable_type* type = (const ResTable_type*)(chunk);
err = validate_chunk(&type->header, sizeof(*type)-sizeof(ResTable_config)+4,
endPos, "ResTable_type");
if (err != NO_ERROR) {
return (mError=err);
}
const uint32_t typeSize = dtohl(type->header.size);
const size_t newEntryCount = dtohl(type->entryCount);
LOAD_TABLE_NOISY(printf("Type off %p: type=0x%x, headerSize=0x%x, size=%p\n",
(void*)(base-(const uint8_t*)chunk),
dtohs(type->header.type),
dtohs(type->header.headerSize),
(void*)typeSize));
if (dtohs(type->header.headerSize)+(sizeof(uint32_t)*newEntryCount)
> typeSize) {
ALOGW("ResTable_type entry index to %p extends beyond chunk end 0x%x.",
(void*)(dtohs(type->header.headerSize) + (sizeof(uint32_t)*newEntryCount)),
typeSize);
return (mError=BAD_TYPE);
}
if (newEntryCount != 0
&& dtohl(type->entriesStart) > (typeSize-sizeof(ResTable_entry))) {
ALOGW("ResTable_type entriesStart at 0x%x extends beyond chunk end 0x%x.",
dtohl(type->entriesStart), typeSize);
return (mError=BAD_TYPE);
}
if (type->id == 0) {
ALOGW("ResTable_type has an id of 0.");
return (mError=BAD_TYPE);
}
if (newEntryCount > 0) {
uint8_t typeIndex = type->id - 1;
ssize_t idmapIndex = idmapEntries.indexOfKey(type->id);
if (idmapIndex >= 0) {
typeIndex = idmapEntries[idmapIndex].targetTypeId() - 1;
}
TypeList& typeList = group->types.editItemAt(typeIndex);
if (typeList.isEmpty()) {
ALOGE("No TypeSpec for type %d", type->id);
return (mError=BAD_TYPE);
}
Type* t = typeList.editItemAt(typeList.size() - 1);
if (newEntryCount != t->entryCount) {
ALOGE("ResTable_type entry count inconsistent: given %d, previously %d",
(int)newEntryCount, (int)t->entryCount);
return (mError=BAD_TYPE);
}
if (t->package != package) {
ALOGE("No TypeSpec for type %d", type->id);
return (mError=BAD_TYPE);
}
t->configs.add(type);
TABLE_GETENTRY(
ResTable_config thisConfig;
thisConfig.copyFromDtoH(type->config);
ALOGI("Adding config to type %d: %s\n",
type->id, thisConfig.toString().string()));
} else {
ALOGV("Skipping empty ResTable_type for type %d", type->id);
}
} else if (ctype == RES_TABLE_LIBRARY_TYPE) {
if (group->dynamicRefTable.entries().size() == 0) {
status_t err = group->dynamicRefTable.load((const ResTable_lib_header*) chunk);
if (err != NO_ERROR) {
return (mError=err);
}
// Fill in the reference table with the entries we already know about.
size_t N = mPackageGroups.size();
for (size_t i = 0; i < N; i++) {
group->dynamicRefTable.addMapping(mPackageGroups[i]->name, mPackageGroups[i]->id);
}
} else {
ALOGW("Found multiple library tables, ignoring...");
}
} else {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header),
endPos, "ResTable_package:unknown");
if (err != NO_ERROR) {
return (mError=err);
}
}
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + csize);
}
return NO_ERROR;
}
DynamicRefTable::DynamicRefTable(uint8_t packageId)
: mAssignedPackageId(packageId)
{
memset(mLookupTable, 0, sizeof(mLookupTable));
// Reserved package ids
mLookupTable[APP_PACKAGE_ID] = APP_PACKAGE_ID;
mLookupTable[SYS_PACKAGE_ID] = SYS_PACKAGE_ID;
}
status_t DynamicRefTable::load(const ResTable_lib_header* const header)
{
const uint32_t entryCount = dtohl(header->count);
const uint32_t sizeOfEntries = sizeof(ResTable_lib_entry) * entryCount;
const uint32_t expectedSize = dtohl(header->header.size) - dtohl(header->header.headerSize);
if (sizeOfEntries > expectedSize) {
ALOGE("ResTable_lib_header size %u is too small to fit %u entries (x %u).",
expectedSize, entryCount, (uint32_t)sizeof(ResTable_lib_entry));
return UNKNOWN_ERROR;
}
const ResTable_lib_entry* entry = (const ResTable_lib_entry*)(((uint8_t*) header) +
dtohl(header->header.headerSize));
for (uint32_t entryIndex = 0; entryIndex < entryCount; entryIndex++) {
uint32_t packageId = dtohl(entry->packageId);
char16_t tmpName[sizeof(entry->packageName) / sizeof(char16_t)];
strcpy16_dtoh(tmpName, entry->packageName, sizeof(entry->packageName) / sizeof(char16_t));
LIB_NOISY(ALOGV("Found lib entry %s with id %d\n", String8(tmpName).string(),
dtohl(entry->packageId)));
if (packageId >= 256) {
ALOGE("Bad package id 0x%08x", packageId);
return UNKNOWN_ERROR;
}
mEntries.replaceValueFor(String16(tmpName), (uint8_t) packageId);
entry = entry + 1;
}
return NO_ERROR;
}
status_t DynamicRefTable::addMappings(const DynamicRefTable& other) {
if (mAssignedPackageId != other.mAssignedPackageId) {
return UNKNOWN_ERROR;
}
const size_t entryCount = other.mEntries.size();
for (size_t i = 0; i < entryCount; i++) {
ssize_t index = mEntries.indexOfKey(other.mEntries.keyAt(i));
if (index < 0) {
mEntries.add(other.mEntries.keyAt(i), other.mEntries[i]);
} else {
if (other.mEntries[i] != mEntries[index]) {
return UNKNOWN_ERROR;
}
}
}
// Merge the lookup table. No entry can conflict
// (value of 0 means not set).
for (size_t i = 0; i < 256; i++) {
if (mLookupTable[i] != other.mLookupTable[i]) {
if (mLookupTable[i] == 0) {
mLookupTable[i] = other.mLookupTable[i];
} else if (other.mLookupTable[i] != 0) {
return UNKNOWN_ERROR;
}
}
}
return NO_ERROR;
}
status_t DynamicRefTable::addMapping(const String16& packageName, uint8_t packageId)
{
ssize_t index = mEntries.indexOfKey(packageName);
if (index < 0) {
return UNKNOWN_ERROR;
}
mLookupTable[mEntries.valueAt(index)] = packageId;
return NO_ERROR;
}
status_t DynamicRefTable::lookupResourceId(uint32_t* resId) const {
uint32_t res = *resId;
size_t packageId = Res_GETPACKAGE(res) + 1;
if (packageId == APP_PACKAGE_ID) {
// No lookup needs to be done, app package IDs are absolute.
return NO_ERROR;
}
if (packageId == 0) {
// The package ID is 0x00. That means that a shared library is accessing
// its own local resource, so we fix up the resource with the calling
// package ID.
*resId |= ((uint32_t) mAssignedPackageId) << 24;
return NO_ERROR;
}
// Do a proper lookup.
uint8_t translatedId = mLookupTable[packageId];
if (translatedId == 0) {
ALOGE("DynamicRefTable(0x%02x): No mapping for build-time package ID 0x%02x.",
(uint8_t)mAssignedPackageId, (uint8_t)packageId);
for (size_t i = 0; i < 256; i++) {
if (mLookupTable[i] != 0) {
ALOGE("e[0x%02x] -> 0x%02x", (uint8_t)i, mLookupTable[i]);
}
}
return UNKNOWN_ERROR;
}
*resId = (res & 0x00ffffff) | (((uint32_t) translatedId) << 24);
return NO_ERROR;
}
status_t DynamicRefTable::lookupResourceValue(Res_value* value) const {
if (value->dataType != Res_value::TYPE_DYNAMIC_REFERENCE) {
return NO_ERROR;
}
status_t err = lookupResourceId(&value->data);
if (err != NO_ERROR) {
return err;
}
value->dataType = Res_value::TYPE_REFERENCE;
return NO_ERROR;
}
struct IdmapTypeMap {
ssize_t overlayTypeId;
size_t entryOffset;
Vector<uint32_t> entryMap;
};
status_t ResTable::createIdmap(const ResTable& overlay,
uint32_t targetCrc, uint32_t overlayCrc,
const char* targetPath, const char* overlayPath,
void** outData, size_t* outSize) const
{
// see README for details on the format of map
if (mPackageGroups.size() == 0) {
ALOGW("idmap: target package has no package groups, cannot create idmap\n");
return UNKNOWN_ERROR;
}
if (mPackageGroups[0]->packages.size() == 0) {
ALOGW("idmap: target package has no packages in its first package group, "
"cannot create idmap\n");
return UNKNOWN_ERROR;
}
KeyedVector<uint8_t, IdmapTypeMap> map;
// overlaid packages are assumed to contain only one package group
const PackageGroup* pg = mPackageGroups[0];
// starting size is header
*outSize = ResTable::IDMAP_HEADER_SIZE_BYTES;
// target package id and number of types in map
*outSize += 2 * sizeof(uint16_t);
// overlay packages are assumed to contain only one package group
const String16 overlayPackage(overlay.mPackageGroups[0]->packages[0]->package->name);
for (size_t typeIndex = 0; typeIndex < pg->types.size(); ++typeIndex) {
const TypeList& typeList = pg->types[typeIndex];
if (typeList.isEmpty()) {
continue;
}
const Type* typeConfigs = typeList[0];
IdmapTypeMap typeMap;
typeMap.overlayTypeId = -1;
typeMap.entryOffset = 0;
for (size_t entryIndex = 0; entryIndex < typeConfigs->entryCount; ++entryIndex) {
uint32_t resID = Res_MAKEID(pg->id - 1, typeIndex, entryIndex);
resource_name resName;
if (!this->getResourceName(resID, false, &resName)) {
if (typeMap.entryMap.isEmpty()) {
typeMap.entryOffset++;
}
continue;
}
const String16 overlayType(resName.type, resName.typeLen);
const String16 overlayName(resName.name, resName.nameLen);
uint32_t overlayResID = overlay.identifierForName(overlayName.string(),
overlayName.size(),
overlayType.string(),
overlayType.size(),
overlayPackage.string(),
overlayPackage.size());
if (overlayResID == 0) {
if (typeMap.entryMap.isEmpty()) {
typeMap.entryOffset++;
}
continue;
}
if (typeMap.overlayTypeId == -1) {
typeMap.overlayTypeId = Res_GETTYPE(overlayResID) + 1;
}
if (Res_GETTYPE(overlayResID) + 1 != static_cast<size_t>(typeMap.overlayTypeId)) {
ALOGE("idmap: can't mix type ids in entry map. Resource 0x%08x maps to 0x%08x"
" but entries should map to resources of type %02x",
resID, overlayResID, typeMap.overlayTypeId);
return BAD_TYPE;
}
if (typeMap.entryOffset + typeMap.entryMap.size() < entryIndex) {
// Resize to accomodate this entry and the 0's in between.
if (typeMap.entryMap.resize((entryIndex - typeMap.entryOffset) + 1) < 0) {
return NO_MEMORY;
}
typeMap.entryMap.editTop() = Res_GETENTRY(overlayResID);
} else {
typeMap.entryMap.add(Res_GETENTRY(overlayResID));
}
}
if (!typeMap.entryMap.isEmpty()) {
if (map.add(static_cast<uint8_t>(typeIndex), typeMap) < 0) {
return NO_MEMORY;
}
*outSize += (4 * sizeof(uint16_t)) + (typeMap.entryMap.size() * sizeof(uint32_t));
}
}
if (map.isEmpty()) {
ALOGW("idmap: no resources in overlay package present in base package");
return UNKNOWN_ERROR;
}
if ((*outData = malloc(*outSize)) == NULL) {
return NO_MEMORY;
}
uint32_t* data = (uint32_t*)*outData;
*data++ = htodl(IDMAP_MAGIC);
*data++ = htodl(IDMAP_CURRENT_VERSION);
*data++ = htodl(targetCrc);
*data++ = htodl(overlayCrc);
const char* paths[] = { targetPath, overlayPath };
for (int j = 0; j < 2; ++j) {
char* p = (char*)data;
const char* path = paths[j];
const size_t I = strlen(path);
if (I > 255) {
ALOGV("path exceeds expected 255 characters: %s\n", path);
return UNKNOWN_ERROR;
}
for (size_t i = 0; i < 256; ++i) {
*p++ = i < I ? path[i] : '\0';
}
data += 256 / sizeof(uint32_t);
}
const size_t mapSize = map.size();
uint16_t* typeData = reinterpret_cast<uint16_t*>(data);
*typeData++ = htods(pg->id);
*typeData++ = htods(mapSize);
for (size_t i = 0; i < mapSize; ++i) {
uint8_t targetTypeId = map.keyAt(i);
const IdmapTypeMap& typeMap = map[i];
*typeData++ = htods(targetTypeId + 1);
*typeData++ = htods(typeMap.overlayTypeId);
*typeData++ = htods(typeMap.entryMap.size());
*typeData++ = htods(typeMap.entryOffset);
const size_t entryCount = typeMap.entryMap.size();
uint32_t* entries = reinterpret_cast<uint32_t*>(typeData);
for (size_t j = 0; j < entryCount; j++) {
entries[j] = htodl(typeMap.entryMap[j]);
}
typeData += entryCount * 2;
}
return NO_ERROR;
}
bool ResTable::getIdmapInfo(const void* idmap, size_t sizeBytes,
uint32_t* pVersion,
uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
String8* pTargetPath, String8* pOverlayPath)
{
const uint32_t* map = (const uint32_t*)idmap;
if (!assertIdmapHeader(map, sizeBytes)) {
return false;
}
if (pVersion) {
*pVersion = dtohl(map[1]);
}
if (pTargetCrc) {
*pTargetCrc = dtohl(map[2]);
}
if (pOverlayCrc) {
*pOverlayCrc = dtohl(map[3]);
}
if (pTargetPath) {
pTargetPath->setTo(reinterpret_cast<const char*>(map + 4));
}
if (pOverlayPath) {
pOverlayPath->setTo(reinterpret_cast<const char*>(map + 4 + 256 / sizeof(uint32_t)));
}
return true;
}
#define CHAR16_TO_CSTR(c16, len) (String8(String16(c16,len)).string())
#define CHAR16_ARRAY_EQ(constant, var, len) \
((len == (sizeof(constant)/sizeof(constant[0]))) && (0 == memcmp((var), (constant), (len))))
static void print_complex(uint32_t complex, bool isFraction)
{
const float MANTISSA_MULT =
1.0f / (1<<Res_value::COMPLEX_MANTISSA_SHIFT);
const float RADIX_MULTS[] = {
1.0f*MANTISSA_MULT, 1.0f/(1<<7)*MANTISSA_MULT,
1.0f/(1<<15)*MANTISSA_MULT, 1.0f/(1<<23)*MANTISSA_MULT
};
float value = (complex&(Res_value::COMPLEX_MANTISSA_MASK
<<Res_value::COMPLEX_MANTISSA_SHIFT))
* RADIX_MULTS[(complex>>Res_value::COMPLEX_RADIX_SHIFT)
& Res_value::COMPLEX_RADIX_MASK];
printf("%f", value);
if (!isFraction) {
switch ((complex>>Res_value::COMPLEX_UNIT_SHIFT)&Res_value::COMPLEX_UNIT_MASK) {
case Res_value::COMPLEX_UNIT_PX: printf("px"); break;
case Res_value::COMPLEX_UNIT_DIP: printf("dp"); break;
case Res_value::COMPLEX_UNIT_SP: printf("sp"); break;
case Res_value::COMPLEX_UNIT_PT: printf("pt"); break;
case Res_value::COMPLEX_UNIT_IN: printf("in"); break;
case Res_value::COMPLEX_UNIT_MM: printf("mm"); break;
default: printf(" (unknown unit)"); break;
}
} else {
switch ((complex>>Res_value::COMPLEX_UNIT_SHIFT)&Res_value::COMPLEX_UNIT_MASK) {
case Res_value::COMPLEX_UNIT_FRACTION: printf("%%"); break;
case Res_value::COMPLEX_UNIT_FRACTION_PARENT: printf("%%p"); break;
default: printf(" (unknown unit)"); break;
}
}
}
// Normalize a string for output
String8 ResTable::normalizeForOutput( const char *input )
{
String8 ret;
char buff[2];
buff[1] = '\0';
while (*input != '\0') {
switch (*input) {
// All interesting characters are in the ASCII zone, so we are making our own lives
// easier by scanning the string one byte at a time.
case '\\':
ret += "\\\\";
break;
case '\n':
ret += "\\n";
break;
case '"':
ret += "\\\"";
break;
default:
buff[0] = *input;
ret += buff;
break;
}
input++;
}
return ret;
}
void ResTable::print_value(const Package* pkg, const Res_value& value) const
{
if (value.dataType == Res_value::TYPE_NULL) {
printf("(null)\n");
} else if (value.dataType == Res_value::TYPE_REFERENCE) {
printf("(reference) 0x%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_DYNAMIC_REFERENCE) {
printf("(dynamic reference) 0x%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_ATTRIBUTE) {
printf("(attribute) 0x%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_STRING) {
size_t len;
const char* str8 = pkg->header->values.string8At(
value.data, &len);
if (str8 != NULL) {
printf("(string8) \"%s\"\n", normalizeForOutput(str8).string());
} else {
const char16_t* str16 = pkg->header->values.stringAt(
value.data, &len);
if (str16 != NULL) {
printf("(string16) \"%s\"\n",
normalizeForOutput(String8(str16, len).string()).string());
} else {
printf("(string) null\n");
}
}
} else if (value.dataType == Res_value::TYPE_FLOAT) {
printf("(float) %g\n", *(const float*)&value.data);
} else if (value.dataType == Res_value::TYPE_DIMENSION) {
printf("(dimension) ");
print_complex(value.data, false);
printf("\n");
} else if (value.dataType == Res_value::TYPE_FRACTION) {
printf("(fraction) ");
print_complex(value.data, true);
printf("\n");
} else if (value.dataType >= Res_value::TYPE_FIRST_COLOR_INT
|| value.dataType <= Res_value::TYPE_LAST_COLOR_INT) {
printf("(color) #%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_INT_BOOLEAN) {
printf("(boolean) %s\n", value.data ? "true" : "false");
} else if (value.dataType >= Res_value::TYPE_FIRST_INT
|| value.dataType <= Res_value::TYPE_LAST_INT) {
printf("(int) 0x%08x or %d\n", value.data, value.data);
} else {
printf("(unknown type) t=0x%02x d=0x%08x (s=0x%04x r=0x%02x)\n",
(int)value.dataType, (int)value.data,
(int)value.size, (int)value.res0);
}
}
void ResTable::print(bool inclValues) const
{
if (mError != 0) {
printf("mError=0x%x (%s)\n", mError, strerror(mError));
}
size_t pgCount = mPackageGroups.size();
printf("Package Groups (%d)\n", (int)pgCount);
for (size_t pgIndex=0; pgIndex<pgCount; pgIndex++) {
const PackageGroup* pg = mPackageGroups[pgIndex];
printf("Package Group %d id=0x%02x packageCount=%d name=%s\n",
(int)pgIndex, pg->id, (int)pg->packages.size(),
String8(pg->name).string());
const KeyedVector<String16, uint8_t>& refEntries = pg->dynamicRefTable.entries();
const size_t refEntryCount = refEntries.size();
if (refEntryCount > 0) {
printf(" DynamicRefTable entryCount=%d:\n", (int) refEntryCount);
for (size_t refIndex = 0; refIndex < refEntryCount; refIndex++) {
printf(" 0x%02x -> %s\n",
refEntries.valueAt(refIndex),
String8(refEntries.keyAt(refIndex)).string());
}
printf("\n");
}
int packageId = pg->id;
size_t pkgCount = pg->packages.size();
for (size_t pkgIndex=0; pkgIndex<pkgCount; pkgIndex++) {
const Package* pkg = pg->packages[pkgIndex];
// Use a package's real ID, since the ID may have been assigned
// if this package is a shared library.
packageId = pkg->package->id;
printf(" Package %d id=0x%02x name=%s\n", (int)pkgIndex,
pkg->package->id, String8(String16(pkg->package->name)).string());
}
for (size_t typeIndex=0; typeIndex < pg->types.size(); typeIndex++) {
const TypeList& typeList = pg->types[typeIndex];
if (typeList.isEmpty()) {
continue;
}
const Type* typeConfigs = typeList[0];
const size_t NTC = typeConfigs->configs.size();
printf(" type %d configCount=%d entryCount=%d\n",
(int)typeIndex, (int)NTC, (int)typeConfigs->entryCount);
if (typeConfigs->typeSpecFlags != NULL) {
for (size_t entryIndex=0; entryIndex<typeConfigs->entryCount; entryIndex++) {
uint32_t resID = (0xff000000 & ((packageId)<<24))
| (0x00ff0000 & ((typeIndex+1)<<16))
| (0x0000ffff & (entryIndex));
// Since we are creating resID without actually
// iterating over them, we have no idea which is a
// dynamic reference. We must check.
if (packageId == 0) {
pg->dynamicRefTable.lookupResourceId(&resID);
}
resource_name resName;
if (this->getResourceName(resID, true, &resName)) {
String8 type8;
String8 name8;
if (resName.type8 != NULL) {
type8 = String8(resName.type8, resName.typeLen);
} else {
type8 = String8(resName.type, resName.typeLen);
}
if (resName.name8 != NULL) {
name8 = String8(resName.name8, resName.nameLen);
} else {
name8 = String8(resName.name, resName.nameLen);
}
printf(" spec resource 0x%08x %s:%s/%s: flags=0x%08x\n",
resID,
CHAR16_TO_CSTR(resName.package, resName.packageLen),
type8.string(), name8.string(),
dtohl(typeConfigs->typeSpecFlags[entryIndex]));
} else {
printf(" INVALID TYPE CONFIG FOR RESOURCE 0x%08x\n", resID);
}
}
}
for (size_t configIndex=0; configIndex<NTC; configIndex++) {
const ResTable_type* type = typeConfigs->configs[configIndex];
if ((((uint64_t)type)&0x3) != 0) {
printf(" NON-INTEGER ResTable_type ADDRESS: %p\n", type);
continue;
}
String8 configStr = type->config.toString();
printf(" config %s:\n", configStr.size() > 0
? configStr.string() : "(default)");
size_t entryCount = dtohl(type->entryCount);
uint32_t entriesStart = dtohl(type->entriesStart);
if ((entriesStart&0x3) != 0) {
printf(" NON-INTEGER ResTable_type entriesStart OFFSET: 0x%x\n", entriesStart);
continue;
}
uint32_t typeSize = dtohl(type->header.size);
if ((typeSize&0x3) != 0) {
printf(" NON-INTEGER ResTable_type header.size: 0x%x\n", typeSize);
continue;
}
for (size_t entryIndex=0; entryIndex<entryCount; entryIndex++) {
const uint8_t* const end = ((const uint8_t*)type)
+ dtohl(type->header.size);
const uint32_t* const eindex = (const uint32_t*)
(((const uint8_t*)type) + dtohs(type->header.headerSize));
uint32_t thisOffset = dtohl(eindex[entryIndex]);
if (thisOffset == ResTable_type::NO_ENTRY) {
continue;
}
uint32_t resID = (0xff000000 & ((packageId)<<24))
| (0x00ff0000 & ((typeIndex+1)<<16))
| (0x0000ffff & (entryIndex));
if (packageId == 0) {
pg->dynamicRefTable.lookupResourceId(&resID);
}
resource_name resName;
if (this->getResourceName(resID, true, &resName)) {
String8 type8;
String8 name8;
if (resName.type8 != NULL) {
type8 = String8(resName.type8, resName.typeLen);
} else {
type8 = String8(resName.type, resName.typeLen);
}
if (resName.name8 != NULL) {
name8 = String8(resName.name8, resName.nameLen);
} else {
name8 = String8(resName.name, resName.nameLen);
}
printf(" resource 0x%08x %s:%s/%s: ", resID,
CHAR16_TO_CSTR(resName.package, resName.packageLen),
type8.string(), name8.string());
} else {
printf(" INVALID RESOURCE 0x%08x: ", resID);
}
if ((thisOffset&0x3) != 0) {
printf("NON-INTEGER OFFSET: 0x%x\n", thisOffset);
continue;
}
if ((thisOffset+sizeof(ResTable_entry)) > typeSize) {
printf("OFFSET OUT OF BOUNDS: 0x%x+0x%x (size is 0x%x)\n",
entriesStart, thisOffset, typeSize);
continue;
}
const ResTable_entry* ent = (const ResTable_entry*)
(((const uint8_t*)type) + entriesStart + thisOffset);
if (((entriesStart + thisOffset)&0x3) != 0) {
printf("NON-INTEGER ResTable_entry OFFSET: 0x%x\n",
(entriesStart + thisOffset));
continue;
}
uintptr_t esize = dtohs(ent->size);
if ((esize&0x3) != 0) {
printf("NON-INTEGER ResTable_entry SIZE: %p\n", (void *)esize);
continue;
}
if ((thisOffset+esize) > typeSize) {
printf("ResTable_entry OUT OF BOUNDS: 0x%x+0x%x+%p (size is 0x%x)\n",
entriesStart, thisOffset, (void *)esize, typeSize);
continue;
}
const Res_value* valuePtr = NULL;
const ResTable_map_entry* bagPtr = NULL;
Res_value value;
if ((dtohs(ent->flags)&ResTable_entry::FLAG_COMPLEX) != 0) {
printf("<bag>");
bagPtr = (const ResTable_map_entry*)ent;
} else {
valuePtr = (const Res_value*)
(((const uint8_t*)ent) + esize);
value.copyFrom_dtoh(*valuePtr);
printf("t=0x%02x d=0x%08x (s=0x%04x r=0x%02x)",
(int)value.dataType, (int)value.data,
(int)value.size, (int)value.res0);
}
if ((dtohs(ent->flags)&ResTable_entry::FLAG_PUBLIC) != 0) {
printf(" (PUBLIC)");
}
printf("\n");
if (inclValues) {
if (valuePtr != NULL) {
printf(" ");
print_value(typeConfigs->package, value);
} else if (bagPtr != NULL) {
const int N = dtohl(bagPtr->count);
const uint8_t* baseMapPtr = (const uint8_t*)ent;
size_t mapOffset = esize;
const ResTable_map* mapPtr = (ResTable_map*)(baseMapPtr+mapOffset);
const uint32_t parent = dtohl(bagPtr->parent.ident);
uint32_t resolvedParent = parent;
if (Res_GETPACKAGE(resolvedParent) + 1 == 0) {
status_t err = pg->dynamicRefTable.lookupResourceId(&resolvedParent);
if (err != NO_ERROR) {
resolvedParent = 0;
}
}
printf(" Parent=0x%08x(Resolved=0x%08x), Count=%d\n",
parent, resolvedParent, N);
for (int i=0; i<N && mapOffset < (typeSize-sizeof(ResTable_map)); i++) {
printf(" #%i (Key=0x%08x): ",
i, dtohl(mapPtr->name.ident));
value.copyFrom_dtoh(mapPtr->value);
print_value(typeConfigs->package, value);
const size_t size = dtohs(mapPtr->value.size);
mapOffset += size + sizeof(*mapPtr)-sizeof(mapPtr->value);
mapPtr = (ResTable_map*)(baseMapPtr+mapOffset);
}
}
}
}
}
}
}
}
} // namespace android