blob: 1c6d0de41c6785b68304967131de6927157226b1 [file] [log] [blame]
page.title=Graphics
parent.title=Renderscript
parent.link=index.html
@jd:body
<div id="qv-wrapper">
<div id="qv">
<h2>In this document</h2>
<ol>
<li>
<a href="#creating-graphics-rs">Creating a Graphics Renderscript</a>
<ol>
<li><a href="#creating-native">Creating the Renderscript file</a></li>
<li><a href="#creating-entry">Creating the Renderscript entry point class</a></li>
<li><a href="#creating-view">Creating the view class</a></li>
<li><a href="#creating-activity">Creating the activity class</a></li>
</ol>
</li>
<li>
<a href="#drawing">Drawing</a>
<ol>
<li><a href="#drawing-rsg">Simple drawing</a></li>
<li><a href="#drawing-mesh">Drawing with a mesh</a></li>
</ol>
</li>
<li>
<a href="#shaders">Shaders</a>
<ol>
<li><a href="#shader-bindings">Shader bindings</a></li>
<li><a href="#shader-sampler">Defining a sampler</a></li>
</ol>
</li>
<li>
<a href="#fbo">Rendering to a Framebuffer Object</a>
</li>
</ol>
<h2>Related Samples</h2>
<ol>
<li><a href="{@docRoot}resources/samples/RenderScript/Balls/index.html">Balls</a></li>
<li><a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a></li>
<li><a href="{@docRoot}resources/samples/RenderScript/FountainFbo/index.html">FountainFbo</a></li>
<li><a href="{@docRoot}resources/samples/RenderScript/HelloWorld/index.html">Hello World</a></li>
<li><a
href="{@docRoot}resources/samples/RenderScript/MiscSamples/index.html">Misc Samples</a></li>
</ol>
</div>
</div>
<p>Renderscript provides a number of graphics APIs for rendering, both at the Android
framework level as well as at the Renderscript runtime level. For instance, the Android framework APIs let you
create meshes and define shaders to customize the graphical rendering pipeline. The native
Renderscript graphics APIs let you draw the actual meshes to render your scene. You need to
be familiar with both APIs to appropriately render graphics on an Android-powered device.</p>
<h2 id="creating-graphics-rs">Creating a Graphics Renderscript</h2>
<p>Renderscript applications require various layers of code, so it is useful to create the following
files to help keep your application organized:</p>
<dl>
<dt>The Renderscript <code>.rs</code> file</dt>
<dd>This file contains the logic to do the graphics rendering.</dd>
<dt>The Renderscript entry point <code>.java</code> class</dt>
<dd>This class allows the view class to interact with the code defined in the <code>.rs</code>
file. This class contains a Renderscript object (instance of
<code>ScriptC_<em>renderscript_file</em></code>), which allows your Android framework code to
call the Renderscript code. In general, this class does much of the setup for Renderscript
such as shader and mesh building and memory allocation and binding. The SDK samples follow the
convention of naming this file ActivityRS.java,
where Activity is the name of your main activity class.</dd>
<dt>The view <code>.java</code> class</dt>
<dd>This class extends {@link android.renderscript.RSSurfaceView} or {@link
android.renderscript.RSTextureView} to provide a surface to render on. A {@link
android.renderscript.RSSurfaceView} consumes a whole window, but a {@link
android.renderscript.RSTextureView} allows you to draw Renderscript graphics inside of a
view and add it to a {@link android.view.ViewGroup} alongside
other views. In this class, you create a {@link android.renderscript.RenderScriptGL} context object
with a call to {@link android.renderscript.RSSurfaceView#createRenderScriptGL
RSSurfaceView.createRenderscriptGL()} or {@link android.renderscript.RSTextureView#createRenderScriptGL
RSTextureView.createRenderscriptGL()}. The {@link android.renderscript.RenderScriptGL} context object
contains information about the current rendering state of Renderscript such as the vertex and
fragment shaders. You pass this context object to the Renderscript entry point class, so that
class can modify the rendering context if needed and bind the Renderscript code to the context. Once bound,
the view class can use the Renderscript code to display graphics.
The view class should also implement callbacks for events inherited from {@link
android.view.View}, such as {@link android.view.View#onTouchEvent onTouchEvent()} and {@link
android.view.View#onKeyDown onKeyDown()} if you want to detect these types of user interactions.
The SDK samples follow the convention of naming this file ActivityView.java,
where Activity is the name of your main activity class</dd>
<dt>The activity <code>.java</code> class</dt>
<dd>This class is the main activity class and sets your {@link android.renderscript.RSSurfaceView} as the main content
view for this activity or uses the {@link android.renderscript.RSTextureView} alongside other views.</dd>
</dl>
<p>Figure 1 describes how these classes interact with one another in a graphics Renderscript:</p>
<img src="{@docRoot}images/rs_graphics.png">
<p class="img-caption"><strong>Figure 1.</strong> Graphics Renderscript overview</p>
<p>The following sections describe how to create an application that uses a graphics Renderscript by using
the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Renderscript Fountain
sample</a> that is provided in the SDK as a guide (some code has been modified from its original
form for simplicity).</p>
<h3 id="creating-native">Creating the Renderscript file</h3>
<p>Your Renderscript code resides in <code>.rs</code> and <code>.rsh</code> (headers) files in the
<code>&lt;project_root&gt;/src/</code> directory. This code contains the logic to render your
graphics and declares all other necessary items such as variables, structs,
and pointers. Every graphics <code>.rs</code> file generally contains the following items:</p>
<ul>
<li>A pragma declaration (<code>#pragma rs java_package_name(<em>package.name</em>)</code>) that declares
the package name of the <code>.java</code> reflection of this Renderscript.</li>
<li>A pragma declaration (<code>#pragma version(1)</code>) that declares the version of Renderscript that
you are using (1 is the only value for now).</li>
<li>A <code>#include "rs_graphics.rsh"</code> declaration.</li>
<li>A <code>root()</code> function. This is the main worker function for your Renderscript and
calls Renderscript graphics functions to render scenes. This function is called every time a
frame refresh occurs, which is specified as its return value. A <code>0</code> (zero) specified for
the return value says to only render the frame when a property of the scene that you are
rendering changes. A non-zero positive integer specifies the refresh rate of the frame in
milliseconds.
<p class="note"><strong>Note:</strong> The Renderscript runtime makes its best effort to
refresh the frame at the specified rate. For example, if you are creating a live wallpaper
and set the return value to 20, the Renderscript runtime renders the wallpaper at 20fps if it has just
enough or more resources to do so. It renders as fast as it can if not enough resources
are available.</p>
<p>For more information on using the Renderscript graphics functions, see the <a href=
"#drawing">Drawing</a> section.</p>
</li>
<li>An <code>init()</code> function. This allows you to do initialization of your
Renderscript before the <code>root()</code> function runs, such as assigning values to variables. This
function runs once and is called automatically when the Renderscript starts, before anything
else in your Renderscript. Creating this function is optional.</li>
<li>Any variables, pointers, and structures that you wish to use in your Renderscript code (can
be declared in <code>.rsh</code> files if desired)</li>
</ul>
<p>The following code shows how the <code>fountain.rs</code> file is implemented:</p>
<pre>
#pragma version(1)
// Tell which java package name the reflected files should belong to
#pragma rs java_package_name(com.example.android.rs.fountain)
//declare shader binding
#pragma stateFragment(parent)
// header with graphics APIs, must include explicitly
#include "rs_graphics.rsh"
static int newPart = 0;
// the mesh to render
rs_mesh partMesh;
// the point representing where a particle is rendered
typedef struct __attribute__((packed, aligned(4))) Point {
float2 delta;
float2 position;
uchar4 color;
} Point_t;
Point_t *point;
// main worker function that renders particles onto the screen
int root() {
float dt = min(rsGetDt(), 0.1f);
rsgClearColor(0.f, 0.f, 0.f, 1.f);
const float height = rsgGetHeight();
const int size = rsAllocationGetDimX(rsGetAllocation(point));
float dy2 = dt * (10.f);
Point_t * p = point;
for (int ct=0; ct &lt; size; ct++) {
p-&gt;delta.y += dy2;
p-&gt;position += p-&gt;delta;
if ((p-&gt;position.y &gt; height) &amp;&amp; (p-&gt;delta.y &gt; 0)) {
p-&gt;delta.y *= -0.3f;
}
p++;
}
rsgDrawMesh(partMesh);
return 1;
}
// adds particles to the screen to render
static float4 partColor[10];
void addParticles(int rate, float x, float y, int index, bool newColor)
{
if (newColor) {
partColor[index].x = rsRand(0.5f, 1.0f);
partColor[index].y = rsRand(1.0f);
partColor[index].z = rsRand(1.0f);
}
float rMax = ((float)rate) * 0.02f;
int size = rsAllocationGetDimX(rsGetAllocation(point));
uchar4 c = rsPackColorTo8888(partColor[index]);
Point_t * np = &amp;point[newPart];
float2 p = {x, y};
while (rate--) {
float angle = rsRand(3.14f * 2.f);
float len = rsRand(rMax);
np-&gt;delta.x = len * sin(angle);
np-&gt;delta.y = len * cos(angle);
np-&gt;position = p;
np-&gt;color = c;
newPart++;
np++;
if (newPart &gt;= size) {
newPart = 0;
np = &amp;point[newPart];
}
}
}
</pre>
<h3 id="creating-entry">Creating the Renderscript entry point class</h3>
<p>When you create a Renderscript (<code>.rs</code>) file, it is helpful to create a
corresponding Android framework class that is an entry point into the <code>.rs</code> file.
The most important thing this class does is receive a {@link android.renderscript.RenderScriptGL} rendering context
object from the <a href="#creating-view">view class</a> and binds the actual Renderscript
code to the rendering context. This notifies your view class of the code that it needs
to render graphics.
</p>
<p>In addition, this class should contain all of the things needed to set up Renderscript.
Some important things that you need to do in this class are:</p>
<ul>
<li>Create a Renderscript object
<code>ScriptC_<em>rs_filename</em></code>. The Renderscript object is attached to the Renderscript bytecode, which is platform-independent and
gets compiled on the device when the Renderscript application runs. The bytecode is referenced
as a raw resource and is passed into the constructor for the Renderscript object.
For example, this is how the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a>
sample creates the Renderscript object:
<pre>
RenderScriptGL rs; //obtained from the view class
Resources res; //obtained from the view class
...
ScriptC_fountain mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
</pre>
</li>
<li>Allocate any necessary memory and bind it to your Renderscript code via the Renderscript object.</li>
<li>Build any necessary meshes and bind them to the Renderscript code via the Renderscript object.</li>
<li>Create any necessary programs and bind them to the Renderscript code via the Renderscript object.</li>
</ul>
<p>The following code shows how the <a href=
"{@docRoot}resources/samples/RenderScript/Fountain/src/com/example/android/rs/fountain/FountainRS.html">
FountainRS</a> class is implemented:</p>
<pre>
package com.example.android.rs.fountain;
import android.content.res.Resources;
import android.renderscript.*;
import android.util.Log;
public class FountainRS {
public static final int PART_COUNT = 50000;
public FountainRS() {
}
/**
* This provides us with the Renderscript context and resources
* that allow us to create the Renderscript object
*/
private Resources mRes;
private RenderScriptGL mRS;
// Renderscript object
private ScriptC_fountain mScript;
// Called by the view class to initialize the Renderscript context and renderer
public void init(RenderScriptGL rs, Resources res) {
mRS = rs;
mRes = res;
/**
* Create a shader and bind to the Renderscript context
*/
ProgramFragmentFixedFunction.Builder pfb = new ProgramFragmentFixedFunction.Builder(rs);
pfb.setVaryingColor(true);
rs.bindProgramFragment(pfb.create());
/**
* Allocate memory for the particles to render and create the mesh to draw
*/
ScriptField_Point points = new ScriptField_Point(mRS, PART_COUNT);
Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder(mRS);
smb.addVertexAllocation(points.getAllocation());
smb.addIndexSetType(Mesh.Primitive.POINT);
Mesh sm = smb.create();
/**
* Create and bind the Renderscript object to the Renderscript context
*/
mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
mScript.set_partMesh(sm);
mScript.bind_point(points);
mRS.bindRootScript(mScript);
}
boolean holdingColor[] = new boolean[10];
/**
* Calls Renderscript functions (invoke_addParticles)
* via the Renderscript object to add particles to render
* based on where a user touches the screen.
*/
public void newTouchPosition(float x, float y, float pressure, int id) {
if (id &gt;= holdingColor.length) {
return;
}
int rate = (int)(pressure * pressure * 500.f);
if (rate &gt; 500) {
rate = 500;
}
if (rate &gt; 0) {
mScript.invoke_addParticles(rate, x, y, id, !holdingColor[id]);
holdingColor[id] = true;
} else {
holdingColor[id] = false;
}
}
}
</pre>
<h3 id="creating-view">Creating the view class</h3>
<p>To display graphics, you need a view to render on. Create a class that extends {@link
android.renderscript.RSSurfaceView} or {@link android.renderscript.RSTextureView}. This class
allows you to create a {@link android.renderscript.RenderScriptGL} context object by calling and
pass it to the Rendscript entry point class to bind the two. Once bound, the content is aware
of the code that it needs to use to render graphics with. If your Renderscript code
depends on any type of information that the view is aware of, such as touches from the user,
you can also use this class to relay that information to the Renderscript entry point class.
The following code shows how the <code>FountainView</code> class is implemented:</p>
<pre>
package com.example.android.rs.fountain;
import android.renderscript.RSTextureView;
import android.renderscript.RenderScriptGL;
import android.content.Context;
import android.view.MotionEvent;
public class FountainView extends RSTextureView {
public FountainView(Context context) {
super(context);
}
// Renderscript context
private RenderScriptGL mRS;
// Renderscript entry point object that calls Renderscript code
private FountainRS mRender;
/**
* Create Renderscript context and initialize Renderscript entry point
*/
&#064;Override
protected void onAttachedToWindow() {
super.onAttachedToWindow();
android.util.Log.e("rs", "onAttachedToWindow");
if (mRS == null) {
RenderScriptGL.SurfaceConfig sc = new RenderScriptGL.SurfaceConfig();
mRS = createRenderScriptGL(sc);
mRender = new FountainRS();
mRender.init(mRS, getResources());
}
}
&#064;Override
protected void onDetachedFromWindow() {
super.onDetachedFromWindow();
android.util.Log.e("rs", "onDetachedFromWindow");
if (mRS != null) {
mRS = null;
destroyRenderScriptGL();
}
}
/**
* Use callbacks to relay data to Renderscript entry point class
*/
&#064;Override
public boolean onTouchEvent(MotionEvent ev)
{
int act = ev.getActionMasked();
if (act == ev.ACTION_UP) {
mRender.newTouchPosition(0, 0, 0, ev.getPointerId(0));
return false;
} else if (act == MotionEvent.ACTION_POINTER_UP) {
// only one pointer going up, we can get the index like this
int pointerIndex = ev.getActionIndex();
int pointerId = ev.getPointerId(pointerIndex);
mRender.newTouchPosition(0, 0, 0, pointerId);
}
int count = ev.getHistorySize();
int pcount = ev.getPointerCount();
for (int p=0; p &lt; pcount; p++) {
int id = ev.getPointerId(p);
mRender.newTouchPosition(ev.getX(p),
ev.getY(p),
ev.getPressure(p),
id);
for (int i=0; i &lt; count; i++) {
mRender.newTouchPosition(ev.getHistoricalX(p, i),
ev.getHistoricalY(p, i),
ev.getHistoricalPressure(p, i),
id);
}
}
return true;
}
}
</pre>
<h3 id="creating-activity">Creating the activity class</h3>
<p>Applications that use Renderscript still behave like normal Android applications, so you
need an activity class that handles activity lifecycle callback events appropriately. The activity class
also sets your {@link android.renderscript.RSSurfaceView} view class to be the main content view of the
activity or uses your {@link android.renderscript.RSTextureView}
in a {@link android.view.ViewGroup} alongside other views.</p>
<p>The following code shows how the <a href="{@docRoot}resources/samples/RenderScript/Fountain/index.html">Fountain</a>
sample declares its activity class:</p>
<pre>
package com.example.android.rs.fountain;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
public class Fountain extends Activity {
private static final String LOG_TAG = "libRS_jni";
private static final boolean DEBUG = false;
private static final boolean LOG_ENABLED = false;
private FountainView mView;
&#064;Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
// Create our Preview view and set it as
// the content of our activity
mView = new FountainView(this);
setContentView(mView);
}
&#064;Override
protected void onResume() {
Log.e("rs", "onResume");
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super.onResume();
mView.resume();
}
&#064;Override
protected void onPause() {
Log.e("rs", "onPause");
// Ideally a game should implement onResume() and onPause()
// to take appropriate action when the activity looses focus
super.onPause();
mView.pause();
}
static void log(String message) {
if (LOG_ENABLED) {
Log.v(LOG_TAG, message);
}
}
}
</pre>
<p>Now that you have an idea of what is involved in a Renderscript graphics application, you can
start building your own. It might be easiest to begin with one of the
<a href="{@docRoot}resources/samples/RenderScript/index.html">Renderscript samples</a> as a starting
point if this is your first time using Renderscript.</p>
<h2 id="drawing">Drawing</h2>
<p>The following sections describe how to use the graphics functions to draw with Renderscript.</p>
<h3 id="drawing-rsg">Simple drawing</h3>
<p>The native Renderscript APIs provide a few convenient functions to easily draw a polygon or text to
the screen. You call these in your <code>root()</code> function to have them render to the {@link
android.renderscript.RSSurfaceView} or {@link android.renderscript.RSTextureView}. These functions are
available for simple drawing and should not be used for complex graphics rendering:</p>
<ul>
<li><code>rsgDrawRect()</code>: Sets up a mesh and draws a rectangle to the screen. It uses the
top left vertex and bottom right vertex of the rectangle to draw.</li>
<li><code>rsgDrawQuad()</code>: Sets up a mesh and draws a quadrilateral to the screen.</li>
<li><code>rsgDrawQuadTexCoords()</code>: Sets up a mesh and draws a quadrilateral to the screen
using the provided coordinates of a texture.</li>
<li><code>rsgDrawText()</code>: Draws specified text to the screen. Use <code>rsgFontColor()</code>
to set the color of the text.</li>
</ul>
<h3 id="drawing-mesh">Drawing with a mesh</h3>
<p>When you want to render complex scenes to the screen, instantiate a {@link
android.renderscript.Mesh} and draw it with <code>rsgDrawMesh()</code>. A {@link
android.renderscript.Mesh} is a collection of allocations that represent vertex data (positions,
normals, texture coordinates) and index data that provides information on how to draw triangles
and lines with the provided vertex data. You can build a Mesh in three different ways:</p>
<ul>
<li>Build the mesh with the {@link android.renderscript.Mesh.TriangleMeshBuilder} class, which
allows you to specify a set of vertices and indices for each triangle that you want to draw.</li>
<li>Build the mesh using an {@link android.renderscript.Allocation} or a set of {@link
android.renderscript.Allocation}s with the {@link android.renderscript.Mesh.AllocationBuilder}
class. This approach allows you to build a mesh with vertices already stored in memory, which allows you
to specify the vertices in Renderscript or Android framework code.</li>
<li>Build the mesh with the {@link android.renderscript.Mesh.Builder} class. You should use
this convenience method when you know the data types you want to use to build your mesh, but
don't want to make separate memory allocations like with {@link
android.renderscript.Mesh.AllocationBuilder}. You can specify the types that you want and this
mesh builder automatically creates the memory allocations for you.</li>
</ul>
<p>To create a mesh using the {@link android.renderscript.Mesh.TriangleMeshBuilder}, you need to
supply it with a set of vertices and the indices for the vertices that comprise the triangle. For
example, the following code specifies three vertices, which are added to an internal array,
indexed in the order they were added. The call to {@link
android.renderscript.Mesh.TriangleMeshBuilder#addTriangle addTriangle()} draws the triangle with
vertex 0, 1, and 2 (the vertices are drawn counter-clockwise).</p>
<pre>
int float2VtxSize = 2;
Mesh.TriangleMeshBuilder triangle = new Mesh.TriangleMeshBuilder(renderscriptGL,
float2VtxSize, Mesh.TriangleMeshBuilder.COLOR);
triangles.addVertex(300.f, 300.f);
triangles.addVertex(150.f, 450.f);
triangles.addVertex(450.f, 450.f);
triangles.addTriangle(0 , 1, 2);
Mesh smP = triangle.create(true);
script.set_mesh(smP);
</pre>
<p>To draw a mesh using the {@link android.renderscript.Mesh.AllocationBuilder}, you need to
supply it with one or more allocations that contain the vertex data:</p>
<pre>
Allocation vertices;
...
Mesh.AllocationBuilder triangle = new Mesh.AllocationBuilder(mRS);
smb.addVertexAllocation(vertices.getAllocation());
smb.addIndexSetType(Mesh.Primitive.TRIANGLE);
Mesh smP = smb.create();
script.set_mesh(smP);
</pre>
<p>In your Renderscript code, draw the built mesh to the screen:</p>
<pre>
rs_mesh mesh;
...
int root(){
...
rsgDrawMesh(mesh);
...
return 0; //specify a non zero, positive integer to specify the frame refresh.
//0 refreshes the frame only when the mesh changes.
}
</pre>
<h2 id="shader">Programs</h2>
<p>You can attach four program objects to the {@link android.renderscript.RenderScriptGL} context
to customize the rendering pipeline. For example, you can create vertex and fragment shaders in
GLSL or build a raster program object that controls culling. The four programs mirror a
traditional graphical rendering pipeline:</p>
<table>
<tr>
<th>Android Object Type</th>
<th>Renderscript Native Type</th>
<th>Description</th>
</tr>
<tr>
<td>{@link android.renderscript.ProgramVertex}</td>
<td>rs_program_vertex</td>
<td>
<p>The Renderscript vertex program, also known as a vertex shader, describes the stage in
the graphics pipeline responsible for manipulating geometric data in a user-defined way.
The object is constructed by providing Renderscript with the following data:</p>
<ul>
<li>An {@link android.renderscript.Element} describing its varying inputs or attributes</li>
<li>GLSL shader string that defines the body of the program</li>
<li>a {@link android.renderscript.Type} that describes the layout of an
Allocation containing constant or uniform inputs</li>
</ul>
<p>Once the program is created, bind it to the {@link android.renderscript.RenderScriptGL}
graphics context by calling {@link android.renderscript.RenderScriptGL#bindProgramVertex
bindProgramVertex()}. It is then used for all subsequent draw calls until you bind a new
program. If the program has constant inputs, the user needs to bind an allocation
containing those inputs. The allocation's type must match the one provided during creation.
</p>
<p>The Renderscript runtime then does all the necessary plumbing to send those constants to
the graphics hardware. Varying inputs to the shader, such as position, normal, and texture
coordinates are matched by name between the input {@link android.renderscript.Element}
and the mesh object that is being drawn. The signatures don't have to be exact or in any
strict order. As long as the input name in the shader matches a channel name and size
available on the mesh, the Renderscript runtime handles connecting the two. Unlike OpenGL
there is no need to link the vertex and fragment programs.</p>
<p>To bind shader constants to the program, declare a <code>struct</code> that contains the necessary
shader constants in your Renderscript code. This <code>struct</code> is generated into a
reflected class that you can use as a constant input element during the program's creation.
It is an easy way to create an instance of this <code>struct</code> as an allocation. You would then
bind this {@link android.renderscript.Allocation} to the program and the
Renderscript runtime sends the data that is contained in the <code>struct</code> to the hardware
when necessary. To update shader constants, you change the values in the
{@link android.renderscript.Allocation} and notify the Renderscript
code of the change.</p>
<p>The {@link android.renderscript.ProgramVertexFixedFunction.Builder} class also
lets you build a simple vertex shader without writing GLSL code.
</p>
</td>
</tr>
<tr>
<td>{@link android.renderscript.ProgramFragment}</td>
<td>rs_program_fragment</td>
<td>
<p>The Renderscript fragment program, also known as a fragment shader, is responsible for
manipulating pixel data in a user-defined way. It's constructed from a GLSL shader string
containing the program body, texture inputs, and a {@link android.renderscript.Type}
object that describes the constants
used by the program. Like the vertex programs, when an {@link android.renderscript.Allocation}
with constant input
values is bound to the shader, its values are sent to the graphics program automatically.
Note that the values inside the {@link android.renderscript.Allocation} are not explicitly tracked.
If they change between two draw calls using the same program object, notify the runtime of that change by
calling <code>rsgAllocationSyncAll()</code>, so it can send the new values to hardware. Communication
between the vertex and fragment programs is handled internally in the GLSL code. For
example, if the fragment program is expecting a varying input called <code>varTex0</code>, the GLSL code
inside the program vertex must provide it.</p>
<p>To bind shader constructs to the program, declare a <code>struct</code> that contains the necessary
shader constants in your Renderscript code. This <code>struct</code> is generated into a
reflected class that you can use as a constant input element during the program's creation.
It is an easy way to create an instance of this <code>struct</code> as an allocation. You would then
bind this {@link android.renderscript.Allocation} to the program and the
Renderscript runtime sends the data that is contained in the <code>struct</code> to the hardware
when necessary. To update shader constants, you change the values in the
{@link android.renderscript.Allocation} and notify the Renderscript
code of the change.</p>
<p>The {@link android.renderscript.ProgramFragmentFixedFunction.Builder} class also
lets you build a simple fragment shader without writing GLSL code.
</p>
</td>
</tr>
<tr>
<td>{@link android.renderscript.ProgramStore}</td>
<td>rs_program_store</td>
<td>The Renderscript store program contains a set of parameters that control how the graphics
hardware writes to the framebuffer. It could be used to enable and disable depth writes and
testing, setup various blending modes for effects like transparency and define write masks
for color components.</td>
</tr>
<tr>
<td>{@link android.renderscript.ProgramRaster}</td>
<td>rs_program_raster</td>
<td>The Renderscript raster program is primarily used to specify whether point sprites are enabled and to
control the culling mode. By default back faces are culled.</td>
</tr>
</table>
<p>The following example defines a vertex shader in GLSL and binds it to a Renderscript context object:</p>
<pre>
private RenderScriptGL glRenderer; //rendering context
private ScriptField_Point mPoints; //vertices
private ScriptField_VpConsts mVpConsts; //shader constants
...
ProgramVertex.Builder sb = new ProgramVertex.Builder(glRenderer);
String t = "varying vec4 varColor;\n" +
"void main() {\n" +
" vec4 pos = vec4(0.0, 0.0, 0.0, 1.0);\n" +
" pos.xy = ATTRIB_position;\n" +
" gl_Position = UNI_MVP * pos;\n" +
" varColor = vec4(1.0, 1.0, 1.0, 1.0);\n" +
" gl_PointSize = ATTRIB_size;\n" +
"}\n";
sb.setShader(t);
sb.addConstant(mVpConsts.getType());
sb.addInput(mPoints.getElement());
ProgramVertex pvs = sb.create();
pvs.bindConstants(mVpConsts.getAllocation(), 0);
glRenderer.bindProgramVertex(pvs);
</pre>
<p>The <a href=
"{@docRoot}resources/samples/RenderScript/MiscSamples/src/com/example/android/rs/miscsamples/RsRenderStatesRS.html">
RsRenderStatesRS</a> sample has many examples on how to create a shader without writing GLSL.</p>
<h3 id="shader-bindings">Program bindings</h3>
<p>You can also declare four pragmas that control default program bindings to the {@link
android.renderscript.RenderScriptGL} context when the script is executing:</p>
<ul>
<li><code>stateVertex</code></li>
<li><code>stateFragment</code></li>
<li><code>stateRaster</code></li>
<li><code>stateStore</code></li>
</ul>
<p>The possible values for each pragma are <code>parent</code> or <code>default</code>. Using
<code>default</code> binds the shaders to the graphical context with the system defaults.</p>
<p>Using <code>parent</code> binds the shaders in the same manner as it is bound in the calling
script. If this is the root script, the parent state is taken from the bind points that are set
by the {@link android.renderscript.RenderScriptGL} bind methods.</p>
<p>For example, you can define this at the top of your graphics Renderscript code to have
the vertex and store programs inherent the bind properties from their parent scripts:</p>
<pre>
#pragma stateVertex(parent)
#pragma stateStore(parent)
</pre>
<h3 id="shader-sampler">Defining a sampler</h3>
<p>A {@link android.renderscript.Sampler} object defines how data is extracted from textures.
Samplers are bound to a {@link android.renderscript.ProgramFragment} alongside the texture
whose sampling they control. These
objects are used to specify such things as edge clamping behavior, whether mip-maps are used, and
the amount of anisotropy required. There might be situations where hardware does not support the
desired behavior of the sampler. In these cases, the Renderscript runtime attempts to provide the
closest possible approximation. For example, the user requested 16x anisotropy, but only 8x was
set because it's the best available on the hardware.</p>
<p>The <a href=
"{@docRoot}resources/samples/RenderScript/MiscSamples/src/com/example/android/rs/miscsamples/RsRenderStatesRS.html">
RsRenderStatesRS</a> sample has many examples on how to create a sampler and bind it to a
Fragment program.</p>
<h2 id="fbo">Rendering to a Framebuffer Object</h2>
<p>Framebuffer objects allow you to render offscreen instead of in the default onscreen
framebuffer. This approach might be useful for situations where you need to post-process a texture before
rendering it to the screen, or when you want to composite two scenes in one such as rendering a rear-view
mirror of a car. There are two buffers associated with a framebuffer object: a color buffer
and a depth buffer. The color buffer (required) contains the actual pixel data of the scene
that you are rendering, and the depth buffer (optional) contains the values necessary to figure
out what vertices are drawn depending on their z-values.</p>
<p>In general, you need to do the following to render to a framebuffer object:</p>
<ul>
<li>Create {@link android.renderscript.Allocation} objects for the color buffer and
depth buffer (if needed). Specify the {@link
android.renderscript.Allocation#USAGE_GRAPHICS_RENDER_TARGET} usage attribute for these
allocations to notify the Renderscript runtime to use these allocations for the framebuffer
object. For the color buffer allocation, you most likely need to declare the {@link
android.renderscript.Allocation#USAGE_GRAPHICS_TEXTURE} usage attribute
to use the color buffer as a texture, which is the most common use of the framebuffer object.</li>
<li>Tell the Renderscript runtime to render to the framebuffer object instead of the default
framebuffer by calling <code>rsgBindColorTarget()</code> and passing it the color buffer
allocation. If applicable, call <code>rsgBindDepthTarget()</code> passing in the depth buffer
allocation as well.</li>
<li>Render your scene normally with the <code>rsgDraw</code> functions. The scene will be
rendered into the color buffer instead of the default onscreen framebuffer.</li>
<li>When done, tell the Renderscript runtime stop rendering to the color buffer and back
to the default framebuffer by calling <code>rsgClearAllRenderTargets()</code>.</li>
<li>Create a fragment shader and bind a the color buffer to it as a texture.</li>
<li>Render your scene to the default framebuffer. The texture will be used according
to the way you setup your fragment shader.</li>
</ul>
<p>The following example shows you how to render to a framebuffer object by modifying the
<a href="{@docRoot}guide/resources/renderscript/Fountain/">Fountain</a> Renderscript sample. The end
result is the <a href="{@docRoot}guide/resources/renderscript/FountainFBO/">FountainFBO</a> sample.
The modifications render the exact same scene into a framebuffer object as it does the default
framebuffer. The framebuffer object is then rendered into the default framebuffer in a small
area at the top left corner of the screen.</p>
<ol>
<li>Modify <code>fountain.rs</code> and add the following global variables. This creates setter
methods when this file is reflected into a <code>.java</code> file, allowing you to allocate
memory in your Android framework code and binding it to the Renderscript runtime.
<pre>
//allocation for color buffer
rs_allocation gColorBuffer;
//fragment shader for rendering without a texture (used for rendering to framebuffer object)
rs_program_fragment gProgramFragment;
//fragment shader for rendering with a texture (used for rendering to default framebuffer)
rs_program_fragment gTextureProgramFragment;
</pre>
</li>
<li>Modify the root function of <code>fountain.rs</code> to look like the following code. The
modifications are commented:
<pre>
int root() {
float dt = min(rsGetDt(), 0.1f);
rsgClearColor(0.f, 0.f, 0.f, 1.f);
const float height = rsgGetHeight();
const int size = rsAllocationGetDimX(rsGetAllocation(point));
float dy2 = dt * (10.f);
Point_t * p = point;
for (int ct=0; ct < size; ct++) {
p->delta.y += dy2;
p->position += p->delta;
if ((p->position.y > height) && (p->delta.y > 0)) {
p->delta.y *= -0.3f;
}
p++;
}
//Tell Renderscript runtime to render to the frame buffer object
rsgBindColorTarget(gColorBuffer, 0);
//Begin rendering on a white background
rsgClearColor(1.f, 1.f, 1.f, 1.f);
rsgDrawMesh(partMesh);
//When done, tell Renderscript runtime to stop rendering to framebuffer object
rsgClearAllRenderTargets();
//Bind a new fragment shader that declares the framebuffer object to be used as a texture
rsgBindProgramFragment(gTextureProgramFragment);
//Bind the framebuffer object to the fragment shader at slot 0 as a texture
rsgBindTexture(gTextureProgramFragment, 0, gColorBuffer);
//Draw a quad using the framebuffer object as the texture
float startX = 10, startY = 10;
float s = 256;
rsgDrawQuadTexCoords(startX, startY, 0, 0, 1,
startX, startY + s, 0, 0, 0,
startX + s, startY + s, 0, 1, 0,
startX + s, startY, 0, 1, 1);
//Rebind the original fragment shader to render as normal
rsgBindProgramFragment(gProgramFragment);
//Render the main scene
rsgDrawMesh(partMesh);
return 1;
}
</pre>
</li>
<li>In the <code>FountainRS.java</code> file, modify the <code>init()</code> method to look
like the following code. The modifications are commented:
<pre>
/* Add necessary members */
private ScriptC_fountainfbo mScript;
private Allocation mColorBuffer;
private ProgramFragment mProgramFragment;
private ProgramFragment mTextureProgramFragment;
public void init(RenderScriptGL rs, Resources res) {
mRS = rs;
mRes = res;
ScriptField_Point points = new ScriptField_Point(mRS, PART_COUNT);
Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder(mRS);
smb.addVertexAllocation(points.getAllocation());
smb.addIndexSetType(Mesh.Primitive.POINT);
Mesh sm = smb.create();
mScript = new ScriptC_fountainfbo(mRS, mRes, R.raw.fountainfbo);
mScript.set_partMesh(sm);
mScript.bind_point(points);
ProgramFragmentFixedFunction.Builder pfb = new ProgramFragmentFixedFunction.Builder(rs);
pfb.setVaryingColor(true);
mProgramFragment = pfb.create();
mScript.set_gProgramFragment(mProgramFragment);
/* Second fragment shader to use a texture (framebuffer object) to draw with */
pfb.setTexture(ProgramFragmentFixedFunction.Builder.EnvMode.REPLACE,
ProgramFragmentFixedFunction.Builder.Format.RGBA, 0);
/* Set the fragment shader in the Renderscript runtime */
mTextureProgramFragment = pfb.create();
mScript.set_gTextureProgramFragment(mTextureProgramFragment);
/* Create the allocation for the color buffer */
Type.Builder colorBuilder = new Type.Builder(mRS, Element.RGBA_8888(mRS));
colorBuilder.setX(256).setY(256);
mColorBuffer = Allocation.createTyped(mRS, colorBuilder.create(),
Allocation.USAGE_GRAPHICS_TEXTURE |
Allocation.USAGE_GRAPHICS_RENDER_TARGET);
/* Set the allocation in the Renderscript runtime */
mScript.set_gColorBuffer(mColorBuffer);
mRS.bindRootScript(mScript);
}
</pre>
<p class="note"><strong>Note:</strong> This sample doesn't use a depth buffer, but the following code
shows you how to declare an example depth buffer if you need to use
one for your application. The depth buffer must have the same dimensions as the color buffer:
<pre>
Allocation mDepthBuffer;
...
Type.Builder b = new Type.Builder(mRS, Element.createPixel(mRS, DataType.UNSIGNED_16,
DataKind.PIXEL_DEPTH));
b.setX(256).setY(256);
mDepthBuffer = Allocation.createTyped(mRS, b.create(),
Allocation.USAGE_GRAPHICS_RENDER_TARGET);
</pre>
</p>
</li>
<li>Run and use the sample. The smaller, white quad on the top-left corner is using the
framebuffer object as a texture, which renders the same scene as the main rendering.</li>
</ol>