blob: ffd1e8c980037be198a0b893a61cb14c2fa518d2 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <utils/JenkinsHash.h>
#include "Caches.h"
#include "Debug.h"
#include "GradientCache.h"
#include "Properties.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Functions
///////////////////////////////////////////////////////////////////////////////
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
///////////////////////////////////////////////////////////////////////////////
// Cache entry
///////////////////////////////////////////////////////////////////////////////
hash_t GradientCacheEntry::hash() const {
uint32_t hash = JenkinsHashMix(0, count);
for (uint32_t i = 0; i < count; i++) {
hash = JenkinsHashMix(hash, android::hash_type(colors[i]));
hash = JenkinsHashMix(hash, android::hash_type(positions[i]));
}
return JenkinsHashWhiten(hash);
}
int GradientCacheEntry::compare(const GradientCacheEntry& lhs, const GradientCacheEntry& rhs) {
int deltaInt = int(lhs.count) - int(rhs.count);
if (deltaInt != 0) return deltaInt;
deltaInt = memcmp(lhs.colors, rhs.colors, lhs.count * sizeof(uint32_t));
if (deltaInt != 0) return deltaInt;
return memcmp(lhs.positions, rhs.positions, lhs.count * sizeof(float));
}
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
GradientCache::GradientCache():
mCache(LruCache<GradientCacheEntry, Texture*>::kUnlimitedCapacity),
mSize(0), mMaxSize(MB(DEFAULT_GRADIENT_CACHE_SIZE)) {
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_GRADIENT_CACHE_SIZE, property, NULL) > 0) {
INIT_LOGD(" Setting gradient cache size to %sMB", property);
setMaxSize(MB(atof(property)));
} else {
INIT_LOGD(" Using default gradient cache size of %.2fMB", DEFAULT_GRADIENT_CACHE_SIZE);
}
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
mCache.setOnEntryRemovedListener(this);
const Extensions& extensions = Extensions::getInstance();
mUseFloatTexture = extensions.hasFloatTextures();
mHasNpot = extensions.hasNPot();
}
GradientCache::GradientCache(uint32_t maxByteSize):
mCache(LruCache<GradientCacheEntry, Texture*>::kUnlimitedCapacity),
mSize(0), mMaxSize(maxByteSize) {
mCache.setOnEntryRemovedListener(this);
}
GradientCache::~GradientCache() {
mCache.clear();
}
///////////////////////////////////////////////////////////////////////////////
// Size management
///////////////////////////////////////////////////////////////////////////////
uint32_t GradientCache::getSize() {
return mSize;
}
uint32_t GradientCache::getMaxSize() {
return mMaxSize;
}
void GradientCache::setMaxSize(uint32_t maxSize) {
mMaxSize = maxSize;
while (mSize > mMaxSize) {
mCache.removeOldest();
}
}
///////////////////////////////////////////////////////////////////////////////
// Callbacks
///////////////////////////////////////////////////////////////////////////////
void GradientCache::operator()(GradientCacheEntry&, Texture*& texture) {
if (texture) {
const uint32_t size = texture->width * texture->height * bytesPerPixel();
mSize -= size;
texture->deleteTexture();
delete texture;
}
}
///////////////////////////////////////////////////////////////////////////////
// Caching
///////////////////////////////////////////////////////////////////////////////
Texture* GradientCache::get(uint32_t* colors, float* positions, int count) {
GradientCacheEntry gradient(colors, positions, count);
Texture* texture = mCache.get(gradient);
if (!texture) {
texture = addLinearGradient(gradient, colors, positions, count);
}
return texture;
}
void GradientCache::clear() {
mCache.clear();
}
void GradientCache::getGradientInfo(const uint32_t* colors, const int count,
GradientInfo& info) {
uint32_t width = 256 * (count - 1);
// If the npot extension is not supported we cannot use non-clamp
// wrap modes. We therefore find the nearest largest power of 2
// unless width is already a power of 2
if (!mHasNpot && (width & (width - 1)) != 0) {
width = 1 << (32 - __builtin_clz(width));
}
bool hasAlpha = false;
for (int i = 0; i < count; i++) {
if (((colors[i] >> 24) & 0xff) < 255) {
hasAlpha = true;
break;
}
}
info.width = min(width, uint32_t(mMaxTextureSize));
info.hasAlpha = hasAlpha;
}
Texture* GradientCache::addLinearGradient(GradientCacheEntry& gradient,
uint32_t* colors, float* positions, int count) {
GradientInfo info;
getGradientInfo(colors, count, info);
Texture* texture = new Texture();
texture->width = info.width;
texture->height = 2;
texture->blend = info.hasAlpha;
texture->generation = 1;
// Asume the cache is always big enough
const uint32_t size = texture->width * texture->height * bytesPerPixel();
while (getSize() + size > mMaxSize) {
mCache.removeOldest();
}
generateTexture(colors, positions, texture);
mSize += size;
mCache.put(gradient, texture);
return texture;
}
size_t GradientCache::bytesPerPixel() const {
// We use 4 channels (RGBA)
return 4 * (mUseFloatTexture ? sizeof(float) : sizeof(uint8_t));
}
void GradientCache::splitToBytes(uint32_t inColor, GradientColor& outColor) const {
outColor.r = (inColor >> 16) & 0xff;
outColor.g = (inColor >> 8) & 0xff;
outColor.b = (inColor >> 0) & 0xff;
outColor.a = (inColor >> 24) & 0xff;
}
void GradientCache::splitToFloats(uint32_t inColor, GradientColor& outColor) const {
outColor.r = ((inColor >> 16) & 0xff) / 255.0f;
outColor.g = ((inColor >> 8) & 0xff) / 255.0f;
outColor.b = ((inColor >> 0) & 0xff) / 255.0f;
outColor.a = ((inColor >> 24) & 0xff) / 255.0f;
}
void GradientCache::mixBytes(GradientColor& start, GradientColor& end, float amount,
uint8_t*& dst) const {
float oppAmount = 1.0f - amount;
const float alpha = start.a * oppAmount + end.a * amount;
const float a = alpha / 255.0f;
*dst++ = uint8_t(a * (start.r * oppAmount + end.r * amount));
*dst++ = uint8_t(a * (start.g * oppAmount + end.g * amount));
*dst++ = uint8_t(a * (start.b * oppAmount + end.b * amount));
*dst++ = uint8_t(alpha);
}
void GradientCache::mixFloats(GradientColor& start, GradientColor& end, float amount,
uint8_t*& dst) const {
float oppAmount = 1.0f - amount;
const float a = start.a * oppAmount + end.a * amount;
float* d = (float*) dst;
*d++ = a * (start.r * oppAmount + end.r * amount);
*d++ = a * (start.g * oppAmount + end.g * amount);
*d++ = a * (start.b * oppAmount + end.b * amount);
*d++ = a;
dst += 4 * sizeof(float);
}
void GradientCache::generateTexture(uint32_t* colors, float* positions, Texture* texture) {
const uint32_t width = texture->width;
const GLsizei rowBytes = width * bytesPerPixel();
uint8_t pixels[rowBytes * texture->height];
static ChannelSplitter gSplitters[] = {
&android::uirenderer::GradientCache::splitToBytes,
&android::uirenderer::GradientCache::splitToFloats,
};
ChannelSplitter split = gSplitters[mUseFloatTexture];
static ChannelMixer gMixers[] = {
&android::uirenderer::GradientCache::mixBytes,
&android::uirenderer::GradientCache::mixFloats,
};
ChannelMixer mix = gMixers[mUseFloatTexture];
GradientColor start;
(this->*split)(colors[0], start);
GradientColor end;
(this->*split)(colors[1], end);
int currentPos = 1;
float startPos = positions[0];
float distance = positions[1] - startPos;
uint8_t* dst = pixels;
for (uint32_t x = 0; x < width; x++) {
float pos = x / float(width - 1);
if (pos > positions[currentPos]) {
start = end;
startPos = positions[currentPos];
currentPos++;
(this->*split)(colors[currentPos], end);
distance = positions[currentPos] - startPos;
}
float amount = (pos - startPos) / distance;
(this->*mix)(start, end, amount, dst);
}
memcpy(pixels + rowBytes, pixels, rowBytes);
glGenTextures(1, &texture->id);
Caches::getInstance().bindTexture(texture->id);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
if (mUseFloatTexture) {
// We have to use GL_RGBA16F because GL_RGBA32F does not support filtering
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, width, texture->height, 0,
GL_RGBA, GL_FLOAT, pixels);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, texture->height, 0,
GL_RGBA, GL_UNSIGNED_BYTE, pixels);
}
texture->setFilter(GL_LINEAR);
texture->setWrap(GL_CLAMP_TO_EDGE);
}
}; // namespace uirenderer
}; // namespace android