blob: 0107da4eea57fb817bf5234a0c57b75123403ba1 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ResourceType"
//#define LOG_NDEBUG 0
#include <androidfw/ResourceTypes.h>
#include <utils/Atomic.h>
#include <utils/ByteOrder.h>
#include <utils/Debug.h>
#include <utils/Log.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <utils/TextOutput.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <ctype.h>
#include <stdint.h>
#ifndef INT32_MAX
#define INT32_MAX ((int32_t)(2147483647))
#endif
#define POOL_NOISY(x) //x
#define XML_NOISY(x) //x
#define TABLE_NOISY(x) //x
#define TABLE_GETENTRY(x) //x
#define TABLE_SUPER_NOISY(x) //x
#define LOAD_TABLE_NOISY(x) //x
#define TABLE_THEME(x) //x
namespace android {
#ifdef HAVE_WINSOCK
#undef nhtol
#undef htonl
#ifdef HAVE_LITTLE_ENDIAN
#define ntohl(x) ( ((x) << 24) | (((x) >> 24) & 255) | (((x) << 8) & 0xff0000) | (((x) >> 8) & 0xff00) )
#define htonl(x) ntohl(x)
#define ntohs(x) ( (((x) << 8) & 0xff00) | (((x) >> 8) & 255) )
#define htons(x) ntohs(x)
#else
#define ntohl(x) (x)
#define htonl(x) (x)
#define ntohs(x) (x)
#define htons(x) (x)
#endif
#endif
#define IDMAP_MAGIC 0x706d6469
// size measured in sizeof(uint32_t)
#define IDMAP_HEADER_SIZE (ResTable::IDMAP_HEADER_SIZE_BYTES / sizeof(uint32_t))
static void printToLogFunc(void* cookie, const char* txt)
{
ALOGV("%s", txt);
}
// Standard C isspace() is only required to look at the low byte of its input, so
// produces incorrect results for UTF-16 characters. For safety's sake, assume that
// any high-byte UTF-16 code point is not whitespace.
inline int isspace16(char16_t c) {
return (c < 0x0080 && isspace(c));
}
// range checked; guaranteed to NUL-terminate within the stated number of available slots
// NOTE: if this truncates the dst string due to running out of space, no attempt is
// made to avoid splitting surrogate pairs.
static void strcpy16_dtoh(uint16_t* dst, const uint16_t* src, size_t avail)
{
uint16_t* last = dst + avail - 1;
while (*src && (dst < last)) {
char16_t s = dtohs(*src);
*dst++ = s;
src++;
}
*dst = 0;
}
static status_t validate_chunk(const ResChunk_header* chunk,
size_t minSize,
const uint8_t* dataEnd,
const char* name)
{
const uint16_t headerSize = dtohs(chunk->headerSize);
const uint32_t size = dtohl(chunk->size);
if (headerSize >= minSize) {
if (headerSize <= size) {
if (((headerSize|size)&0x3) == 0) {
if ((ssize_t)size <= (dataEnd-((const uint8_t*)chunk))) {
return NO_ERROR;
}
ALOGW("%s data size %p extends beyond resource end %p.",
name, (void*)size,
(void*)(dataEnd-((const uint8_t*)chunk)));
return BAD_TYPE;
}
ALOGW("%s size 0x%x or headerSize 0x%x is not on an integer boundary.",
name, (int)size, (int)headerSize);
return BAD_TYPE;
}
ALOGW("%s size %p is smaller than header size %p.",
name, (void*)size, (void*)(int)headerSize);
return BAD_TYPE;
}
ALOGW("%s header size %p is too small.",
name, (void*)(int)headerSize);
return BAD_TYPE;
}
inline void Res_value::copyFrom_dtoh(const Res_value& src)
{
size = dtohs(src.size);
res0 = src.res0;
dataType = src.dataType;
data = dtohl(src.data);
}
void Res_png_9patch::deviceToFile()
{
for (int i = 0; i < numXDivs; i++) {
xDivs[i] = htonl(xDivs[i]);
}
for (int i = 0; i < numYDivs; i++) {
yDivs[i] = htonl(yDivs[i]);
}
paddingLeft = htonl(paddingLeft);
paddingRight = htonl(paddingRight);
paddingTop = htonl(paddingTop);
paddingBottom = htonl(paddingBottom);
for (int i=0; i<numColors; i++) {
colors[i] = htonl(colors[i]);
}
}
void Res_png_9patch::fileToDevice()
{
for (int i = 0; i < numXDivs; i++) {
xDivs[i] = ntohl(xDivs[i]);
}
for (int i = 0; i < numYDivs; i++) {
yDivs[i] = ntohl(yDivs[i]);
}
paddingLeft = ntohl(paddingLeft);
paddingRight = ntohl(paddingRight);
paddingTop = ntohl(paddingTop);
paddingBottom = ntohl(paddingBottom);
for (int i=0; i<numColors; i++) {
colors[i] = ntohl(colors[i]);
}
}
size_t Res_png_9patch::serializedSize()
{
// The size of this struct is 32 bytes on the 32-bit target system
// 4 * int8_t
// 4 * int32_t
// 3 * pointer
return 32
+ numXDivs * sizeof(int32_t)
+ numYDivs * sizeof(int32_t)
+ numColors * sizeof(uint32_t);
}
void* Res_png_9patch::serialize()
{
// Use calloc since we're going to leave a few holes in the data
// and want this to run cleanly under valgrind
void* newData = calloc(1, serializedSize());
serialize(newData);
return newData;
}
void Res_png_9patch::serialize(void * outData)
{
char* data = (char*) outData;
memmove(data, &wasDeserialized, 4); // copy wasDeserialized, numXDivs, numYDivs, numColors
memmove(data + 12, &paddingLeft, 16); // copy paddingXXXX
data += 32;
memmove(data, this->xDivs, numXDivs * sizeof(int32_t));
data += numXDivs * sizeof(int32_t);
memmove(data, this->yDivs, numYDivs * sizeof(int32_t));
data += numYDivs * sizeof(int32_t);
memmove(data, this->colors, numColors * sizeof(uint32_t));
}
static void deserializeInternal(const void* inData, Res_png_9patch* outData) {
char* patch = (char*) inData;
if (inData != outData) {
memmove(&outData->wasDeserialized, patch, 4); // copy wasDeserialized, numXDivs, numYDivs, numColors
memmove(&outData->paddingLeft, patch + 12, 4); // copy wasDeserialized, numXDivs, numYDivs, numColors
}
outData->wasDeserialized = true;
char* data = (char*)outData;
data += sizeof(Res_png_9patch);
outData->xDivs = (int32_t*) data;
data += outData->numXDivs * sizeof(int32_t);
outData->yDivs = (int32_t*) data;
data += outData->numYDivs * sizeof(int32_t);
outData->colors = (uint32_t*) data;
}
static bool assertIdmapHeader(const uint32_t* map, size_t sizeBytes)
{
if (sizeBytes < ResTable::IDMAP_HEADER_SIZE_BYTES) {
ALOGW("idmap assertion failed: size=%d bytes\n", (int)sizeBytes);
return false;
}
if (*map != htodl(IDMAP_MAGIC)) { // htodl: map data expected to be in correct endianess
ALOGW("idmap assertion failed: invalid magic found (is 0x%08x, expected 0x%08x)\n",
*map, htodl(IDMAP_MAGIC));
return false;
}
return true;
}
static status_t idmapLookup(const uint32_t* map, size_t sizeBytes, uint32_t key, uint32_t* outValue)
{
// see README for details on the format of map
if (!assertIdmapHeader(map, sizeBytes)) {
return UNKNOWN_ERROR;
}
map = map + IDMAP_HEADER_SIZE; // skip ahead to data segment
// size of data block, in uint32_t
const size_t size = (sizeBytes - ResTable::IDMAP_HEADER_SIZE_BYTES) / sizeof(uint32_t);
const uint32_t type = Res_GETTYPE(key) + 1; // add one, idmap stores "public" type id
const uint32_t entry = Res_GETENTRY(key);
const uint32_t typeCount = *map;
if (type > typeCount) {
ALOGW("Resource ID map: type=%d exceeds number of types=%d\n", type, typeCount);
return UNKNOWN_ERROR;
}
if (typeCount > size) {
ALOGW("Resource ID map: number of types=%d exceeds size of map=%d\n", typeCount, (int)size);
return UNKNOWN_ERROR;
}
const uint32_t typeOffset = map[type];
if (typeOffset == 0) {
*outValue = 0;
return NO_ERROR;
}
if (typeOffset + 1 > size) {
ALOGW("Resource ID map: type offset=%d exceeds reasonable value, size of map=%d\n",
typeOffset, (int)size);
return UNKNOWN_ERROR;
}
const uint32_t entryCount = map[typeOffset];
const uint32_t entryOffset = map[typeOffset + 1];
if (entryCount == 0 || entry < entryOffset || entry - entryOffset > entryCount - 1) {
*outValue = 0;
return NO_ERROR;
}
const uint32_t index = typeOffset + 2 + entry - entryOffset;
if (index > size) {
ALOGW("Resource ID map: entry index=%d exceeds size of map=%d\n", index, (int)size);
*outValue = 0;
return NO_ERROR;
}
*outValue = map[index];
return NO_ERROR;
}
static status_t getIdmapPackageId(const uint32_t* map, size_t mapSize, uint32_t *outId)
{
if (!assertIdmapHeader(map, mapSize)) {
return UNKNOWN_ERROR;
}
const uint32_t* p = map + IDMAP_HEADER_SIZE + 1;
while (*p == 0) {
++p;
}
*outId = (map[*p + IDMAP_HEADER_SIZE + 2] >> 24) & 0x000000ff;
return NO_ERROR;
}
Res_png_9patch* Res_png_9patch::deserialize(const void* inData)
{
if (sizeof(void*) != sizeof(int32_t)) {
ALOGE("Cannot deserialize on non 32-bit system\n");
return NULL;
}
deserializeInternal(inData, (Res_png_9patch*) inData);
return (Res_png_9patch*) inData;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ResStringPool::ResStringPool()
: mError(NO_INIT), mOwnedData(NULL), mHeader(NULL), mCache(NULL)
{
}
ResStringPool::ResStringPool(const void* data, size_t size, bool copyData)
: mError(NO_INIT), mOwnedData(NULL), mHeader(NULL), mCache(NULL)
{
setTo(data, size, copyData);
}
ResStringPool::~ResStringPool()
{
uninit();
}
status_t ResStringPool::setTo(const void* data, size_t size, bool copyData)
{
if (!data || !size) {
return (mError=BAD_TYPE);
}
uninit();
const bool notDeviceEndian = htods(0xf0) != 0xf0;
if (copyData || notDeviceEndian) {
mOwnedData = malloc(size);
if (mOwnedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(mOwnedData, data, size);
data = mOwnedData;
}
mHeader = (const ResStringPool_header*)data;
if (notDeviceEndian) {
ResStringPool_header* h = const_cast<ResStringPool_header*>(mHeader);
h->header.headerSize = dtohs(mHeader->header.headerSize);
h->header.type = dtohs(mHeader->header.type);
h->header.size = dtohl(mHeader->header.size);
h->stringCount = dtohl(mHeader->stringCount);
h->styleCount = dtohl(mHeader->styleCount);
h->flags = dtohl(mHeader->flags);
h->stringsStart = dtohl(mHeader->stringsStart);
h->stylesStart = dtohl(mHeader->stylesStart);
}
if (mHeader->header.headerSize > mHeader->header.size
|| mHeader->header.size > size) {
ALOGW("Bad string block: header size %d or total size %d is larger than data size %d\n",
(int)mHeader->header.headerSize, (int)mHeader->header.size, (int)size);
return (mError=BAD_TYPE);
}
mSize = mHeader->header.size;
mEntries = (const uint32_t*)
(((const uint8_t*)data)+mHeader->header.headerSize);
if (mHeader->stringCount > 0) {
if ((mHeader->stringCount*sizeof(uint32_t) < mHeader->stringCount) // uint32 overflow?
|| (mHeader->header.headerSize+(mHeader->stringCount*sizeof(uint32_t)))
> size) {
ALOGW("Bad string block: entry of %d items extends past data size %d\n",
(int)(mHeader->header.headerSize+(mHeader->stringCount*sizeof(uint32_t))),
(int)size);
return (mError=BAD_TYPE);
}
size_t charSize;
if (mHeader->flags&ResStringPool_header::UTF8_FLAG) {
charSize = sizeof(uint8_t);
mCache = (char16_t**)calloc(mHeader->stringCount, sizeof(char16_t**));
} else {
charSize = sizeof(char16_t);
}
mStrings = (const void*)
(((const uint8_t*)data)+mHeader->stringsStart);
if (mHeader->stringsStart >= (mHeader->header.size-sizeof(uint16_t))) {
ALOGW("Bad string block: string pool starts at %d, after total size %d\n",
(int)mHeader->stringsStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
if (mHeader->styleCount == 0) {
mStringPoolSize =
(mHeader->header.size-mHeader->stringsStart)/charSize;
} else {
// check invariant: styles starts before end of data
if (mHeader->stylesStart >= (mHeader->header.size-sizeof(uint16_t))) {
ALOGW("Bad style block: style block starts at %d past data size of %d\n",
(int)mHeader->stylesStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
// check invariant: styles follow the strings
if (mHeader->stylesStart <= mHeader->stringsStart) {
ALOGW("Bad style block: style block starts at %d, before strings at %d\n",
(int)mHeader->stylesStart, (int)mHeader->stringsStart);
return (mError=BAD_TYPE);
}
mStringPoolSize =
(mHeader->stylesStart-mHeader->stringsStart)/charSize;
}
// check invariant: stringCount > 0 requires a string pool to exist
if (mStringPoolSize == 0) {
ALOGW("Bad string block: stringCount is %d but pool size is 0\n", (int)mHeader->stringCount);
return (mError=BAD_TYPE);
}
if (notDeviceEndian) {
size_t i;
uint32_t* e = const_cast<uint32_t*>(mEntries);
for (i=0; i<mHeader->stringCount; i++) {
e[i] = dtohl(mEntries[i]);
}
if (!(mHeader->flags&ResStringPool_header::UTF8_FLAG)) {
const char16_t* strings = (const char16_t*)mStrings;
char16_t* s = const_cast<char16_t*>(strings);
for (i=0; i<mStringPoolSize; i++) {
s[i] = dtohs(strings[i]);
}
}
}
if ((mHeader->flags&ResStringPool_header::UTF8_FLAG &&
((uint8_t*)mStrings)[mStringPoolSize-1] != 0) ||
(!mHeader->flags&ResStringPool_header::UTF8_FLAG &&
((char16_t*)mStrings)[mStringPoolSize-1] != 0)) {
ALOGW("Bad string block: last string is not 0-terminated\n");
return (mError=BAD_TYPE);
}
} else {
mStrings = NULL;
mStringPoolSize = 0;
}
if (mHeader->styleCount > 0) {
mEntryStyles = mEntries + mHeader->stringCount;
// invariant: integer overflow in calculating mEntryStyles
if (mEntryStyles < mEntries) {
ALOGW("Bad string block: integer overflow finding styles\n");
return (mError=BAD_TYPE);
}
if (((const uint8_t*)mEntryStyles-(const uint8_t*)mHeader) > (int)size) {
ALOGW("Bad string block: entry of %d styles extends past data size %d\n",
(int)((const uint8_t*)mEntryStyles-(const uint8_t*)mHeader),
(int)size);
return (mError=BAD_TYPE);
}
mStyles = (const uint32_t*)
(((const uint8_t*)data)+mHeader->stylesStart);
if (mHeader->stylesStart >= mHeader->header.size) {
ALOGW("Bad string block: style pool starts %d, after total size %d\n",
(int)mHeader->stylesStart, (int)mHeader->header.size);
return (mError=BAD_TYPE);
}
mStylePoolSize =
(mHeader->header.size-mHeader->stylesStart)/sizeof(uint32_t);
if (notDeviceEndian) {
size_t i;
uint32_t* e = const_cast<uint32_t*>(mEntryStyles);
for (i=0; i<mHeader->styleCount; i++) {
e[i] = dtohl(mEntryStyles[i]);
}
uint32_t* s = const_cast<uint32_t*>(mStyles);
for (i=0; i<mStylePoolSize; i++) {
s[i] = dtohl(mStyles[i]);
}
}
const ResStringPool_span endSpan = {
{ htodl(ResStringPool_span::END) },
htodl(ResStringPool_span::END), htodl(ResStringPool_span::END)
};
if (memcmp(&mStyles[mStylePoolSize-(sizeof(endSpan)/sizeof(uint32_t))],
&endSpan, sizeof(endSpan)) != 0) {
ALOGW("Bad string block: last style is not 0xFFFFFFFF-terminated\n");
return (mError=BAD_TYPE);
}
} else {
mEntryStyles = NULL;
mStyles = NULL;
mStylePoolSize = 0;
}
return (mError=NO_ERROR);
}
status_t ResStringPool::getError() const
{
return mError;
}
void ResStringPool::uninit()
{
mError = NO_INIT;
if (mOwnedData) {
free(mOwnedData);
mOwnedData = NULL;
}
if (mHeader != NULL && mCache != NULL) {
for (size_t x = 0; x < mHeader->stringCount; x++) {
if (mCache[x] != NULL) {
free(mCache[x]);
mCache[x] = NULL;
}
}
free(mCache);
mCache = NULL;
}
}
/**
* Strings in UTF-16 format have length indicated by a length encoded in the
* stored data. It is either 1 or 2 characters of length data. This allows a
* maximum length of 0x7FFFFFF (2147483647 bytes), but if you're storing that
* much data in a string, you're abusing them.
*
* If the high bit is set, then there are two characters or 4 bytes of length
* data encoded. In that case, drop the high bit of the first character and
* add it together with the next character.
*/
static inline size_t
decodeLength(const char16_t** str)
{
size_t len = **str;
if ((len & 0x8000) != 0) {
(*str)++;
len = ((len & 0x7FFF) << 16) | **str;
}
(*str)++;
return len;
}
/**
* Strings in UTF-8 format have length indicated by a length encoded in the
* stored data. It is either 1 or 2 characters of length data. This allows a
* maximum length of 0x7FFF (32767 bytes), but you should consider storing
* text in another way if you're using that much data in a single string.
*
* If the high bit is set, then there are two characters or 2 bytes of length
* data encoded. In that case, drop the high bit of the first character and
* add it together with the next character.
*/
static inline size_t
decodeLength(const uint8_t** str)
{
size_t len = **str;
if ((len & 0x80) != 0) {
(*str)++;
len = ((len & 0x7F) << 8) | **str;
}
(*str)++;
return len;
}
const uint16_t* ResStringPool::stringAt(size_t idx, size_t* u16len) const
{
if (mError == NO_ERROR && idx < mHeader->stringCount) {
const bool isUTF8 = (mHeader->flags&ResStringPool_header::UTF8_FLAG) != 0;
const uint32_t off = mEntries[idx]/(isUTF8?sizeof(char):sizeof(char16_t));
if (off < (mStringPoolSize-1)) {
if (!isUTF8) {
const char16_t* strings = (char16_t*)mStrings;
const char16_t* str = strings+off;
*u16len = decodeLength(&str);
if ((uint32_t)(str+*u16len-strings) < mStringPoolSize) {
return str;
} else {
ALOGW("Bad string block: string #%d extends to %d, past end at %d\n",
(int)idx, (int)(str+*u16len-strings), (int)mStringPoolSize);
}
} else {
const uint8_t* strings = (uint8_t*)mStrings;
const uint8_t* u8str = strings+off;
*u16len = decodeLength(&u8str);
size_t u8len = decodeLength(&u8str);
// encLen must be less than 0x7FFF due to encoding.
if ((uint32_t)(u8str+u8len-strings) < mStringPoolSize) {
AutoMutex lock(mDecodeLock);
if (mCache[idx] != NULL) {
return mCache[idx];
}
ssize_t actualLen = utf8_to_utf16_length(u8str, u8len);
if (actualLen < 0 || (size_t)actualLen != *u16len) {
ALOGW("Bad string block: string #%lld decoded length is not correct "
"%lld vs %llu\n",
(long long)idx, (long long)actualLen, (long long)*u16len);
return NULL;
}
char16_t *u16str = (char16_t *)calloc(*u16len+1, sizeof(char16_t));
if (!u16str) {
ALOGW("No memory when trying to allocate decode cache for string #%d\n",
(int)idx);
return NULL;
}
utf8_to_utf16(u8str, u8len, u16str);
mCache[idx] = u16str;
return u16str;
} else {
ALOGW("Bad string block: string #%lld extends to %lld, past end at %lld\n",
(long long)idx, (long long)(u8str+u8len-strings),
(long long)mStringPoolSize);
}
}
} else {
ALOGW("Bad string block: string #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint16_t)),
(int)(mStringPoolSize*sizeof(uint16_t)));
}
}
return NULL;
}
const char* ResStringPool::string8At(size_t idx, size_t* outLen) const
{
if (mError == NO_ERROR && idx < mHeader->stringCount) {
const bool isUTF8 = (mHeader->flags&ResStringPool_header::UTF8_FLAG) != 0;
const uint32_t off = mEntries[idx]/(isUTF8?sizeof(char):sizeof(char16_t));
if (off < (mStringPoolSize-1)) {
if (isUTF8) {
const uint8_t* strings = (uint8_t*)mStrings;
const uint8_t* str = strings+off;
*outLen = decodeLength(&str);
size_t encLen = decodeLength(&str);
if ((uint32_t)(str+encLen-strings) < mStringPoolSize) {
return (const char*)str;
} else {
ALOGW("Bad string block: string #%d extends to %d, past end at %d\n",
(int)idx, (int)(str+encLen-strings), (int)mStringPoolSize);
}
}
} else {
ALOGW("Bad string block: string #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint16_t)),
(int)(mStringPoolSize*sizeof(uint16_t)));
}
}
return NULL;
}
const String8 ResStringPool::string8ObjectAt(size_t idx) const
{
size_t len;
const char *str = (const char*)string8At(idx, &len);
if (str != NULL) {
return String8(str);
}
return String8(stringAt(idx, &len));
}
const ResStringPool_span* ResStringPool::styleAt(const ResStringPool_ref& ref) const
{
return styleAt(ref.index);
}
const ResStringPool_span* ResStringPool::styleAt(size_t idx) const
{
if (mError == NO_ERROR && idx < mHeader->styleCount) {
const uint32_t off = (mEntryStyles[idx]/sizeof(uint32_t));
if (off < mStylePoolSize) {
return (const ResStringPool_span*)(mStyles+off);
} else {
ALOGW("Bad string block: style #%d entry is at %d, past end at %d\n",
(int)idx, (int)(off*sizeof(uint32_t)),
(int)(mStylePoolSize*sizeof(uint32_t)));
}
}
return NULL;
}
ssize_t ResStringPool::indexOfString(const char16_t* str, size_t strLen) const
{
if (mError != NO_ERROR) {
return mError;
}
size_t len;
// TODO optimize searching for UTF-8 strings taking into account
// the cache fill to determine when to convert the searched-for
// string key to UTF-8.
if (mHeader->flags&ResStringPool_header::SORTED_FLAG) {
// Do a binary search for the string...
ssize_t l = 0;
ssize_t h = mHeader->stringCount-1;
ssize_t mid;
while (l <= h) {
mid = l + (h - l)/2;
const char16_t* s = stringAt(mid, &len);
int c = s ? strzcmp16(s, len, str, strLen) : -1;
POOL_NOISY(printf("Looking for %s, at %s, cmp=%d, l/mid/h=%d/%d/%d\n",
String8(str).string(),
String8(s).string(),
c, (int)l, (int)mid, (int)h));
if (c == 0) {
return mid;
} else if (c < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
} else {
// It is unusual to get the ID from an unsorted string block...
// most often this happens because we want to get IDs for style
// span tags; since those always appear at the end of the string
// block, start searching at the back.
for (int i=mHeader->stringCount-1; i>=0; i--) {
const char16_t* s = stringAt(i, &len);
POOL_NOISY(printf("Looking for %s, at %s, i=%d\n",
String8(str, strLen).string(),
String8(s).string(),
i));
if (s && strzcmp16(s, len, str, strLen) == 0) {
return i;
}
}
}
return NAME_NOT_FOUND;
}
size_t ResStringPool::size() const
{
return (mError == NO_ERROR) ? mHeader->stringCount : 0;
}
size_t ResStringPool::styleCount() const
{
return (mError == NO_ERROR) ? mHeader->styleCount : 0;
}
size_t ResStringPool::bytes() const
{
return (mError == NO_ERROR) ? mHeader->header.size : 0;
}
bool ResStringPool::isSorted() const
{
return (mHeader->flags&ResStringPool_header::SORTED_FLAG)!=0;
}
bool ResStringPool::isUTF8() const
{
return (mHeader->flags&ResStringPool_header::UTF8_FLAG)!=0;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ResXMLParser::ResXMLParser(const ResXMLTree& tree)
: mTree(tree), mEventCode(BAD_DOCUMENT)
{
}
void ResXMLParser::restart()
{
mCurNode = NULL;
mEventCode = mTree.mError == NO_ERROR ? START_DOCUMENT : BAD_DOCUMENT;
}
const ResStringPool& ResXMLParser::getStrings() const
{
return mTree.mStrings;
}
ResXMLParser::event_code_t ResXMLParser::getEventType() const
{
return mEventCode;
}
ResXMLParser::event_code_t ResXMLParser::next()
{
if (mEventCode == START_DOCUMENT) {
mCurNode = mTree.mRootNode;
mCurExt = mTree.mRootExt;
return (mEventCode=mTree.mRootCode);
} else if (mEventCode >= FIRST_CHUNK_CODE) {
return nextNode();
}
return mEventCode;
}
int32_t ResXMLParser::getCommentID() const
{
return mCurNode != NULL ? dtohl(mCurNode->comment.index) : -1;
}
const uint16_t* ResXMLParser::getComment(size_t* outLen) const
{
int32_t id = getCommentID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
uint32_t ResXMLParser::getLineNumber() const
{
return mCurNode != NULL ? dtohl(mCurNode->lineNumber) : -1;
}
int32_t ResXMLParser::getTextID() const
{
if (mEventCode == TEXT) {
return dtohl(((const ResXMLTree_cdataExt*)mCurExt)->data.index);
}
return -1;
}
const uint16_t* ResXMLParser::getText(size_t* outLen) const
{
int32_t id = getTextID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
ssize_t ResXMLParser::getTextValue(Res_value* outValue) const
{
if (mEventCode == TEXT) {
outValue->copyFrom_dtoh(((const ResXMLTree_cdataExt*)mCurExt)->typedData);
return sizeof(Res_value);
}
return BAD_TYPE;
}
int32_t ResXMLParser::getNamespacePrefixID() const
{
if (mEventCode == START_NAMESPACE || mEventCode == END_NAMESPACE) {
return dtohl(((const ResXMLTree_namespaceExt*)mCurExt)->prefix.index);
}
return -1;
}
const uint16_t* ResXMLParser::getNamespacePrefix(size_t* outLen) const
{
int32_t id = getNamespacePrefixID();
//printf("prefix=%d event=%p\n", id, mEventCode);
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getNamespaceUriID() const
{
if (mEventCode == START_NAMESPACE || mEventCode == END_NAMESPACE) {
return dtohl(((const ResXMLTree_namespaceExt*)mCurExt)->uri.index);
}
return -1;
}
const uint16_t* ResXMLParser::getNamespaceUri(size_t* outLen) const
{
int32_t id = getNamespaceUriID();
//printf("uri=%d event=%p\n", id, mEventCode);
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getElementNamespaceID() const
{
if (mEventCode == START_TAG) {
return dtohl(((const ResXMLTree_attrExt*)mCurExt)->ns.index);
}
if (mEventCode == END_TAG) {
return dtohl(((const ResXMLTree_endElementExt*)mCurExt)->ns.index);
}
return -1;
}
const uint16_t* ResXMLParser::getElementNamespace(size_t* outLen) const
{
int32_t id = getElementNamespaceID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getElementNameID() const
{
if (mEventCode == START_TAG) {
return dtohl(((const ResXMLTree_attrExt*)mCurExt)->name.index);
}
if (mEventCode == END_TAG) {
return dtohl(((const ResXMLTree_endElementExt*)mCurExt)->name.index);
}
return -1;
}
const uint16_t* ResXMLParser::getElementName(size_t* outLen) const
{
int32_t id = getElementNameID();
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
size_t ResXMLParser::getAttributeCount() const
{
if (mEventCode == START_TAG) {
return dtohs(((const ResXMLTree_attrExt*)mCurExt)->attributeCount);
}
return 0;
}
int32_t ResXMLParser::getAttributeNamespaceID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->ns.index);
}
}
return -2;
}
const uint16_t* ResXMLParser::getAttributeNamespace(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNamespaceID(idx);
//printf("attribute namespace=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeNamespace 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getAttributeNameID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->name.index);
}
}
return -1;
}
const uint16_t* ResXMLParser::getAttributeName(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeNameID(idx);
//printf("attribute name=%d idx=%d event=%p\n", id, idx, mEventCode);
//XML_NOISY(printf("getAttributeName 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
uint32_t ResXMLParser::getAttributeNameResID(size_t idx) const
{
int32_t id = getAttributeNameID(idx);
if (id >= 0 && (size_t)id < mTree.mNumResIds) {
return dtohl(mTree.mResIds[id]);
}
return 0;
}
int32_t ResXMLParser::getAttributeValueStringID(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->rawValue.index);
}
}
return -1;
}
const uint16_t* ResXMLParser::getAttributeStringValue(size_t idx, size_t* outLen) const
{
int32_t id = getAttributeValueStringID(idx);
//XML_NOISY(printf("getAttributeValue 0x%x=0x%x\n", idx, id));
return id >= 0 ? mTree.mStrings.stringAt(id, outLen) : NULL;
}
int32_t ResXMLParser::getAttributeDataType(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return attr->typedValue.dataType;
}
}
return Res_value::TYPE_NULL;
}
int32_t ResXMLParser::getAttributeData(size_t idx) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
return dtohl(attr->typedValue.data);
}
}
return 0;
}
ssize_t ResXMLParser::getAttributeValue(size_t idx, Res_value* outValue) const
{
if (mEventCode == START_TAG) {
const ResXMLTree_attrExt* tag = (const ResXMLTree_attrExt*)mCurExt;
if (idx < dtohs(tag->attributeCount)) {
const ResXMLTree_attribute* attr = (const ResXMLTree_attribute*)
(((const uint8_t*)tag)
+ dtohs(tag->attributeStart)
+ (dtohs(tag->attributeSize)*idx));
outValue->copyFrom_dtoh(attr->typedValue);
return sizeof(Res_value);
}
}
return BAD_TYPE;
}
ssize_t ResXMLParser::indexOfAttribute(const char* ns, const char* attr) const
{
String16 nsStr(ns != NULL ? ns : "");
String16 attrStr(attr);
return indexOfAttribute(ns ? nsStr.string() : NULL, ns ? nsStr.size() : 0,
attrStr.string(), attrStr.size());
}
ssize_t ResXMLParser::indexOfAttribute(const char16_t* ns, size_t nsLen,
const char16_t* attr, size_t attrLen) const
{
if (mEventCode == START_TAG) {
const size_t N = getAttributeCount();
for (size_t i=0; i<N; i++) {
size_t curNsLen, curAttrLen;
const char16_t* curNs = getAttributeNamespace(i, &curNsLen);
const char16_t* curAttr = getAttributeName(i, &curAttrLen);
//printf("%d: ns=%p attr=%p curNs=%p curAttr=%p\n",
// i, ns, attr, curNs, curAttr);
//printf(" --> attr=%s, curAttr=%s\n",
// String8(attr).string(), String8(curAttr).string());
if (attr && curAttr && (strzcmp16(attr, attrLen, curAttr, curAttrLen) == 0)) {
if (ns == NULL) {
if (curNs == NULL) return i;
} else if (curNs != NULL) {
//printf(" --> ns=%s, curNs=%s\n",
// String8(ns).string(), String8(curNs).string());
if (strzcmp16(ns, nsLen, curNs, curNsLen) == 0) return i;
}
}
}
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfID() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->idIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfClass() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->classIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ssize_t ResXMLParser::indexOfStyle() const
{
if (mEventCode == START_TAG) {
const ssize_t idx = dtohs(((const ResXMLTree_attrExt*)mCurExt)->styleIndex);
if (idx > 0) return (idx-1);
}
return NAME_NOT_FOUND;
}
ResXMLParser::event_code_t ResXMLParser::nextNode()
{
if (mEventCode < 0) {
return mEventCode;
}
do {
const ResXMLTree_node* next = (const ResXMLTree_node*)
(((const uint8_t*)mCurNode) + dtohl(mCurNode->header.size));
//ALOGW("Next node: prev=%p, next=%p\n", mCurNode, next);
if (((const uint8_t*)next) >= mTree.mDataEnd) {
mCurNode = NULL;
return (mEventCode=END_DOCUMENT);
}
if (mTree.validateNode(next) != NO_ERROR) {
mCurNode = NULL;
return (mEventCode=BAD_DOCUMENT);
}
mCurNode = next;
const uint16_t headerSize = dtohs(next->header.headerSize);
const uint32_t totalSize = dtohl(next->header.size);
mCurExt = ((const uint8_t*)next) + headerSize;
size_t minExtSize = 0;
event_code_t eventCode = (event_code_t)dtohs(next->header.type);
switch ((mEventCode=eventCode)) {
case RES_XML_START_NAMESPACE_TYPE:
case RES_XML_END_NAMESPACE_TYPE:
minExtSize = sizeof(ResXMLTree_namespaceExt);
break;
case RES_XML_START_ELEMENT_TYPE:
minExtSize = sizeof(ResXMLTree_attrExt);
break;
case RES_XML_END_ELEMENT_TYPE:
minExtSize = sizeof(ResXMLTree_endElementExt);
break;
case RES_XML_CDATA_TYPE:
minExtSize = sizeof(ResXMLTree_cdataExt);
break;
default:
ALOGW("Unknown XML block: header type %d in node at %d\n",
(int)dtohs(next->header.type),
(int)(((const uint8_t*)next)-((const uint8_t*)mTree.mHeader)));
continue;
}
if ((totalSize-headerSize) < minExtSize) {
ALOGW("Bad XML block: header type 0x%x in node at 0x%x has size %d, need %d\n",
(int)dtohs(next->header.type),
(int)(((const uint8_t*)next)-((const uint8_t*)mTree.mHeader)),
(int)(totalSize-headerSize), (int)minExtSize);
return (mEventCode=BAD_DOCUMENT);
}
//printf("CurNode=%p, CurExt=%p, headerSize=%d, minExtSize=%d\n",
// mCurNode, mCurExt, headerSize, minExtSize);
return eventCode;
} while (true);
}
void ResXMLParser::getPosition(ResXMLParser::ResXMLPosition* pos) const
{
pos->eventCode = mEventCode;
pos->curNode = mCurNode;
pos->curExt = mCurExt;
}
void ResXMLParser::setPosition(const ResXMLParser::ResXMLPosition& pos)
{
mEventCode = pos.eventCode;
mCurNode = pos.curNode;
mCurExt = pos.curExt;
}
// --------------------------------------------------------------------
static volatile int32_t gCount = 0;
ResXMLTree::ResXMLTree()
: ResXMLParser(*this)
, mError(NO_INIT), mOwnedData(NULL)
{
//ALOGI("Creating ResXMLTree %p #%d\n", this, android_atomic_inc(&gCount)+1);
restart();
}
ResXMLTree::ResXMLTree(const void* data, size_t size, bool copyData)
: ResXMLParser(*this)
, mError(NO_INIT), mOwnedData(NULL)
{
//ALOGI("Creating ResXMLTree %p #%d\n", this, android_atomic_inc(&gCount)+1);
setTo(data, size, copyData);
}
ResXMLTree::~ResXMLTree()
{
//ALOGI("Destroying ResXMLTree in %p #%d\n", this, android_atomic_dec(&gCount)-1);
uninit();
}
status_t ResXMLTree::setTo(const void* data, size_t size, bool copyData)
{
uninit();
mEventCode = START_DOCUMENT;
if (copyData) {
mOwnedData = malloc(size);
if (mOwnedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(mOwnedData, data, size);
data = mOwnedData;
}
mHeader = (const ResXMLTree_header*)data;
mSize = dtohl(mHeader->header.size);
if (dtohs(mHeader->header.headerSize) > mSize || mSize > size) {
ALOGW("Bad XML block: header size %d or total size %d is larger than data size %d\n",
(int)dtohs(mHeader->header.headerSize),
(int)dtohl(mHeader->header.size), (int)size);
mError = BAD_TYPE;
restart();
return mError;
}
mDataEnd = ((const uint8_t*)mHeader) + mSize;
mStrings.uninit();
mRootNode = NULL;
mResIds = NULL;
mNumResIds = 0;
// First look for a couple interesting chunks: the string block
// and first XML node.
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)mHeader) + dtohs(mHeader->header.headerSize));
const ResChunk_header* lastChunk = chunk;
while (((const uint8_t*)chunk) < (mDataEnd-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) < (mDataEnd-dtohl(chunk->size))) {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header), mDataEnd, "XML");
if (err != NO_ERROR) {
mError = err;
goto done;
}
const uint16_t type = dtohs(chunk->type);
const size_t size = dtohl(chunk->size);
XML_NOISY(printf("Scanning @ %p: type=0x%x, size=0x%x\n",
(void*)(((uint32_t)chunk)-((uint32_t)mHeader)), type, size));
if (type == RES_STRING_POOL_TYPE) {
mStrings.setTo(chunk, size);
} else if (type == RES_XML_RESOURCE_MAP_TYPE) {
mResIds = (const uint32_t*)
(((const uint8_t*)chunk)+dtohs(chunk->headerSize));
mNumResIds = (dtohl(chunk->size)-dtohs(chunk->headerSize))/sizeof(uint32_t);
} else if (type >= RES_XML_FIRST_CHUNK_TYPE
&& type <= RES_XML_LAST_CHUNK_TYPE) {
if (validateNode((const ResXMLTree_node*)chunk) != NO_ERROR) {
mError = BAD_TYPE;
goto done;
}
mCurNode = (const ResXMLTree_node*)lastChunk;
if (nextNode() == BAD_DOCUMENT) {
mError = BAD_TYPE;
goto done;
}
mRootNode = mCurNode;
mRootExt = mCurExt;
mRootCode = mEventCode;
break;
} else {
XML_NOISY(printf("Skipping unknown chunk!\n"));
}
lastChunk = chunk;
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + size);
}
if (mRootNode == NULL) {
ALOGW("Bad XML block: no root element node found\n");
mError = BAD_TYPE;
goto done;
}
mError = mStrings.getError();
done:
restart();
return mError;
}
status_t ResXMLTree::getError() const
{
return mError;
}
void ResXMLTree::uninit()
{
mError = NO_INIT;
mStrings.uninit();
if (mOwnedData) {
free(mOwnedData);
mOwnedData = NULL;
}
restart();
}
status_t ResXMLTree::validateNode(const ResXMLTree_node* node) const
{
const uint16_t eventCode = dtohs(node->header.type);
status_t err = validate_chunk(
&node->header, sizeof(ResXMLTree_node),
mDataEnd, "ResXMLTree_node");
if (err >= NO_ERROR) {
// Only perform additional validation on START nodes
if (eventCode != RES_XML_START_ELEMENT_TYPE) {
return NO_ERROR;
}
const uint16_t headerSize = dtohs(node->header.headerSize);
const uint32_t size = dtohl(node->header.size);
const ResXMLTree_attrExt* attrExt = (const ResXMLTree_attrExt*)
(((const uint8_t*)node) + headerSize);
// check for sensical values pulled out of the stream so far...
if ((size >= headerSize + sizeof(ResXMLTree_attrExt))
&& ((void*)attrExt > (void*)node)) {
const size_t attrSize = ((size_t)dtohs(attrExt->attributeSize))
* dtohs(attrExt->attributeCount);
if ((dtohs(attrExt->attributeStart)+attrSize) <= (size-headerSize)) {
return NO_ERROR;
}
ALOGW("Bad XML block: node attributes use 0x%x bytes, only have 0x%x bytes\n",
(unsigned int)(dtohs(attrExt->attributeStart)+attrSize),
(unsigned int)(size-headerSize));
}
else {
ALOGW("Bad XML start block: node header size 0x%x, size 0x%x\n",
(unsigned int)headerSize, (unsigned int)size);
}
return BAD_TYPE;
}
return err;
#if 0
const bool isStart = dtohs(node->header.type) == RES_XML_START_ELEMENT_TYPE;
const uint16_t headerSize = dtohs(node->header.headerSize);
const uint32_t size = dtohl(node->header.size);
if (headerSize >= (isStart ? sizeof(ResXMLTree_attrNode) : sizeof(ResXMLTree_node))) {
if (size >= headerSize) {
if (((const uint8_t*)node) <= (mDataEnd-size)) {
if (!isStart) {
return NO_ERROR;
}
if ((((size_t)dtohs(node->attributeSize))*dtohs(node->attributeCount))
<= (size-headerSize)) {
return NO_ERROR;
}
ALOGW("Bad XML block: node attributes use 0x%x bytes, only have 0x%x bytes\n",
((int)dtohs(node->attributeSize))*dtohs(node->attributeCount),
(int)(size-headerSize));
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x extends beyond data end 0x%x\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)), (int)mSize);
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x header size 0x%x smaller than total size 0x%x\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)),
(int)headerSize, (int)size);
return BAD_TYPE;
}
ALOGW("Bad XML block: node at 0x%x header size 0x%x too small\n",
(int)(((const uint8_t*)node)-((const uint8_t*)mHeader)),
(int)headerSize);
return BAD_TYPE;
#endif
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
void ResTable_config::copyFromDeviceNoSwap(const ResTable_config& o) {
const size_t size = dtohl(o.size);
if (size >= sizeof(ResTable_config)) {
*this = o;
} else {
memcpy(this, &o, size);
memset(((uint8_t*)this)+size, 0, sizeof(ResTable_config)-size);
}
}
void ResTable_config::copyFromDtoH(const ResTable_config& o) {
copyFromDeviceNoSwap(o);
size = sizeof(ResTable_config);
mcc = dtohs(mcc);
mnc = dtohs(mnc);
density = dtohs(density);
screenWidth = dtohs(screenWidth);
screenHeight = dtohs(screenHeight);
sdkVersion = dtohs(sdkVersion);
minorVersion = dtohs(minorVersion);
smallestScreenWidthDp = dtohs(smallestScreenWidthDp);
screenWidthDp = dtohs(screenWidthDp);
screenHeightDp = dtohs(screenHeightDp);
}
void ResTable_config::swapHtoD() {
size = htodl(size);
mcc = htods(mcc);
mnc = htods(mnc);
density = htods(density);
screenWidth = htods(screenWidth);
screenHeight = htods(screenHeight);
sdkVersion = htods(sdkVersion);
minorVersion = htods(minorVersion);
smallestScreenWidthDp = htods(smallestScreenWidthDp);
screenWidthDp = htods(screenWidthDp);
screenHeightDp = htods(screenHeightDp);
}
int ResTable_config::compare(const ResTable_config& o) const {
int32_t diff = (int32_t)(imsi - o.imsi);
if (diff != 0) return diff;
diff = (int32_t)(locale - o.locale);
if (diff != 0) return diff;
diff = (int32_t)(screenType - o.screenType);
if (diff != 0) return diff;
diff = (int32_t)(input - o.input);
if (diff != 0) return diff;
diff = (int32_t)(screenSize - o.screenSize);
if (diff != 0) return diff;
diff = (int32_t)(version - o.version);
if (diff != 0) return diff;
diff = (int32_t)(screenLayout - o.screenLayout);
if (diff != 0) return diff;
diff = (int32_t)(uiMode - o.uiMode);
if (diff != 0) return diff;
diff = (int32_t)(smallestScreenWidthDp - o.smallestScreenWidthDp);
if (diff != 0) return diff;
diff = (int32_t)(screenSizeDp - o.screenSizeDp);
return (int)diff;
}
int ResTable_config::compareLogical(const ResTable_config& o) const {
if (mcc != o.mcc) {
return mcc < o.mcc ? -1 : 1;
}
if (mnc != o.mnc) {
return mnc < o.mnc ? -1 : 1;
}
if (language[0] != o.language[0]) {
return language[0] < o.language[0] ? -1 : 1;
}
if (language[1] != o.language[1]) {
return language[1] < o.language[1] ? -1 : 1;
}
if (country[0] != o.country[0]) {
return country[0] < o.country[0] ? -1 : 1;
}
if (country[1] != o.country[1]) {
return country[1] < o.country[1] ? -1 : 1;
}
if ((screenLayout & MASK_LAYOUTDIR) != (o.screenLayout & MASK_LAYOUTDIR)) {
return (screenLayout & MASK_LAYOUTDIR) < (o.screenLayout & MASK_LAYOUTDIR) ? -1 : 1;
}
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
return smallestScreenWidthDp < o.smallestScreenWidthDp ? -1 : 1;
}
if (screenWidthDp != o.screenWidthDp) {
return screenWidthDp < o.screenWidthDp ? -1 : 1;
}
if (screenHeightDp != o.screenHeightDp) {
return screenHeightDp < o.screenHeightDp ? -1 : 1;
}
if (screenWidth != o.screenWidth) {
return screenWidth < o.screenWidth ? -1 : 1;
}
if (screenHeight != o.screenHeight) {
return screenHeight < o.screenHeight ? -1 : 1;
}
if (density != o.density) {
return density < o.density ? -1 : 1;
}
if (orientation != o.orientation) {
return orientation < o.orientation ? -1 : 1;
}
if (touchscreen != o.touchscreen) {
return touchscreen < o.touchscreen ? -1 : 1;
}
if (input != o.input) {
return input < o.input ? -1 : 1;
}
if (screenLayout != o.screenLayout) {
return screenLayout < o.screenLayout ? -1 : 1;
}
if (uiMode != o.uiMode) {
return uiMode < o.uiMode ? -1 : 1;
}
if (version != o.version) {
return version < o.version ? -1 : 1;
}
return 0;
}
int ResTable_config::diff(const ResTable_config& o) const {
int diffs = 0;
if (mcc != o.mcc) diffs |= CONFIG_MCC;
if (mnc != o.mnc) diffs |= CONFIG_MNC;
if (locale != o.locale) diffs |= CONFIG_LOCALE;
if (orientation != o.orientation) diffs |= CONFIG_ORIENTATION;
if (density != o.density) diffs |= CONFIG_DENSITY;
if (touchscreen != o.touchscreen) diffs |= CONFIG_TOUCHSCREEN;
if (((inputFlags^o.inputFlags)&(MASK_KEYSHIDDEN|MASK_NAVHIDDEN)) != 0)
diffs |= CONFIG_KEYBOARD_HIDDEN;
if (keyboard != o.keyboard) diffs |= CONFIG_KEYBOARD;
if (navigation != o.navigation) diffs |= CONFIG_NAVIGATION;
if (screenSize != o.screenSize) diffs |= CONFIG_SCREEN_SIZE;
if (version != o.version) diffs |= CONFIG_VERSION;
if (screenLayout != o.screenLayout) diffs |= CONFIG_SCREEN_LAYOUT;
if (uiMode != o.uiMode) diffs |= CONFIG_UI_MODE;
if (smallestScreenWidthDp != o.smallestScreenWidthDp) diffs |= CONFIG_SMALLEST_SCREEN_SIZE;
if (screenSizeDp != o.screenSizeDp) diffs |= CONFIG_SCREEN_SIZE;
return diffs;
}
bool ResTable_config::isMoreSpecificThan(const ResTable_config& o) const {
// The order of the following tests defines the importance of one
// configuration parameter over another. Those tests first are more
// important, trumping any values in those following them.
if (imsi || o.imsi) {
if (mcc != o.mcc) {
if (!mcc) return false;
if (!o.mcc) return true;
}
if (mnc != o.mnc) {
if (!mnc) return false;
if (!o.mnc) return true;
}
}
if (locale || o.locale) {
if (language[0] != o.language[0]) {
if (!language[0]) return false;
if (!o.language[0]) return true;
}
if (country[0] != o.country[0]) {
if (!country[0]) return false;
if (!o.country[0]) return true;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_LAYOUTDIR) != 0) {
if (!(screenLayout & MASK_LAYOUTDIR)) return false;
if (!(o.screenLayout & MASK_LAYOUTDIR)) return true;
}
}
if (smallestScreenWidthDp || o.smallestScreenWidthDp) {
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
if (!smallestScreenWidthDp) return false;
if (!o.smallestScreenWidthDp) return true;
}
}
if (screenSizeDp || o.screenSizeDp) {
if (screenWidthDp != o.screenWidthDp) {
if (!screenWidthDp) return false;
if (!o.screenWidthDp) return true;
}
if (screenHeightDp != o.screenHeightDp) {
if (!screenHeightDp) return false;
if (!o.screenHeightDp) return true;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_SCREENSIZE) != 0) {
if (!(screenLayout & MASK_SCREENSIZE)) return false;
if (!(o.screenLayout & MASK_SCREENSIZE)) return true;
}
if (((screenLayout^o.screenLayout) & MASK_SCREENLONG) != 0) {
if (!(screenLayout & MASK_SCREENLONG)) return false;
if (!(o.screenLayout & MASK_SCREENLONG)) return true;
}
}
if (orientation != o.orientation) {
if (!orientation) return false;
if (!o.orientation) return true;
}
if (uiMode || o.uiMode) {
if (((uiMode^o.uiMode) & MASK_UI_MODE_TYPE) != 0) {
if (!(uiMode & MASK_UI_MODE_TYPE)) return false;
if (!(o.uiMode & MASK_UI_MODE_TYPE)) return true;
}
if (((uiMode^o.uiMode) & MASK_UI_MODE_NIGHT) != 0) {
if (!(uiMode & MASK_UI_MODE_NIGHT)) return false;
if (!(o.uiMode & MASK_UI_MODE_NIGHT)) return true;
}
}
// density is never 'more specific'
// as the default just equals 160
if (touchscreen != o.touchscreen) {
if (!touchscreen) return false;
if (!o.touchscreen) return true;
}
if (input || o.input) {
if (((inputFlags^o.inputFlags) & MASK_KEYSHIDDEN) != 0) {
if (!(inputFlags & MASK_KEYSHIDDEN)) return false;
if (!(o.inputFlags & MASK_KEYSHIDDEN)) return true;
}
if (((inputFlags^o.inputFlags) & MASK_NAVHIDDEN) != 0) {
if (!(inputFlags & MASK_NAVHIDDEN)) return false;
if (!(o.inputFlags & MASK_NAVHIDDEN)) return true;
}
if (keyboard != o.keyboard) {
if (!keyboard) return false;
if (!o.keyboard) return true;
}
if (navigation != o.navigation) {
if (!navigation) return false;
if (!o.navigation) return true;
}
}
if (screenSize || o.screenSize) {
if (screenWidth != o.screenWidth) {
if (!screenWidth) return false;
if (!o.screenWidth) return true;
}
if (screenHeight != o.screenHeight) {
if (!screenHeight) return false;
if (!o.screenHeight) return true;
}
}
if (version || o.version) {
if (sdkVersion != o.sdkVersion) {
if (!sdkVersion) return false;
if (!o.sdkVersion) return true;
}
if (minorVersion != o.minorVersion) {
if (!minorVersion) return false;
if (!o.minorVersion) return true;
}
}
return false;
}
bool ResTable_config::isBetterThan(const ResTable_config& o,
const ResTable_config* requested) const {
if (requested) {
if (imsi || o.imsi) {
if ((mcc != o.mcc) && requested->mcc) {
return (mcc);
}
if ((mnc != o.mnc) && requested->mnc) {
return (mnc);
}
}
if (locale || o.locale) {
if ((language[0] != o.language[0]) && requested->language[0]) {
return (language[0]);
}
if ((country[0] != o.country[0]) && requested->country[0]) {
return (country[0]);
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_LAYOUTDIR) != 0
&& (requested->screenLayout & MASK_LAYOUTDIR)) {
int myLayoutDir = screenLayout & MASK_LAYOUTDIR;
int oLayoutDir = o.screenLayout & MASK_LAYOUTDIR;
return (myLayoutDir > oLayoutDir);
}
}
if (smallestScreenWidthDp || o.smallestScreenWidthDp) {
// The configuration closest to the actual size is best.
// We assume that larger configs have already been filtered
// out at this point. That means we just want the largest one.
if (smallestScreenWidthDp != o.smallestScreenWidthDp) {
return smallestScreenWidthDp > o.smallestScreenWidthDp;
}
}
if (screenSizeDp || o.screenSizeDp) {
// "Better" is based on the sum of the difference between both
// width and height from the requested dimensions. We are
// assuming the invalid configs (with smaller dimens) have
// already been filtered. Note that if a particular dimension
// is unspecified, we will end up with a large value (the
// difference between 0 and the requested dimension), which is
// good since we will prefer a config that has specified a
// dimension value.
int myDelta = 0, otherDelta = 0;
if (requested->screenWidthDp) {
myDelta += requested->screenWidthDp - screenWidthDp;
otherDelta += requested->screenWidthDp - o.screenWidthDp;
}
if (requested->screenHeightDp) {
myDelta += requested->screenHeightDp - screenHeightDp;
otherDelta += requested->screenHeightDp - o.screenHeightDp;
}
//ALOGI("Comparing this %dx%d to other %dx%d in %dx%d: myDelta=%d otherDelta=%d",
// screenWidthDp, screenHeightDp, o.screenWidthDp, o.screenHeightDp,
// requested->screenWidthDp, requested->screenHeightDp, myDelta, otherDelta);
if (myDelta != otherDelta) {
return myDelta < otherDelta;
}
}
if (screenLayout || o.screenLayout) {
if (((screenLayout^o.screenLayout) & MASK_SCREENSIZE) != 0
&& (requested->screenLayout & MASK_SCREENSIZE)) {
// A little backwards compatibility here: undefined is
// considered equivalent to normal. But only if the
// requested size is at least normal; otherwise, small
// is better than the default.
int mySL = (screenLayout & MASK_SCREENSIZE);
int oSL = (o.screenLayout & MASK_SCREENSIZE);
int fixedMySL = mySL;
int fixedOSL = oSL;
if ((requested->screenLayout & MASK_SCREENSIZE) >= SCREENSIZE_NORMAL) {
if (fixedMySL == 0) fixedMySL = SCREENSIZE_NORMAL;
if (fixedOSL == 0) fixedOSL = SCREENSIZE_NORMAL;
}
// For screen size, the best match is the one that is
// closest to the requested screen size, but not over
// (the not over part is dealt with in match() below).
if (fixedMySL == fixedOSL) {
// If the two are the same, but 'this' is actually
// undefined, then the other is really a better match.
if (mySL == 0) return false;
return true;
}
if (fixedMySL != fixedOSL) {
return fixedMySL > fixedOSL;
}
}
if (((screenLayout^o.screenLayout) & MASK_SCREENLONG) != 0
&& (requested->screenLayout & MASK_SCREENLONG)) {
return (screenLayout & MASK_SCREENLONG);
}
}
if ((orientation != o.orientation) && requested->orientation) {
return (orientation);
}
if (uiMode || o.uiMode) {
if (((uiMode^o.uiMode) & MASK_UI_MODE_TYPE) != 0
&& (requested->uiMode & MASK_UI_MODE_TYPE)) {
return (uiMode & MASK_UI_MODE_TYPE);
}
if (((uiMode^o.uiMode) & MASK_UI_MODE_NIGHT) != 0
&& (requested->uiMode & MASK_UI_MODE_NIGHT)) {
return (uiMode & MASK_UI_MODE_NIGHT);
}
}
if (screenType || o.screenType) {
if (density != o.density) {
// density is tough. Any density is potentially useful
// because the system will scale it. Scaling down
// is generally better than scaling up.
// Default density counts as 160dpi (the system default)
// TODO - remove 160 constants
int h = (density?density:160);
int l = (o.density?o.density:160);
bool bImBigger = true;
if (l > h) {
int t = h;
h = l;
l = t;
bImBigger = false;
}
int reqValue = (requested->density?requested->density:160);
if (reqValue >= h) {
// requested value higher than both l and h, give h
return bImBigger;
}
if (l >= reqValue) {
// requested value lower than both l and h, give l
return !bImBigger;
}
// saying that scaling down is 2x better than up
if (((2 * l) - reqValue) * h > reqValue * reqValue) {
return !bImBigger;
} else {
return bImBigger;
}
}
if ((touchscreen != o.touchscreen) && requested->touchscreen) {
return (touchscreen);
}
}
if (input || o.input) {
const int keysHidden = inputFlags & MASK_KEYSHIDDEN;
const int oKeysHidden = o.inputFlags & MASK_KEYSHIDDEN;
if (keysHidden != oKeysHidden) {
const int reqKeysHidden =
requested->inputFlags & MASK_KEYSHIDDEN;
if (reqKeysHidden) {
if (!keysHidden) return false;
if (!oKeysHidden) return true;
// For compatibility, we count KEYSHIDDEN_NO as being
// the same as KEYSHIDDEN_SOFT. Here we disambiguate
// these by making an exact match more specific.
if (reqKeysHidden == keysHidden) return true;
if (reqKeysHidden == oKeysHidden) return false;
}
}
const int navHidden = inputFlags & MASK_NAVHIDDEN;
const int oNavHidden = o.inputFlags & MASK_NAVHIDDEN;
if (navHidden != oNavHidden) {
const int reqNavHidden =
requested->inputFlags & MASK_NAVHIDDEN;
if (reqNavHidden) {
if (!navHidden) return false;
if (!oNavHidden) return true;
}
}
if ((keyboard != o.keyboard) && requested->keyboard) {
return (keyboard);
}
if ((navigation != o.navigation) && requested->navigation) {
return (navigation);
}
}
if (screenSize || o.screenSize) {
// "Better" is based on the sum of the difference between both
// width and height from the requested dimensions. We are
// assuming the invalid configs (with smaller sizes) have
// already been filtered. Note that if a particular dimension
// is unspecified, we will end up with a large value (the
// difference between 0 and the requested dimension), which is
// good since we will prefer a config that has specified a
// size value.
int myDelta = 0, otherDelta = 0;
if (requested->screenWidth) {
myDelta += requested->screenWidth - screenWidth;
otherDelta += requested->screenWidth - o.screenWidth;
}
if (requested->screenHeight) {
myDelta += requested->screenHeight - screenHeight;
otherDelta += requested->screenHeight - o.screenHeight;
}
if (myDelta != otherDelta) {
return myDelta < otherDelta;
}
}
if (version || o.version) {
if ((sdkVersion != o.sdkVersion) && requested->sdkVersion) {
return (sdkVersion > o.sdkVersion);
}
if ((minorVersion != o.minorVersion) &&
requested->minorVersion) {
return (minorVersion);
}
}
return false;
}
return isMoreSpecificThan(o);
}
bool ResTable_config::match(const ResTable_config& settings) const {
if (imsi != 0) {
if (mcc != 0 && mcc != settings.mcc) {
return false;
}
if (mnc != 0 && mnc != settings.mnc) {
return false;
}
}
if (locale != 0) {
if (language[0] != 0
&& (language[0] != settings.language[0]
|| language[1] != settings.language[1])) {
return false;
}
if (country[0] != 0
&& (country[0] != settings.country[0]
|| country[1] != settings.country[1])) {
return false;
}
}
if (screenConfig != 0) {
const int layoutDir = screenLayout&MASK_LAYOUTDIR;
const int setLayoutDir = settings.screenLayout&MASK_LAYOUTDIR;
if (layoutDir != 0 && layoutDir != setLayoutDir) {
return false;
}
const int screenSize = screenLayout&MASK_SCREENSIZE;
const int setScreenSize = settings.screenLayout&MASK_SCREENSIZE;
// Any screen sizes for larger screens than the setting do not
// match.
if (screenSize != 0 && screenSize > setScreenSize) {
return false;
}
const int screenLong = screenLayout&MASK_SCREENLONG;
const int setScreenLong = settings.screenLayout&MASK_SCREENLONG;
if (screenLong != 0 && screenLong != setScreenLong) {
return false;
}
const int uiModeType = uiMode&MASK_UI_MODE_TYPE;
const int setUiModeType = settings.uiMode&MASK_UI_MODE_TYPE;
if (uiModeType != 0 && uiModeType != setUiModeType) {
return false;
}
const int uiModeNight = uiMode&MASK_UI_MODE_NIGHT;
const int setUiModeNight = settings.uiMode&MASK_UI_MODE_NIGHT;
if (uiModeNight != 0 && uiModeNight != setUiModeNight) {
return false;
}
if (smallestScreenWidthDp != 0
&& smallestScreenWidthDp > settings.smallestScreenWidthDp) {
return false;
}
}
if (screenSizeDp != 0) {
if (screenWidthDp != 0 && screenWidthDp > settings.screenWidthDp) {
//ALOGI("Filtering out width %d in requested %d", screenWidthDp, settings.screenWidthDp);
return false;
}
if (screenHeightDp != 0 && screenHeightDp > settings.screenHeightDp) {
//ALOGI("Filtering out height %d in requested %d", screenHeightDp, settings.screenHeightDp);
return false;
}
}
if (screenType != 0) {
if (orientation != 0 && orientation != settings.orientation) {
return false;
}
// density always matches - we can scale it. See isBetterThan
if (touchscreen != 0 && touchscreen != settings.touchscreen) {
return false;
}
}
if (input != 0) {
const int keysHidden = inputFlags&MASK_KEYSHIDDEN;
const int setKeysHidden = settings.inputFlags&MASK_KEYSHIDDEN;
if (keysHidden != 0 && keysHidden != setKeysHidden) {
// For compatibility, we count a request for KEYSHIDDEN_NO as also
// matching the more recent KEYSHIDDEN_SOFT. Basically
// KEYSHIDDEN_NO means there is some kind of keyboard available.
//ALOGI("Matching keysHidden: have=%d, config=%d\n", keysHidden, setKeysHidden);
if (keysHidden != KEYSHIDDEN_NO || setKeysHidden != KEYSHIDDEN_SOFT) {
//ALOGI("No match!");
return false;
}
}
const int navHidden = inputFlags&MASK_NAVHIDDEN;
const int setNavHidden = settings.inputFlags&MASK_NAVHIDDEN;
if (navHidden != 0 && navHidden != setNavHidden) {
return false;
}
if (keyboard != 0 && keyboard != settings.keyboard) {
return false;
}
if (navigation != 0 && navigation != settings.navigation) {
return false;
}
}
if (screenSize != 0) {
if (screenWidth != 0 && screenWidth > settings.screenWidth) {
return false;
}
if (screenHeight != 0 && screenHeight > settings.screenHeight) {
return false;
}
}
if (version != 0) {
if (sdkVersion != 0 && sdkVersion > settings.sdkVersion) {
return false;
}
if (minorVersion != 0 && minorVersion != settings.minorVersion) {
return false;
}
}
return true;
}
void ResTable_config::getLocale(char str[6]) const {
memset(str, 0, 6);
if (language[0]) {
str[0] = language[0];
str[1] = language[1];
if (country[0]) {
str[2] = '_';
str[3] = country[0];
str[4] = country[1];
}
}
}
String8 ResTable_config::toString() const {
String8 res;
if (mcc != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("%dmcc", dtohs(mcc));
}
if (mnc != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("%dmnc", dtohs(mnc));
}
if (language[0] != 0) {
if (res.size() > 0) res.append("-");
res.append(language, 2);
}
if (country[0] != 0) {
if (res.size() > 0) res.append("-");
res.append(country, 2);
}
if ((screenLayout&MASK_LAYOUTDIR) != 0) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_LAYOUTDIR) {
case ResTable_config::LAYOUTDIR_LTR:
res.append("ldltr");
break;
case ResTable_config::LAYOUTDIR_RTL:
res.append("ldrtl");
break;
default:
res.appendFormat("layoutDir=%d",
dtohs(screenLayout&ResTable_config::MASK_LAYOUTDIR));
break;
}
}
if (smallestScreenWidthDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("sw%ddp", dtohs(smallestScreenWidthDp));
}
if (screenWidthDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("w%ddp", dtohs(screenWidthDp));
}
if (screenHeightDp != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("h%ddp", dtohs(screenHeightDp));
}
if ((screenLayout&MASK_SCREENSIZE) != SCREENSIZE_ANY) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_SCREENSIZE) {
case ResTable_config::SCREENSIZE_SMALL:
res.append("small");
break;
case ResTable_config::SCREENSIZE_NORMAL:
res.append("normal");
break;
case ResTable_config::SCREENSIZE_LARGE:
res.append("large");
break;
case ResTable_config::SCREENSIZE_XLARGE:
res.append("xlarge");
break;
default:
res.appendFormat("screenLayoutSize=%d",
dtohs(screenLayout&ResTable_config::MASK_SCREENSIZE));
break;
}
}
if ((screenLayout&MASK_SCREENLONG) != 0) {
if (res.size() > 0) res.append("-");
switch (screenLayout&ResTable_config::MASK_SCREENLONG) {
case ResTable_config::SCREENLONG_NO:
res.append("notlong");
break;
case ResTable_config::SCREENLONG_YES:
res.append("long");
break;
default:
res.appendFormat("screenLayoutLong=%d",
dtohs(screenLayout&ResTable_config::MASK_SCREENLONG));
break;
}
}
if (orientation != ORIENTATION_ANY) {
if (res.size() > 0) res.append("-");
switch (orientation) {
case ResTable_config::ORIENTATION_PORT:
res.append("port");
break;
case ResTable_config::ORIENTATION_LAND:
res.append("land");
break;
case ResTable_config::ORIENTATION_SQUARE:
res.append("square");
break;
default:
res.appendFormat("orientation=%d", dtohs(orientation));
break;
}
}
if ((uiMode&MASK_UI_MODE_TYPE) != UI_MODE_TYPE_ANY) {
if (res.size() > 0) res.append("-");
switch (uiMode&ResTable_config::MASK_UI_MODE_TYPE) {
case ResTable_config::UI_MODE_TYPE_DESK:
res.append("desk");
break;
case ResTable_config::UI_MODE_TYPE_CAR:
res.append("car");
break;
case ResTable_config::UI_MODE_TYPE_TELEVISION:
res.append("television");
break;
case ResTable_config::UI_MODE_TYPE_APPLIANCE:
res.append("appliance");
break;
default:
res.appendFormat("uiModeType=%d",
dtohs(screenLayout&ResTable_config::MASK_UI_MODE_TYPE));
break;
}
}
if ((uiMode&MASK_UI_MODE_NIGHT) != 0) {
if (res.size() > 0) res.append("-");
switch (uiMode&ResTable_config::MASK_UI_MODE_NIGHT) {
case ResTable_config::UI_MODE_NIGHT_NO:
res.append("notnight");
break;
case ResTable_config::UI_MODE_NIGHT_YES:
res.append("night");
break;
default:
res.appendFormat("uiModeNight=%d",
dtohs(uiMode&MASK_UI_MODE_NIGHT));
break;
}
}
if (density != DENSITY_DEFAULT) {
if (res.size() > 0) res.append("-");
switch (density) {
case ResTable_config::DENSITY_LOW:
res.append("ldpi");
break;
case ResTable_config::DENSITY_MEDIUM:
res.append("mdpi");
break;
case ResTable_config::DENSITY_TV:
res.append("tvdpi");
break;
case ResTable_config::DENSITY_HIGH:
res.append("hdpi");
break;
case ResTable_config::DENSITY_XHIGH:
res.append("xhdpi");
break;
case ResTable_config::DENSITY_XXHIGH:
res.append("xxhdpi");
break;
case ResTable_config::DENSITY_NONE:
res.append("nodpi");
break;
default:
res.appendFormat("%ddpi", dtohs(density));
break;
}
}
if (touchscreen != TOUCHSCREEN_ANY) {
if (res.size() > 0) res.append("-");
switch (touchscreen) {
case ResTable_config::TOUCHSCREEN_NOTOUCH:
res.append("notouch");
break;
case ResTable_config::TOUCHSCREEN_FINGER:
res.append("finger");
break;
case ResTable_config::TOUCHSCREEN_STYLUS:
res.append("stylus");
break;
default:
res.appendFormat("touchscreen=%d", dtohs(touchscreen));
break;
}
}
if (keyboard != KEYBOARD_ANY) {
if (res.size() > 0) res.append("-");
switch (keyboard) {
case ResTable_config::KEYBOARD_NOKEYS:
res.append("nokeys");
break;
case ResTable_config::KEYBOARD_QWERTY:
res.append("qwerty");
break;
case ResTable_config::KEYBOARD_12KEY:
res.append("12key");
break;
default:
res.appendFormat("keyboard=%d", dtohs(keyboard));
break;
}
}
if ((inputFlags&MASK_KEYSHIDDEN) != 0) {
if (res.size() > 0) res.append("-");
switch (inputFlags&MASK_KEYSHIDDEN) {
case ResTable_config::KEYSHIDDEN_NO:
res.append("keysexposed");
break;
case ResTable_config::KEYSHIDDEN_YES:
res.append("keyshidden");
break;
case ResTable_config::KEYSHIDDEN_SOFT:
res.append("keyssoft");
break;
}
}
if (navigation != NAVIGATION_ANY) {
if (res.size() > 0) res.append("-");
switch (navigation) {
case ResTable_config::NAVIGATION_NONAV:
res.append("nonav");
break;
case ResTable_config::NAVIGATION_DPAD:
res.append("dpad");
break;
case ResTable_config::NAVIGATION_TRACKBALL:
res.append("trackball");
break;
case ResTable_config::NAVIGATION_WHEEL:
res.append("wheel");
break;
default:
res.appendFormat("navigation=%d", dtohs(navigation));
break;
}
}
if ((inputFlags&MASK_NAVHIDDEN) != 0) {
if (res.size() > 0) res.append("-");
switch (inputFlags&MASK_NAVHIDDEN) {
case ResTable_config::NAVHIDDEN_NO:
res.append("navsexposed");
break;
case ResTable_config::NAVHIDDEN_YES:
res.append("navhidden");
break;
default:
res.appendFormat("inputFlagsNavHidden=%d",
dtohs(inputFlags&MASK_NAVHIDDEN));
break;
}
}
if (screenSize != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("%dx%d", dtohs(screenWidth), dtohs(screenHeight));
}
if (version != 0) {
if (res.size() > 0) res.append("-");
res.appendFormat("v%d", dtohs(sdkVersion));
if (minorVersion != 0) {
res.appendFormat(".%d", dtohs(minorVersion));
}
}
return res;
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// --------------------------------------------------------------------
struct ResTable::Header
{
Header(ResTable* _owner) : owner(_owner), ownedData(NULL), header(NULL),
resourceIDMap(NULL), resourceIDMapSize(0) { }
~Header()
{
free(resourceIDMap);
}
ResTable* const owner;
void* ownedData;
const ResTable_header* header;
size_t size;
const uint8_t* dataEnd;
size_t index;
void* cookie;
ResStringPool values;
uint32_t* resourceIDMap;
size_t resourceIDMapSize;
};
struct ResTable::Type
{
Type(const Header* _header, const Package* _package, size_t count)
: header(_header), package(_package), entryCount(count),
typeSpec(NULL), typeSpecFlags(NULL) { }
const Header* const header;
const Package* const package;
const size_t entryCount;
const ResTable_typeSpec* typeSpec;
const uint32_t* typeSpecFlags;
Vector<const ResTable_type*> configs;
};
struct ResTable::Package
{
Package(ResTable* _owner, const Header* _header, const ResTable_package* _package)
: owner(_owner), header(_header), package(_package) { }
~Package()
{
size_t i = types.size();
while (i > 0) {
i--;
delete types[i];
}
}
ResTable* const owner;
const Header* const header;
const ResTable_package* const package;
Vector<Type*> types;
ResStringPool typeStrings;
ResStringPool keyStrings;
const Type* getType(size_t idx) const {
return idx < types.size() ? types[idx] : NULL;
}
};
// A group of objects describing a particular resource package.
// The first in 'package' is always the root object (from the resource
// table that defined the package); the ones after are skins on top of it.
struct ResTable::PackageGroup
{
PackageGroup(ResTable* _owner, const String16& _name, uint32_t _id)
: owner(_owner), name(_name), id(_id), typeCount(0), bags(NULL) { }
~PackageGroup() {
clearBagCache();
const size_t N = packages.size();
for (size_t i=0; i<N; i++) {
Package* pkg = packages[i];
if (pkg->owner == owner) {
delete pkg;
}
}
}
void clearBagCache() {
if (bags) {
TABLE_NOISY(printf("bags=%p\n", bags));
Package* pkg = packages[0];
TABLE_NOISY(printf("typeCount=%x\n", typeCount));
for (size_t i=0; i<typeCount; i++) {
TABLE_NOISY(printf("type=%d\n", i));
const Type* type = pkg->getType(i);
if (type != NULL) {
bag_set** typeBags = bags[i];
TABLE_NOISY(printf("typeBags=%p\n", typeBags));
if (typeBags) {
TABLE_NOISY(printf("type->entryCount=%x\n", type->entryCount));
const size_t N = type->entryCount;
for (size_t j=0; j<N; j++) {
if (typeBags[j] && typeBags[j] != (bag_set*)0xFFFFFFFF)
free(typeBags[j]);
}
free(typeBags);
}
}
}
free(bags);
bags = NULL;
}
}
ResTable* const owner;
String16 const name;
uint32_t const id;
Vector<Package*> packages;
// This is for finding typeStrings and other common package stuff.
Package* basePackage;
// For quick access.
size_t typeCount;
// Computed attribute bags, first indexed by the type and second
// by the entry in that type.
bag_set*** bags;
};
struct ResTable::bag_set
{
size_t numAttrs; // number in array
size_t availAttrs; // total space in array
uint32_t typeSpecFlags;
// Followed by 'numAttr' bag_entry structures.
};
ResTable::Theme::Theme(const ResTable& table)
: mTable(table)
{
memset(mPackages, 0, sizeof(mPackages));
}
ResTable::Theme::~Theme()
{
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
package_info* pi = mPackages[i];
if (pi != NULL) {
free_package(pi);
}
}
}
void ResTable::Theme::free_package(package_info* pi)
{
for (size_t j=0; j<pi->numTypes; j++) {
theme_entry* te = pi->types[j].entries;
if (te != NULL) {
free(te);
}
}
free(pi);
}
ResTable::Theme::package_info* ResTable::Theme::copy_package(package_info* pi)
{
package_info* newpi = (package_info*)malloc(
sizeof(package_info) + (pi->numTypes*sizeof(type_info)));
newpi->numTypes = pi->numTypes;
for (size_t j=0; j<newpi->numTypes; j++) {
size_t cnt = pi->types[j].numEntries;
newpi->types[j].numEntries = cnt;
theme_entry* te = pi->types[j].entries;
if (te != NULL) {
theme_entry* newte = (theme_entry*)malloc(cnt*sizeof(theme_entry));
newpi->types[j].entries = newte;
memcpy(newte, te, cnt*sizeof(theme_entry));
} else {
newpi->types[j].entries = NULL;
}
}
return newpi;
}
status_t ResTable::Theme::applyStyle(uint32_t resID, bool force)
{
const bag_entry* bag;
uint32_t bagTypeSpecFlags = 0;
mTable.lock();
const ssize_t N = mTable.getBagLocked(resID, &bag, &bagTypeSpecFlags);
TABLE_NOISY(ALOGV("Applying style 0x%08x to theme %p, count=%d", resID, this, N));
if (N < 0) {
mTable.unlock();
return N;
}
uint32_t curPackage = 0xffffffff;
ssize_t curPackageIndex = 0;
package_info* curPI = NULL;
uint32_t curType = 0xffffffff;
size_t numEntries = 0;
theme_entry* curEntries = NULL;
const bag_entry* end = bag + N;
while (bag < end) {
const uint32_t attrRes = bag->map.name.ident;
const uint32_t p = Res_GETPACKAGE(attrRes);
const uint32_t t = Res_GETTYPE(attrRes);
const uint32_t e = Res_GETENTRY(attrRes);
if (curPackage != p) {
const ssize_t pidx = mTable.getResourcePackageIndex(attrRes);
if (pidx < 0) {
ALOGE("Style contains key with bad package: 0x%08x\n", attrRes);
bag++;
continue;
}
curPackage = p;
curPackageIndex = pidx;
curPI = mPackages[pidx];
if (curPI == NULL) {
PackageGroup* const grp = mTable.mPackageGroups[pidx];
int cnt = grp->typeCount;
curPI = (package_info*)malloc(
sizeof(package_info) + (cnt*sizeof(type_info)));
curPI->numTypes = cnt;
memset(curPI->types, 0, cnt*sizeof(type_info));
mPackages[pidx] = curPI;
}
curType = 0xffffffff;
}
if (curType != t) {
if (t >= curPI->numTypes) {
ALOGE("Style contains key with bad type: 0x%08x\n", attrRes);
bag++;
continue;
}
curType = t;
curEntries = curPI->types[t].entries;
if (curEntries == NULL) {
PackageGroup* const grp = mTable.mPackageGroups[curPackageIndex];
const Type* type = grp->packages[0]->getType(t);
int cnt = type != NULL ? type->entryCount : 0;
curEntries = (theme_entry*)malloc(cnt*sizeof(theme_entry));
memset(curEntries, Res_value::TYPE_NULL, cnt*sizeof(theme_entry));
curPI->types[t].numEntries = cnt;
curPI->types[t].entries = curEntries;
}
numEntries = curPI->types[t].numEntries;
}
if (e >= numEntries) {
ALOGE("Style contains key with bad entry: 0x%08x\n", attrRes);
bag++;
continue;
}
theme_entry* curEntry = curEntries + e;
TABLE_NOISY(ALOGV("Attr 0x%08x: type=0x%x, data=0x%08x; curType=0x%x",
attrRes, bag->map.value.dataType, bag->map.value.data,
curEntry->value.dataType));
if (force || curEntry->value.dataType == Res_value::TYPE_NULL) {
curEntry->stringBlock = bag->stringBlock;
curEntry->typeSpecFlags |= bagTypeSpecFlags;
curEntry->value = bag->map.value;
}
bag++;
}
mTable.unlock();
//ALOGI("Applying style 0x%08x (force=%d) theme %p...\n", resID, force, this);
//dumpToLog();
return NO_ERROR;
}
status_t ResTable::Theme::setTo(const Theme& other)
{
//ALOGI("Setting theme %p from theme %p...\n", this, &other);
//dumpToLog();
//other.dumpToLog();
if (&mTable == &other.mTable) {
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
if (mPackages[i] != NULL) {
free_package(mPackages[i]);
}
if (other.mPackages[i] != NULL) {
mPackages[i] = copy_package(other.mPackages[i]);
} else {
mPackages[i] = NULL;
}
}
} else {
// @todo: need to really implement this, not just copy
// the system package (which is still wrong because it isn't
// fixing up resource references).
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
if (mPackages[i] != NULL) {
free_package(mPackages[i]);
}
if (i == 0 && other.mPackages[i] != NULL) {
mPackages[i] = copy_package(other.mPackages[i]);
} else {
mPackages[i] = NULL;
}
}
}
//ALOGI("Final theme:");
//dumpToLog();
return NO_ERROR;
}
ssize_t ResTable::Theme::getAttribute(uint32_t resID, Res_value* outValue,
uint32_t* outTypeSpecFlags) const
{
int cnt = 20;
if (outTypeSpecFlags != NULL) *outTypeSpecFlags = 0;
do {
const ssize_t p = mTable.getResourcePackageIndex(resID);
const uint32_t t = Res_GETTYPE(resID);
const uint32_t e = Res_GETENTRY(resID);
TABLE_THEME(ALOGI("Looking up attr 0x%08x in theme %p", resID, this));
if (p >= 0) {
const package_info* const pi = mPackages[p];
TABLE_THEME(ALOGI("Found package: %p", pi));
if (pi != NULL) {
TABLE_THEME(ALOGI("Desired type index is %ld in avail %d", t, pi->numTypes));
if (t < pi->numTypes) {
const type_info& ti = pi->types[t];
TABLE_THEME(ALOGI("Desired entry index is %ld in avail %d", e, ti.numEntries));
if (e < ti.numEntries) {
const theme_entry& te = ti.entries[e];
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags |= te.typeSpecFlags;
}
TABLE_THEME(ALOGI("Theme value: type=0x%x, data=0x%08x",
te.value.dataType, te.value.data));
const uint8_t type = te.value.dataType;
if (type == Res_value::TYPE_ATTRIBUTE) {
if (cnt > 0) {
cnt--;
resID = te.value.data;
continue;
}
ALOGW("Too many attribute references, stopped at: 0x%08x\n", resID);
return BAD_INDEX;
} else if (type != Res_value::TYPE_NULL) {
*outValue = te.value;
return te.stringBlock;
}
return BAD_INDEX;
}
}
}
}
break;
} while (true);
return BAD_INDEX;
}
ssize_t ResTable::Theme::resolveAttributeReference(Res_value* inOutValue,
ssize_t blockIndex, uint32_t* outLastRef,
uint32_t* inoutTypeSpecFlags, ResTable_config* inoutConfig) const
{
//printf("Resolving type=0x%x\n", inOutValue->dataType);
if (inOutValue->dataType == Res_value::TYPE_ATTRIBUTE) {
uint32_t newTypeSpecFlags;
blockIndex = getAttribute(inOutValue->data, inOutValue, &newTypeSpecFlags);
TABLE_THEME(ALOGI("Resolving attr reference: blockIndex=%d, type=0x%x, data=%p\n",
(int)blockIndex, (int)inOutValue->dataType, (void*)inOutValue->data));
if (inoutTypeSpecFlags != NULL) *inoutTypeSpecFlags |= newTypeSpecFlags;
//printf("Retrieved attribute new type=0x%x\n", inOutValue->dataType);
if (blockIndex < 0) {
return blockIndex;
}
}
return mTable.resolveReference(inOutValue, blockIndex, outLastRef,
inoutTypeSpecFlags, inoutConfig);
}
void ResTable::Theme::dumpToLog() const
{
ALOGI("Theme %p:\n", this);
for (size_t i=0; i<Res_MAXPACKAGE; i++) {
package_info* pi = mPackages[i];
if (pi == NULL) continue;
ALOGI(" Package #0x%02x:\n", (int)(i+1));
for (size_t j=0; j<pi->numTypes; j++) {
type_info& ti = pi->types[j];
if (ti.numEntries == 0) continue;
ALOGI(" Type #0x%02x:\n", (int)(j+1));
for (size_t k=0; k<ti.numEntries; k++) {
theme_entry& te = ti.entries[k];
if (te.value.dataType == Res_value::TYPE_NULL) continue;
ALOGI(" 0x%08x: t=0x%x, d=0x%08x (block=%d)\n",
(int)Res_MAKEID(i, j, k),
te.value.dataType, (int)te.value.data, (int)te.stringBlock);
}
}
}
}
ResTable::ResTable()
: mError(NO_INIT)
{
memset(&mParams, 0, sizeof(mParams));
memset(mPackageMap, 0, sizeof(mPackageMap));
//ALOGI("Creating ResTable %p\n", this);
}
ResTable::ResTable(const void* data, size_t size, void* cookie, bool copyData)
: mError(NO_INIT)
{
memset(&mParams, 0, sizeof(mParams));
memset(mPackageMap, 0, sizeof(mPackageMap));
add(data, size, cookie, copyData);
LOG_FATAL_IF(mError != NO_ERROR, "Error parsing resource table");
//ALOGI("Creating ResTable %p\n", this);
}
ResTable::~ResTable()
{
//ALOGI("Destroying ResTable in %p\n", this);
uninit();
}
inline ssize_t ResTable::getResourcePackageIndex(uint32_t resID) const
{
return ((ssize_t)mPackageMap[Res_GETPACKAGE(resID)+1])-1;
}
status_t ResTable::add(const void* data, size_t size, void* cookie, bool copyData,
const void* idmap)
{
return add(data, size, cookie, NULL, copyData, reinterpret_cast<const Asset*>(idmap));
}
status_t ResTable::add(Asset* asset, void* cookie, bool copyData, const void* idmap)
{
const void* data = asset->getBuffer(true);
if (data == NULL) {
ALOGW("Unable to get buffer of resource asset file");
return UNKNOWN_ERROR;
}
size_t size = (size_t)asset->getLength();
return add(data, size, cookie, asset, copyData, reinterpret_cast<const Asset*>(idmap));
}
status_t ResTable::add(ResTable* src)
{
mError = src->mError;
for (size_t i=0; i<src->mHeaders.size(); i++) {
mHeaders.add(src->mHeaders[i]);
}
for (size_t i=0; i<src->mPackageGroups.size(); i++) {
PackageGroup* srcPg = src->mPackageGroups[i];
PackageGroup* pg = new PackageGroup(this, srcPg->name, srcPg->id);
for (size_t j=0; j<srcPg->packages.size(); j++) {
pg->packages.add(srcPg->packages[j]);
}
pg->basePackage = srcPg->basePackage;
pg->typeCount = srcPg->typeCount;
mPackageGroups.add(pg);
}
memcpy(mPackageMap, src->mPackageMap, sizeof(mPackageMap));
return mError;
}
status_t ResTable::add(const void* data, size_t size, void* cookie,
Asset* asset, bool copyData, const Asset* idmap)
{
if (!data) return NO_ERROR;
Header* header = new Header(this);
header->index = mHeaders.size();
header->cookie = cookie;
if (idmap != NULL) {
const size_t idmap_size = idmap->getLength();
const void* idmap_data = const_cast<Asset*>(idmap)->getBuffer(true);
header->resourceIDMap = (uint32_t*)malloc(idmap_size);
if (header->resourceIDMap == NULL) {
delete header;
return (mError = NO_MEMORY);
}
memcpy((void*)header->resourceIDMap, idmap_data, idmap_size);
header->resourceIDMapSize = idmap_size;
}
mHeaders.add(header);
const bool notDeviceEndian = htods(0xf0) != 0xf0;
LOAD_TABLE_NOISY(
ALOGV("Adding resources to ResTable: data=%p, size=0x%x, cookie=%p, asset=%p, copy=%d "
"idmap=%p\n", data, size, cookie, asset, copyData, idmap));
if (copyData || notDeviceEndian) {
header->ownedData = malloc(size);
if (header->ownedData == NULL) {
return (mError=NO_MEMORY);
}
memcpy(header->ownedData, data, size);
data = header->ownedData;
}
header->header = (const ResTable_header*)data;
header->size = dtohl(header->header->header.size);
//ALOGI("Got size 0x%x, again size 0x%x, raw size 0x%x\n", header->size,
// dtohl(header->header->header.size), header->header->header.size);
LOAD_TABLE_NOISY(ALOGV("Loading ResTable @%p:\n", header->header));
LOAD_TABLE_NOISY(printHexData(2, header->header, header->size < 256 ? header->size : 256,
16, 16, 0, false, printToLogFunc));
if (dtohs(header->header->header.headerSize) > header->size
|| header->size > size) {
ALOGW("Bad resource table: header size 0x%x or total size 0x%x is larger than data size 0x%x\n",
(int)dtohs(header->header->header.headerSize),
(int)header->size, (int)size);
return (mError=BAD_TYPE);
}
if (((dtohs(header->header->header.headerSize)|header->size)&0x3) != 0) {
ALOGW("Bad resource table: header size 0x%x or total size 0x%x is not on an integer boundary\n",
(int)dtohs(header->header->header.headerSize),
(int)header->size);
return (mError=BAD_TYPE);
}
header->dataEnd = ((const uint8_t*)header->header) + header->size;
// Iterate through all chunks.
size_t curPackage = 0;
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)header->header)
+ dtohs(header->header->header.headerSize));
while (((const uint8_t*)chunk) <= (header->dataEnd-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) <= (header->dataEnd-dtohl(chunk->size))) {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header), header->dataEnd, "ResTable");
if (err != NO_ERROR) {
return (mError=err);
}
TABLE_NOISY(ALOGV("Chunk: type=0x%x, headerSize=0x%x, size=0x%x, pos=%p\n",
dtohs(chunk->type), dtohs(chunk->headerSize), dtohl(chunk->size),
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header))));
const size_t csize = dtohl(chunk->size);
const uint16_t ctype = dtohs(chunk->type);
if (ctype == RES_STRING_POOL_TYPE) {
if (header->values.getError() != NO_ERROR) {
// Only use the first string chunk; ignore any others that
// may appear.
status_t err = header->values.setTo(chunk, csize);
if (err != NO_ERROR) {
return (mError=err);
}
} else {
ALOGW("Multiple string chunks found in resource table.");
}
} else if (ctype == RES_TABLE_PACKAGE_TYPE) {
if (curPackage >= dtohl(header->header->packageCount)) {
ALOGW("More package chunks were found than the %d declared in the header.",
dtohl(header->header->packageCount));
return (mError=BAD_TYPE);
}
uint32_t idmap_id = 0;
if (idmap != NULL) {
uint32_t tmp;
if (getIdmapPackageId(header->resourceIDMap,
header->resourceIDMapSize,
&tmp) == NO_ERROR) {
idmap_id = tmp;
}
}
if (parsePackage((ResTable_package*)chunk, header, idmap_id) != NO_ERROR) {
return mError;
}
curPackage++;
} else {
ALOGW("Unknown chunk type %p in table at %p.\n",
(void*)(int)(ctype),
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header)));
}
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + csize);
}
if (curPackage < dtohl(header->header->packageCount)) {
ALOGW("Fewer package chunks (%d) were found than the %d declared in the header.",
(int)curPackage, dtohl(header->header->packageCount));
return (mError=BAD_TYPE);
}
mError = header->values.getError();
if (mError != NO_ERROR) {
ALOGW("No string values found in resource table!");
}
TABLE_NOISY(ALOGV("Returning from add with mError=%d\n", mError));
return mError;
}
status_t ResTable::getError() const
{
return mError;
}
void ResTable::uninit()
{
mError = NO_INIT;
size_t N = mPackageGroups.size();
for (size_t i=0; i<N; i++) {
PackageGroup* g = mPackageGroups[i];
delete g;
}
N = mHeaders.size();
for (size_t i=0; i<N; i++) {
Header* header = mHeaders[i];
if (header->owner == this) {
if (header->ownedData) {
free(header->ownedData);
}
delete header;
}
}
mPackageGroups.clear();
mHeaders.clear();
}
bool ResTable::getResourceName(uint32_t resID, resource_name* outName) const
{
if (mError != NO_ERROR) {
return false;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
if (Res_GETPACKAGE(resID)+1 == 0) {
ALOGW("No package identifier when getting name for resource number 0x%08x", resID);
} else {
ALOGW("No known package when getting name for resource number 0x%08x", resID);
}
return false;
}
if (t < 0) {
ALOGW("No type identifier when getting name for resource number 0x%08x", resID);
return false;
}
const PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting name for resource number 0x%08x", resID);
return false;
}
if (grp->packages.size() > 0) {
const Package* const package = grp->packages[0];
const ResTable_type* type;
const ResTable_entry* entry;
ssize_t offset = getEntry(package, t, e, NULL, &type, &entry, NULL);
if (offset <= 0) {
return false;
}
outName->package = grp->name.string();
outName->packageLen = grp->name.size();
outName->type = grp->basePackage->typeStrings.stringAt(t, &outName->typeLen);
outName->name = grp->basePackage->keyStrings.stringAt(
dtohl(entry->key.index), &outName->nameLen);
// If we have a bad index for some reason, we should abort.
if (outName->type == NULL || outName->name == NULL) {
return false;
}
return true;
}
return false;
}
ssize_t ResTable::getResource(uint32_t resID, Res_value* outValue, bool mayBeBag, uint16_t density,
uint32_t* outSpecFlags, ResTable_config* outConfig) const
{
if (mError != NO_ERROR) {
return mError;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
if (Res_GETPACKAGE(resID)+1 == 0) {
ALOGW("No package identifier when getting value for resource number 0x%08x", resID);
} else {
ALOGW("No known package when getting value for resource number 0x%08x", resID);
}
return BAD_INDEX;
}
if (t < 0) {
ALOGW("No type identifier when getting value for resource number 0x%08x", resID);
return BAD_INDEX;
}
const Res_value* bestValue = NULL;
const Package* bestPackage = NULL;
ResTable_config bestItem;
memset(&bestItem, 0, sizeof(bestItem)); // make the compiler shut up
if (outSpecFlags != NULL) *outSpecFlags = 0;
// Look through all resource packages, starting with the most
// recently added.
const PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting value for resource number 0x%08x", resID);
return BAD_INDEX;
}
// Allow overriding density
const ResTable_config* desiredConfig = &mParams;
ResTable_config* overrideConfig = NULL;
if (density > 0) {
overrideConfig = (ResTable_config*) malloc(sizeof(ResTable_config));
if (overrideConfig == NULL) {
ALOGE("Couldn't malloc ResTable_config for overrides: %s", strerror(errno));
return BAD_INDEX;
}
memcpy(overrideConfig, &mParams, sizeof(ResTable_config));
overrideConfig->density = density;
desiredConfig = overrideConfig;
}
ssize_t rc = BAD_VALUE;
size_t ip = grp->packages.size();
while (ip > 0) {
ip--;
int T = t;
int E = e;
const Package* const package = grp->packages[ip];
if (package->header->resourceIDMap) {
uint32_t overlayResID = 0x0;
status_t retval = idmapLookup(package->header->resourceIDMap,
package->header->resourceIDMapSize,
resID, &overlayResID);
if (retval == NO_ERROR && overlayResID != 0x0) {
// for this loop iteration, this is the type and entry we really want
ALOGV("resource map 0x%08x -> 0x%08x\n", resID, overlayResID);
T = Res_GETTYPE(overlayResID);
E = Res_GETENTRY(overlayResID);
} else {
// resource not present in overlay package, continue with the next package
continue;
}
}
const ResTable_type* type;
const ResTable_entry* entry;
const Type* typeClass;
ssize_t offset = getEntry(package, T, E, desiredConfig, &type, &entry, &typeClass);
if (offset <= 0) {
// No {entry, appropriate config} pair found in package. If this
// package is an overlay package (ip != 0), this simply means the
// overlay package did not specify a default.
// Non-overlay packages are still required to provide a default.
if (offset < 0 && ip == 0) {
ALOGW("Failure getting entry for 0x%08x (t=%d e=%d) in package %zd (error %d)\n",
resID, T, E, ip, (int)offset);
rc = offset;
goto out;
}
continue;
}
if ((dtohs(entry->flags)&entry->FLAG_COMPLEX) != 0) {
if (!mayBeBag) {
ALOGW("Requesting resource %p failed because it is complex\n",
(void*)resID);
}
continue;
}
TABLE_NOISY(aout << "Resource type data: "
<< HexDump(type, dtohl(type->header.size)) << endl);
if ((size_t)offset > (dtohl(type->header.size)-sizeof(Res_value))) {
ALOGW("ResTable_item at %d is beyond type chunk data %d",
(int)offset, dtohl(type->header.size));
rc = BAD_TYPE;
goto out;
}
const Res_value* item =
(const Res_value*)(((const uint8_t*)type) + offset);
ResTable_config thisConfig;
thisConfig.copyFromDtoH(type->config);
if (outSpecFlags != NULL) {
if (typeClass->typeSpecFlags != NULL) {
*outSpecFlags |= dtohl(typeClass->typeSpecFlags[E]);
} else {
*outSpecFlags = -1;
}
}
if (bestPackage != NULL &&
(bestItem.isMoreSpecificThan(thisConfig) || bestItem.diff(thisConfig) == 0)) {
// Discard thisConfig not only if bestItem is more specific, but also if the two configs
// are identical (diff == 0), or overlay packages will not take effect.
continue;
}
bestItem = thisConfig;
bestValue = item;
bestPackage = package;
}
TABLE_NOISY(printf("Found result: package %p\n", bestPackage));
if (bestValue) {
outValue->size = dtohs(bestValue->size);
outValue->res0 = bestValue->res0;
outValue->dataType = bestValue->dataType;
outValue->data = dtohl(bestValue->data);
if (outConfig != NULL) {
*outConfig = bestItem;
}
TABLE_NOISY(size_t len;
printf("Found value: pkg=%d, type=%d, str=%s, int=%d\n",
bestPackage->header->index,
outValue->dataType,
outValue->dataType == bestValue->TYPE_STRING
? String8(bestPackage->header->values.stringAt(
outValue->data, &len)).string()
: "",
outValue->data));
rc = bestPackage->header->index;
goto out;
}
out:
if (overrideConfig != NULL) {
free(overrideConfig);
}
return rc;
}
ssize_t ResTable::resolveReference(Res_value* value, ssize_t blockIndex,
uint32_t* outLastRef, uint32_t* inoutTypeSpecFlags,
ResTable_config* outConfig) const
{
int count=0;
while (blockIndex >= 0 && value->dataType == value->TYPE_REFERENCE
&& value->data != 0 && count < 20) {
if (outLastRef) *outLastRef = value->data;
uint32_t lastRef = value->data;
uint32_t newFlags = 0;
const ssize_t newIndex = getResource(value->data, value, true, 0, &newFlags,
outConfig);
if (newIndex == BAD_INDEX) {
return BAD_INDEX;
}
TABLE_THEME(ALOGI("Resolving reference %p: newIndex=%d, type=0x%x, data=%p\n",
(void*)lastRef, (int)newIndex, (int)value->dataType, (void*)value->data));
//printf("Getting reference 0x%08x: newIndex=%d\n", value->data, newIndex);
if (inoutTypeSpecFlags != NULL) *inoutTypeSpecFlags |= newFlags;
if (newIndex < 0) {
// This can fail if the resource being referenced is a style...
// in this case, just return the reference, and expect the
// caller to deal with.
return blockIndex;
}
blockIndex = newIndex;
count++;
}
return blockIndex;
}
const char16_t* ResTable::valueToString(
const Res_value* value, size_t stringBlock,
char16_t tmpBuffer[TMP_BUFFER_SIZE], size_t* outLen)
{
if (!value) {
return NULL;
}
if (value->dataType == value->TYPE_STRING) {
return getTableStringBlock(stringBlock)->stringAt(value->data, outLen);
}
// XXX do int to string conversions.
return NULL;
}
ssize_t ResTable::lockBag(uint32_t resID, const bag_entry** outBag) const
{
mLock.lock();
ssize_t err = getBagLocked(resID, outBag);
if (err < NO_ERROR) {
//printf("*** get failed! unlocking\n");
mLock.unlock();
}
return err;
}
void ResTable::unlockBag(const bag_entry* bag) const
{
//printf("<<< unlockBag %p\n", this);
mLock.unlock();
}
void ResTable::lock() const
{
mLock.lock();
}
void ResTable::unlock() const
{
mLock.unlock();
}
ssize_t ResTable::getBagLocked(uint32_t resID, const bag_entry** outBag,
uint32_t* outTypeSpecFlags) const
{
if (mError != NO_ERROR) {
return mError;
}
const ssize_t p = getResourcePackageIndex(resID);
const int t = Res_GETTYPE(resID);
const int e = Res_GETENTRY(resID);
if (p < 0) {
ALOGW("Invalid package identifier when getting bag for resource number 0x%08x", resID);
return BAD_INDEX;
}
if (t < 0) {
ALOGW("No type identifier when getting bag for resource number 0x%08x", resID);
return BAD_INDEX;
}
//printf("Get bag: id=0x%08x, p=%d, t=%d\n", resID, p, t);
PackageGroup* const grp = mPackageGroups[p];
if (grp == NULL) {
ALOGW("Bad identifier when getting bag for resource number 0x%08x", resID);
return false;
}
if (t >= (int)grp->typeCount) {
ALOGW("Type identifier 0x%x is larger than type count 0x%x",
t+1, (int)grp->typeCount);
return BAD_INDEX;
}
const Package* const basePackage = grp->packages[0];
const Type* const typeConfigs = basePackage->getType(t);
const size_t NENTRY = typeConfigs->entryCount;
if (e >= (int)NENTRY) {
ALOGW("Entry identifier 0x%x is larger than entry count 0x%x",
e, (int)typeConfigs->entryCount);
return BAD_INDEX;
}
// First see if we've already computed this bag...
if (grp->bags) {
bag_set** typeSet = grp->bags[t];
if (typeSet) {
bag_set* set = typeSet[e];
if (set) {
if (set != (bag_set*)0xFFFFFFFF) {
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags = set->typeSpecFlags;
}
*outBag = (bag_entry*)(set+1);
//ALOGI("Found existing bag for: %p\n", (void*)resID);
return set->numAttrs;
}
ALOGW("Attempt to retrieve bag 0x%08x which is invalid or in a cycle.",
resID);
return BAD_INDEX;
}
}
}
// Bag not found, we need to compute it!
if (!grp->bags) {
grp->bags = (bag_set***)calloc(grp->typeCount, sizeof(bag_set*));
if (!grp->bags) return NO_MEMORY;
}
bag_set** typeSet = grp->bags[t];
if (!typeSet) {
typeSet = (bag_set**)calloc(NENTRY, sizeof(bag_set*));
if (!typeSet) return NO_MEMORY;
grp->bags[t] = typeSet;
}
// Mark that we are currently working on this one.
typeSet[e] = (bag_set*)0xFFFFFFFF;
// This is what we are building.
bag_set* set = NULL;
TABLE_NOISY(ALOGI("Building bag: %p\n", (void*)resID));
ResTable_config bestConfig;
memset(&bestConfig, 0, sizeof(bestConfig));
// Now collect all bag attributes from all packages.
size_t ip = grp->packages.size();
while (ip > 0) {
ip--;
int T = t;
int E = e;
const Package* const package = grp->packages[ip];
if (package->header->resourceIDMap) {
uint32_t overlayResID = 0x0;
status_t retval = idmapLookup(package->header->resourceIDMap,
package->header->resourceIDMapSize,
resID, &overlayResID);
if (retval == NO_ERROR && overlayResID != 0x0) {
// for this loop iteration, this is the type and entry we really want
ALOGV("resource map 0x%08x -> 0x%08x\n", resID, overlayResID);
T = Res_GETTYPE(overlayResID);
E = Res_GETENTRY(overlayResID);
} else {
// resource not present in overlay package, continue with the next package
continue;
}
}
const ResTable_type* type;
const ResTable_entry* entry;
const Type* typeClass;
ALOGV("Getting entry pkg=%p, t=%d, e=%d\n", package, T, E);
ssize_t offset = getEntry(package, T, E, &mParams, &type, &entry, &typeClass);
ALOGV("Resulting offset=%d\n", offset);
if (offset <= 0) {
// No {entry, appropriate config} pair found in package. If this
// package is an overlay package (ip != 0), this simply means the
// overlay package did not specify a default.
// Non-overlay packages are still required to provide a default.
if (offset < 0 && ip == 0) {
if (set) free(set);
return offset;
}
continue;
}
if ((dtohs(entry->flags)&entry->FLAG_COMPLEX) == 0) {
ALOGW("Skipping entry %p in package table %d because it is not complex!\n",
(void*)resID, (int)ip);
continue;
}
if (set != NULL && !type->config.isBetterThan(bestConfig, NULL)) {
continue;
}
bestConfig = type->config;
if (set) {
free(set);
set = NULL;
}
const uint16_t entrySize = dtohs(entry->size);
const uint32_t parent = entrySize >= sizeof(ResTable_map_entry)
? dtohl(((const ResTable_map_entry*)entry)->parent.ident) : 0;
const uint32_t count = entrySize >= sizeof(ResTable_map_entry)
? dtohl(((const ResTable_map_entry*)entry)->count) : 0;
size_t N = count;
TABLE_NOISY(ALOGI("Found map: size=%p parent=%p count=%d\n",
entrySize, parent, count));
// If this map inherits from another, we need to start
// with its parent's values. Otherwise start out empty.
TABLE_NOISY(printf("Creating new bag, entrySize=0x%08x, parent=0x%08x\n",
entrySize, parent));
if (parent) {
const bag_entry* parentBag;
uint32_t parentTypeSpecFlags = 0;
const ssize_t NP = getBagLocked(parent, &parentBag, &parentTypeSpecFlags);
const size_t NT = ((NP >= 0) ? NP : 0) + N;
set = (bag_set*)malloc(sizeof(bag_set)+sizeof(bag_entry)*NT);
if (set == NULL) {
return NO_MEMORY;
}
if (NP > 0) {
memcpy(set+1, parentBag, NP*sizeof(bag_entry));
set->numAttrs = NP;
TABLE_NOISY(ALOGI("Initialized new bag with %d inherited attributes.\n", NP));
} else {
TABLE_NOISY(ALOGI("Initialized new bag with no inherited attributes.\n"));
set->numAttrs = 0;
}
set->availAttrs = NT;
set->typeSpecFlags = parentTypeSpecFlags;
} else {
set = (bag_set*)malloc(sizeof(bag_set)+sizeof(bag_entry)*N);
if (set == NULL) {
return NO_MEMORY;
}
set->numAttrs = 0;
set->availAttrs = N;
set->typeSpecFlags = 0;
}
if (typeClass->typeSpecFlags != NULL) {
set->typeSpecFlags |= dtohl(typeClass->typeSpecFlags[E]);
} else {
set->typeSpecFlags = -1;
}
// Now merge in the new attributes...
ssize_t curOff = offset;
const ResTable_map* map;
bag_entry* entries = (bag_entry*)(set+1);
size_t curEntry = 0;
uint32_t pos = 0;
TABLE_NOISY(ALOGI("Starting with set %p, entries=%p, avail=%d\n",
set, entries, set->availAttrs));
while (pos < count) {
TABLE_NOISY(printf("Now at %p\n", (void*)curOff));
if ((size_t)curOff > (dtohl(type->header.size)-sizeof(ResTable_map))) {
ALOGW("ResTable_map at %d is beyond type chunk data %d",
(int)curOff, dtohl(type->header.size));
return BAD_TYPE;
}
map = (const ResTable_map*)(((const uint8_t*)type) + curOff);
N++;
const uint32_t newName = htodl(map->name.ident);
bool isInside;
uint32_t oldName = 0;
while ((isInside=(curEntry < set->numAttrs))
&& (oldName=entries[curEntry].map.name.ident) < newName) {
TABLE_NOISY(printf("#%d: Keeping existing attribute: 0x%08x\n",
curEntry, entries[curEntry].map.name.ident));
curEntry++;
}
if ((!isInside) || oldName != newName) {
// This is a new attribute... figure out what to do with it.
if (set->numAttrs >= set->availAttrs) {
// Need to alloc more memory...
const size_t newAvail = set->availAttrs+N;
set = (bag_set*)realloc(set,
sizeof(bag_set)
+ sizeof(bag_entry)*newAvail);
if (set == NULL) {
return NO_MEMORY;
}
set->availAttrs = newAvail;
entries = (bag_entry*)(set+1);
TABLE_NOISY(printf("Reallocated set %p, entries=%p, avail=%d\n",
set, entries, set->availAttrs));
}
if (isInside) {
// Going in the middle, need to make space.
memmove(entries+curEntry+1, entries+curEntry,
sizeof(bag_entry)*(set->numAttrs-curEntry));
set->numAttrs++;
}
TABLE_NOISY(printf("#%d: Inserting new attribute: 0x%08x\n",
curEntry, newName));
} else {
TABLE_NOISY(printf("#%d: Replacing existing attribute: 0x%08x\n",
curEntry, oldName));
}
bag_entry* cur = entries+curEntry;
cur->stringBlock = package->header->index;
cur->map.name.ident = newName;
cur->map.value.copyFrom_dtoh(map->value);
TABLE_NOISY(printf("Setting entry #%d %p: block=%d, name=0x%08x, type=%d, data=0x%08x\n",
curEntry, cur, cur->stringBlock, cur->map.name.ident,
cur->map.value.dataType, cur->map.value.data));
// On to the next!
curEntry++;
pos++;
const size_t size = dtohs(map->value.size);
curOff += size + sizeof(*map)-sizeof(map->value);
};
if (curEntry > set->numAttrs) {
set->numAttrs = curEntry;
}
}
// And this is it...
typeSet[e] = set;
if (set) {
if (outTypeSpecFlags != NULL) {
*outTypeSpecFlags = set->typeSpecFlags;
}
*outBag = (bag_entry*)(set+1);
TABLE_NOISY(ALOGI("Returning %d attrs\n", set->numAttrs));
return set->numAttrs;
}
return BAD_INDEX;
}
void ResTable::setParameters(const ResTable_config* params)
{
mLock.lock();
TABLE_GETENTRY(ALOGI("Setting parameters: %s\n", params->toString().string()));
mParams = *params;
for (size_t i=0; i<mPackageGroups.size(); i++) {
TABLE_NOISY(ALOGI("CLEARING BAGS FOR GROUP %d!", i));
mPackageGroups[i]->clearBagCache();
}
mLock.unlock();
}
void ResTable::getParameters(ResTable_config* params) const
{
mLock.lock();
*params = mParams;
mLock.unlock();
}
struct id_name_map {
uint32_t id;
size_t len;
char16_t name[6];
};
const static id_name_map ID_NAMES[] = {
{ ResTable_map::ATTR_TYPE, 5, { '^', 't', 'y', 'p', 'e' } },
{ ResTable_map::ATTR_L10N, 5, { '^', 'l', '1', '0', 'n' } },
{ ResTable_map::ATTR_MIN, 4, { '^', 'm', 'i', 'n' } },
{ ResTable_map::ATTR_MAX, 4, { '^', 'm', 'a', 'x' } },
{ ResTable_map::ATTR_OTHER, 6, { '^', 'o', 't', 'h', 'e', 'r' } },
{ ResTable_map::ATTR_ZERO, 5, { '^', 'z', 'e', 'r', 'o' } },
{ ResTable_map::ATTR_ONE, 4, { '^', 'o', 'n', 'e' } },
{ ResTable_map::ATTR_TWO, 4, { '^', 't', 'w', 'o' } },
{ ResTable_map::ATTR_FEW, 4, { '^', 'f', 'e', 'w' } },
{ ResTable_map::ATTR_MANY, 5, { '^', 'm', 'a', 'n', 'y' } },
};
uint32_t ResTable::identifierForName(const char16_t* name, size_t nameLen,
const char16_t* type, size_t typeLen,
const char16_t* package,
size_t packageLen,
uint32_t* outTypeSpecFlags) const
{
TABLE_SUPER_NOISY(printf("Identifier for name: error=%d\n", mError));
// Check for internal resource identifier as the very first thing, so
// that we will always find them even when there are no resources.
if (name[0] == '^') {
const int N = (sizeof(ID_NAMES)/sizeof(ID_NAMES[0]));
size_t len;
for (int i=0; i<N; i++) {
const id_name_map* m = ID_NAMES + i;
len = m->len;
if (len != nameLen) {
continue;
}
for (size_t j=1; j<len; j++) {
if (m->name[j] != name[j]) {
goto nope;
}
}
if (outTypeSpecFlags) {
*outTypeSpecFlags = ResTable_typeSpec::SPEC_PUBLIC;
}
return m->id;
nope:
;
}
if (nameLen > 7) {
if (name[1] == 'i' && name[2] == 'n'
&& name[3] == 'd' && name[4] == 'e' && name[5] == 'x'
&& name[6] == '_') {
int index = atoi(String8(name + 7, nameLen - 7).string());
if (Res_CHECKID(index)) {
ALOGW("Array resource index: %d is too large.",
index);
return 0;
}
if (outTypeSpecFlags) {
*outTypeSpecFlags = ResTable_typeSpec::SPEC_PUBLIC;
}
return Res_MAKEARRAY(index);
}
}
return 0;
}
if (mError != NO_ERROR) {
return 0;
}
bool fakePublic = false;
// Figure out the package and type we are looking in...
const char16_t* packageEnd = NULL;
const char16_t* typeEnd = NULL;
const char16_t* const nameEnd = name+nameLen;
const char16_t* p = name;
while (p < nameEnd) {
if (*p == ':') packageEnd = p;
else if (*p == '/') typeEnd = p;
p++;
}
if (*name == '@') {
name++;
if (*name == '*') {
fakePublic = true;
name++;
}
}
if (name >= nameEnd) {
return 0;
}
if (packageEnd) {
package = name;
packageLen = packageEnd-name;
name = packageEnd+1;
} else if (!package) {
return 0;
}
if (typeEnd) {
type = name;
typeLen = typeEnd-name;
name = typeEnd+1;
} else if (!type) {
return 0;
}
if (name >= nameEnd) {
return 0;
}
nameLen = nameEnd-name;
TABLE_NOISY(printf("Looking for identifier: type=%s, name=%s, package=%s\n",
String8(type, typeLen).string(),
String8(name, nameLen).string(),
String8(package, packageLen).string()));
const size_t NG = mPackageGroups.size();
for (size_t ig=0; ig<NG; ig++) {
const PackageGroup* group = mPackageGroups[ig];
if (strzcmp16(package, packageLen,
group->name.string(), group->name.size())) {
TABLE_NOISY(printf("Skipping package group: %s\n", String8(group->name).string()));
continue;
}
const ssize_t ti = group->basePackage->typeStrings.indexOfString(type, typeLen);
if (ti < 0) {
TABLE_NOISY(printf("Type not found in package %s\n", String8(group->name).string()));
continue;
}
const ssize_t ei = group->basePackage->keyStrings.indexOfString(name, nameLen);
if (ei < 0) {
TABLE_NOISY(printf("Name not found in package %s\n", String8(group->name).string()));
continue;
}
TABLE_NOISY(printf("Search indices: type=%d, name=%d\n", ti, ei));
const Type* const typeConfigs = group->packages[0]->getType(ti);
if (typeConfigs == NULL || typeConfigs->configs.size() <= 0) {
TABLE_NOISY(printf("Expected type structure not found in package %s for idnex %d\n",
String8(group->name).string(), ti));
}
size_t NTC = typeConfigs->configs.size();
for (size_t tci=0; tci<NTC; tci++) {
const ResTable_type* const ty = typeConfigs->configs[tci];
const uint32_t typeOffset = dtohl(ty->entriesStart);
const uint8_t* const end = ((const uint8_t*)ty) + dtohl(ty->header.size);
const uint32_t* const eindex = (const uint32_t*)
(((const uint8_t*)ty) + dtohs(ty->header.headerSize));
const size_t NE = dtohl(ty->entryCount);
for (size_t i=0; i<NE; i++) {
uint32_t offset = dtohl(eindex[i]);
if (offset == ResTable_type::NO_ENTRY) {
continue;
}
offset += typeOffset;
if (offset > (dtohl(ty->header.size)-sizeof(ResTable_entry))) {
ALOGW("ResTable_entry at %d is beyond type chunk data %d",
offset, dtohl(ty->header.size));
return 0;
}
if ((offset&0x3) != 0) {
ALOGW("ResTable_entry at %d (pkg=%d type=%d ent=%d) is not on an integer boundary when looking for %s:%s/%s",
(int)offset, (int)group->id, (int)ti+1, (int)i,
String8(package, packageLen).string(),
String8(type, typeLen).string(),
String8(name, nameLen).string());
return 0;
}
const ResTable_entry* const entry = (const ResTable_entry*)
(((const uint8_t*)ty) + offset);
if (dtohs(entry->size) < sizeof(*entry)) {
ALOGW("ResTable_entry size %d is too small", dtohs(entry->size));
return BAD_TYPE;
}
TABLE_SUPER_NOISY(printf("Looking at entry #%d: want str %d, have %d\n",
i, ei, dtohl(entry->key.index)));
if (dtohl(entry->key.index) == (size_t)ei) {
if (outTypeSpecFlags) {
*outTypeSpecFlags = typeConfigs->typeSpecFlags[i];
if (fakePublic) {
*outTypeSpecFlags |= ResTable_typeSpec::SPEC_PUBLIC;
}
}
return Res_MAKEID(group->id-1, ti, i);
}
}
}
}
return 0;
}
bool ResTable::expandResourceRef(const uint16_t* refStr, size_t refLen,
String16* outPackage,
String16* outType,
String16* outName,
const String16* defType,
const String16* defPackage,
const char** outErrorMsg,
bool* outPublicOnly)
{
const char16_t* packageEnd = NULL;
const char16_t* typeEnd = NULL;
const char16_t* p = refStr;
const char16_t* const end = p + refLen;
while (p < end) {
if (*p == ':') packageEnd = p;
else if (*p == '/') {
typeEnd = p;
break;
}
p++;
}
p = refStr;
if (*p == '@') p++;
if (outPublicOnly != NULL) {
*outPublicOnly = true;
}
if (*p == '*') {
p++;
if (outPublicOnly != NULL) {
*outPublicOnly = false;
}
}
if (packageEnd) {
*outPackage = String16(p, packageEnd-p);
p = packageEnd+1;
} else {
if (!defPackage) {
if (outErrorMsg) {
*outErrorMsg = "No resource package specified";
}
return false;
}
*outPackage = *defPackage;
}
if (typeEnd) {
*outType = String16(p, typeEnd-p);
p = typeEnd+1;
} else {
if (!defType) {
if (outErrorMsg) {
*outErrorMsg = "No resource type specified";
}
return false;
}
*outType = *defType;
}
*outName = String16(p, end-p);
if(**outPackage == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource package cannot be an empty string";
}
return false;
}
if(**outType == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource type cannot be an empty string";
}
return false;
}
if(**outName == 0) {
if(outErrorMsg) {
*outErrorMsg = "Resource id cannot be an empty string";
}
return false;
}
return true;
}
static uint32_t get_hex(char c, bool* outError)
{
if (c >= '0' && c <= '9') {
return c - '0';
} else if (c >= 'a' && c <= 'f') {
return c - 'a' + 0xa;
} else if (c >= 'A' && c <= 'F') {
return c - 'A' + 0xa;
}
*outError = true;
return 0;
}
struct unit_entry
{
const char* name;
size_t len;
uint8_t type;
uint32_t unit;
float scale;
};
static const unit_entry unitNames[] = {
{ "px", strlen("px"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_PX, 1.0f },
{ "dip", strlen("dip"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_DIP, 1.0f },
{ "dp", strlen("dp"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_DIP, 1.0f },
{ "sp", strlen("sp"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_SP, 1.0f },
{ "pt", strlen("pt"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_PT, 1.0f },
{ "in", strlen("in"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_IN, 1.0f },
{ "mm", strlen("mm"), Res_value::TYPE_DIMENSION, Res_value::COMPLEX_UNIT_MM, 1.0f },
{ "%", strlen("%"), Res_value::TYPE_FRACTION, Res_value::COMPLEX_UNIT_FRACTION, 1.0f/100 },
{ "%p", strlen("%p"), Res_value::TYPE_FRACTION, Res_value::COMPLEX_UNIT_FRACTION_PARENT, 1.0f/100 },
{ NULL, 0, 0, 0, 0 }
};
static bool parse_unit(const char* str, Res_value* outValue,
float* outScale, const char** outEnd)
{
const char* end = str;
while (*end != 0 && !isspace((unsigned char)*end)) {
end++;
}
const size_t len = end-str;
const char* realEnd = end;
while (*realEnd != 0 && isspace((unsigned char)*realEnd)) {
realEnd++;
}
if (*realEnd != 0) {
return false;
}
const unit_entry* cur = unitNames;
while (cur->name) {
if (len == cur->len && strncmp(cur->name, str, len) == 0) {
outValue->dataType = cur->type;
outValue->data = cur->unit << Res_value::COMPLEX_UNIT_SHIFT;
*outScale = cur->scale;
*outEnd = end;
//printf("Found unit %s for %s\n", cur->name, str);
return true;
}
cur++;
}
return false;
}
bool ResTable::stringToInt(const char16_t* s, size_t len, Res_value* outValue)
{
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
if (len <= 0) {
return false;
}
size_t i = 0;
int32_t val = 0;
bool neg = false;
if (*s == '-') {
neg = true;
i++;
}
if (s[i] < '0' || s[i] > '9') {
return false;
}
// Decimal or hex?
if (s[i] == '0' && s[i+1] == 'x') {
if (outValue)
outValue->dataType = outValue->TYPE_INT_HEX;
i += 2;
bool error = false;
while (i < len && !error) {
val = (val*16) + get_hex(s[i], &error);
i++;
}
if (error) {
return false;
}
} else {
if (outValue)
outValue->dataType = outValue->TYPE_INT_DEC;
while (i < len) {
if (s[i] < '0' || s[i] > '9') {
return false;
}
val = (val*10) + s[i]-'0';
i++;
}
}
if (neg) val = -val;
while (i < len && isspace16(s[i])) {
i++;
}
if (i == len) {
if (outValue)
outValue->data = val;
return true;
}
return false;
}
bool ResTable::stringToFloat(const char16_t* s, size_t len, Res_value* outValue)
{
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
if (len <= 0) {
return false;
}
char buf[128];
int i=0;
while (len > 0 && *s != 0 && i < 126) {
if (*s > 255) {
return false;
}
buf[i++] = *s++;
len--;
}
if (len > 0) {
return false;
}
if (buf[0] < '0' && buf[0] > '9' && buf[0] != '.') {
return false;
}
buf[i] = 0;
const char* end;
float f = strtof(buf, (char**)&end);
if (*end != 0 && !isspace((unsigned char)*end)) {
// Might be a unit...
float scale;
if (parse_unit(end, outValue, &scale, &end)) {
f *= scale;
const bool neg = f < 0;
if (neg) f = -f;
uint64_t bits = (uint64_t)(f*(1<<23)+.5f);
uint32_t radix;
uint32_t shift;
if ((bits&0x7fffff) == 0) {
// Always use 23p0 if there is no fraction, just to make
// things easier to read.
radix = Res_value::COMPLEX_RADIX_23p0;
shift = 23;
} else if ((bits&0xffffffffff800000LL) == 0) {
// Magnitude is zero -- can fit in 0 bits of precision.
radix = Res_value::COMPLEX_RADIX_0p23;
shift = 0;
} else if ((bits&0xffffffff80000000LL) == 0) {
// Magnitude can fit in 8 bits of precision.
radix = Res_value::COMPLEX_RADIX_8p15;
shift = 8;
} else if ((bits&0xffffff8000000000LL) == 0) {
// Magnitude can fit in 16 bits of precision.
radix = Res_value::COMPLEX_RADIX_16p7;
shift = 16;
} else {
// Magnitude needs entire range, so no fractional part.
radix = Res_value::COMPLEX_RADIX_23p0;
shift = 23;
}
int32_t mantissa = (int32_t)(
(bits>>shift) & Res_value::COMPLEX_MANTISSA_MASK);
if (neg) {
mantissa = (-mantissa) & Res_value::COMPLEX_MANTISSA_MASK;
}
outValue->data |=
(radix<<Res_value::COMPLEX_RADIX_SHIFT)
| (mantissa<<Res_value::COMPLEX_MANTISSA_SHIFT);
//printf("Input value: %f 0x%016Lx, mult: %f, radix: %d, shift: %d, final: 0x%08x\n",
// f * (neg ? -1 : 1), bits, f*(1<<23),
// radix, shift, outValue->data);
return true;
}
return false;
}
while (*end != 0 && isspace((unsigned char)*end)) {
end++;
}
if (*end == 0) {
if (outValue) {
outValue->dataType = outValue->TYPE_FLOAT;
*(float*)(&outValue->data) = f;
return true;
}
}
return false;
}
bool ResTable::stringToValue(Res_value* outValue, String16* outString,
const char16_t* s, size_t len,
bool preserveSpaces, bool coerceType,
uint32_t attrID,
const String16* defType,
const String16* defPackage,
Accessor* accessor,
void* accessorCookie,
uint32_t attrType,
bool enforcePrivate) const
{
bool localizationSetting = accessor != NULL && accessor->getLocalizationSetting();
const char* errorMsg = NULL;
outValue->size = sizeof(Res_value);
outValue->res0 = 0;
// First strip leading/trailing whitespace. Do this before handling
// escapes, so they can be used to force whitespace into the string.
if (!preserveSpaces) {
while (len > 0 && isspace16(*s)) {
s++;
len--;
}
while (len > 0 && isspace16(s[len-1])) {
len--;
}
// If the string ends with '\', then we keep the space after it.
if (len > 0 && s[len-1] == '\\' && s[len] != 0) {
len++;
}
}
//printf("Value for: %s\n", String8(s, len).string());
uint32_t l10nReq = ResTable_map::L10N_NOT_REQUIRED;
uint32_t attrMin = 0x80000000, attrMax = 0x7fffffff;
bool fromAccessor = false;
if (attrID != 0 && !Res_INTERNALID(attrID)) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("For attr 0x%08x got bag of %d\n", attrID, cnt);
if (cnt >= 0) {
while (cnt > 0) {
//printf("Entry 0x%08x = 0x%08x\n", bag->map.name.ident, bag->map.value.data);
switch (bag->map.name.ident) {
case ResTable_map::ATTR_TYPE:
attrType = bag->map.value.data;
break;
case ResTable_map::ATTR_MIN:
attrMin = bag->map.value.data;
break;
case ResTable_map::ATTR_MAX:
attrMax = bag->map.value.data;
break;
case ResTable_map::ATTR_L10N:
l10nReq = bag->map.value.data;
break;
}
bag++;
cnt--;
}
unlockBag(bag);
} else if (accessor && accessor->getAttributeType(attrID, &attrType)) {
fromAccessor = true;
if (attrType == ResTable_map::TYPE_ENUM
|| attrType == ResTable_map::TYPE_FLAGS
|| attrType == ResTable_map::TYPE_INTEGER) {
accessor->getAttributeMin(attrID, &attrMin);
accessor->getAttributeMax(attrID, &attrMax);
}
if (localizationSetting) {
l10nReq = accessor->getAttributeL10N(attrID);
}
}
}
const bool canStringCoerce =
coerceType && (attrType&ResTable_map::TYPE_STRING) != 0;
if (*s == '@') {
outValue->dataType = outValue->TYPE_REFERENCE;
// Note: we don't check attrType here because the reference can
// be to any other type; we just need to count on the client making
// sure the referenced type is correct.
//printf("Looking up ref: %s\n", String8(s, len).string());
// It's a reference!
if (len == 5 && s[1]=='n' && s[2]=='u' && s[3]=='l' && s[4]=='l') {
outValue->data = 0;
return true;
} else {
bool createIfNotFound = false;
const char16_t* resourceRefName;
int resourceNameLen;
if (len > 2 && s[1] == '+') {
createIfNotFound = true;
resourceRefName = s + 2;
resourceNameLen = len - 2;
} else if (len > 2 && s[1] == '*') {
enforcePrivate = false;
resourceRefName = s + 2;
resourceNameLen = len - 2;
} else {
createIfNotFound = false;
resourceRefName = s + 1;
resourceNameLen = len - 1;
}
String16 package, type, name;
if (!expandResourceRef(resourceRefName,resourceNameLen, &package, &type, &name,
defType, defPackage, &errorMsg)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return false;
}
uint32_t specFlags = 0;
uint32_t rid = identifierForName(name.string(), name.size(), type.string(),
type.size(), package.string(), package.size(), &specFlags);
if (rid != 0) {
if (enforcePrivate) {
if ((specFlags&ResTable_typeSpec::SPEC_PUBLIC) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Resource is not public.");
}
return false;
}
}
if (!accessor) {
outValue->data = rid;
return true;
}
rid = Res_MAKEID(
accessor->getRemappedPackage(Res_GETPACKAGE(rid)),
Res_GETTYPE(rid), Res_GETENTRY(rid));
TABLE_NOISY(printf("Incl %s:%s/%s: 0x%08x\n",
String8(package).string(), String8(type).string(),
String8(name).string(), rid));
outValue->data = rid;
return true;
}
if (accessor) {
uint32_t rid = accessor->getCustomResourceWithCreation(package, type, name,
createIfNotFound);
if (rid != 0) {
TABLE_NOISY(printf("Pckg %s:%s/%s: 0x%08x\n",
String8(package).string(), String8(type).string(),
String8(name).string(), rid));
outValue->data = rid;
return true;
}
}
}
if (accessor != NULL) {
accessor->reportError(accessorCookie, "No resource found that matches the given name");
}
return false;
}
// if we got to here, and localization is required and it's not a reference,
// complain and bail.
if (l10nReq == ResTable_map::L10N_SUGGESTED) {
if (localizationSetting) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "This attribute must be localized.");
}
}
}
if (*s == '#') {
// It's a color! Convert to an integer of the form 0xaarrggbb.
uint32_t color = 0;
bool error = false;
if (len == 4) {
outValue->dataType = outValue->TYPE_INT_COLOR_RGB4;
color |= 0xFF000000;
color |= get_hex(s[1], &error) << 20;
color |= get_hex(s[1], &error) << 16;
color |= get_hex(s[2], &error) << 12;
color |= get_hex(s[2], &error) << 8;
color |= get_hex(s[3], &error) << 4;
color |= get_hex(s[3], &error);
} else if (len == 5) {
outValue->dataType = outValue->TYPE_INT_COLOR_ARGB4;
color |= get_hex(s[1], &error) << 28;
color |= get_hex(s[1], &error) << 24;
color |= get_hex(s[2], &error) << 20;
color |= get_hex(s[2], &error) << 16;
color |= get_hex(s[3], &error) << 12;
color |= get_hex(s[3], &error) << 8;
color |= get_hex(s[4], &error) << 4;
color |= get_hex(s[4], &error);
} else if (len == 7) {
outValue->dataType = outValue->TYPE_INT_COLOR_RGB8;
color |= 0xFF000000;
color |= get_hex(s[1], &error) << 20;
color |= get_hex(s[2], &error) << 16;
color |= get_hex(s[3], &error) << 12;
color |= get_hex(s[4], &error) << 8;
color |= get_hex(s[5], &error) << 4;
color |= get_hex(s[6], &error);
} else if (len == 9) {
outValue->dataType = outValue->TYPE_INT_COLOR_ARGB8;
color |= get_hex(s[1], &error) << 28;
color |= get_hex(s[2], &error) << 24;
color |= get_hex(s[3], &error) << 20;
color |= get_hex(s[4], &error) << 16;
color |= get_hex(s[5], &error) << 12;
color |= get_hex(s[6], &error) << 8;
color |= get_hex(s[7], &error) << 4;
color |= get_hex(s[8], &error);
} else {
error = true;
}
if (!error) {
if ((attrType&ResTable_map::TYPE_COLOR) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie,
"Color types not allowed");
}
return false;
}
} else {
outValue->data = color;
//printf("Color input=%s, output=0x%x\n", String8(s, len).string(), color);
return true;
}
} else {
if ((attrType&ResTable_map::TYPE_COLOR) != 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Color value not valid --"
" must be #rgb, #argb, #rrggbb, or #aarrggbb");
}
#if 0
fprintf(stderr, "%s: Color ID %s value %s is not valid\n",
"Resource File", //(const char*)in->getPrintableSource(),
String8(*curTag).string(),
String8(s, len).string());
#endif
return false;
}
}
}
if (*s == '?') {
outValue->dataType = outValue->TYPE_ATTRIBUTE;
// Note: we don't check attrType here because the reference can
// be to any other type; we just need to count on the client making
// sure the referenced type is correct.
//printf("Looking up attr: %s\n", String8(s, len).string());
static const String16 attr16("attr");
String16 package, type, name;
if (!expandResourceRef(s+1, len-1, &package, &type, &name,
&attr16, defPackage, &errorMsg)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return false;
}
//printf("Pkg: %s, Type: %s, Name: %s\n",
// String8(package).string(), String8(type).string(),
// String8(name).string());
uint32_t specFlags = 0;
uint32_t rid =
identifierForName(name.string(), name.size(),
type.string(), type.size(),
package.string(), package.size(), &specFlags);
if (rid != 0) {
if (enforcePrivate) {
if ((specFlags&ResTable_typeSpec::SPEC_PUBLIC) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Attribute is not public.");
}
return false;
}
}
if (!accessor) {
outValue->data = rid;
return true;
}
rid = Res_MAKEID(
accessor->getRemappedPackage(Res_GETPACKAGE(rid)),
Res_GETTYPE(rid), Res_GETENTRY(rid));
//printf("Incl %s:%s/%s: 0x%08x\n",
// String8(package).string(), String8(type).string(),
// String8(name).string(), rid);
outValue->data = rid;
return true;
}
if (accessor) {
uint32_t rid = accessor->getCustomResource(package, type, name);
if (rid != 0) {
//printf("Mine %s:%s/%s: 0x%08x\n",
// String8(package).string(), String8(type).string(),
// String8(name).string(), rid);
outValue->data = rid;
return true;
}
}
if (accessor != NULL) {
accessor->reportError(accessorCookie, "No resource found that matches the given name");
}
return false;
}
if (stringToInt(s, len, outValue)) {
if ((attrType&ResTable_map::TYPE_INTEGER) == 0) {
// If this type does not allow integers, but does allow floats,
// fall through on this error case because the float type should
// be able to accept any integer value.
if (!canStringCoerce && (attrType&ResTable_map::TYPE_FLOAT) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Integer types not allowed");
}
return false;
}
} else {
if (((int32_t)outValue->data) < ((int32_t)attrMin)
|| ((int32_t)outValue->data) > ((int32_t)attrMax)) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Integer value out of range");
}
return false;
}
return true;
}
}
if (stringToFloat(s, len, outValue)) {
if (outValue->dataType == Res_value::TYPE_DIMENSION) {
if ((attrType&ResTable_map::TYPE_DIMENSION) != 0) {
return true;
}
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Dimension types not allowed");
}
return false;
}
} else if (outValue->dataType == Res_value::TYPE_FRACTION) {
if ((attrType&ResTable_map::TYPE_FRACTION) != 0) {
return true;
}
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Fraction types not allowed");
}
return false;
}
} else if ((attrType&ResTable_map::TYPE_FLOAT) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Float types not allowed");
}
return false;
}
} else {
return true;
}
}
if (len == 4) {
if ((s[0] == 't' || s[0] == 'T') &&
(s[1] == 'r' || s[1] == 'R') &&
(s[2] == 'u' || s[2] == 'U') &&
(s[3] == 'e' || s[3] == 'E')) {
if ((attrType&ResTable_map::TYPE_BOOLEAN) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Boolean types not allowed");
}
return false;
}
} else {
outValue->dataType = outValue->TYPE_INT_BOOLEAN;
outValue->data = (uint32_t)-1;
return true;
}
}
}
if (len == 5) {
if ((s[0] == 'f' || s[0] == 'F') &&
(s[1] == 'a' || s[1] == 'A') &&
(s[2] == 'l' || s[2] == 'L') &&
(s[3] == 's' || s[3] == 'S') &&
(s[4] == 'e' || s[4] == 'E')) {
if ((attrType&ResTable_map::TYPE_BOOLEAN) == 0) {
if (!canStringCoerce) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "Boolean types not allowed");
}
return false;
}
} else {
outValue->dataType = outValue->TYPE_INT_BOOLEAN;
outValue->data = 0;
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_ENUM) != 0) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("Got %d for enum\n", cnt);
if (cnt >= 0) {
resource_name rname;
while (cnt > 0) {
if (!Res_INTERNALID(bag->map.name.ident)) {
//printf("Trying attr #%08x\n", bag->map.name.ident);
if (getResourceName(bag->map.name.ident, &rname)) {
#if 0
printf("Matching %s against %s (0x%08x)\n",
String8(s, len).string(),
String8(rname.name, rname.nameLen).string(),
bag->map.name.ident);
#endif
if (strzcmp16(s, len, rname.name, rname.nameLen) == 0) {
outValue->dataType = bag->map.value.dataType;
outValue->data = bag->map.value.data;
unlockBag(bag);
return true;
}
}
}
bag++;
cnt--;
}
unlockBag(bag);
}
if (fromAccessor) {
if (accessor->getAttributeEnum(attrID, s, len, outValue)) {
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_FLAGS) != 0) {
const ssize_t p = getResourcePackageIndex(attrID);
const bag_entry* bag;
ssize_t cnt = p >= 0 ? lockBag(attrID, &bag) : -1;
//printf("Got %d for flags\n", cnt);
if (cnt >= 0) {
bool failed = false;
resource_name rname;
outValue->dataType = Res_value::TYPE_INT_HEX;
outValue->data = 0;
const char16_t* end = s + len;
const char16_t* pos = s;
while (pos < end && !failed) {
const char16_t* start = pos;
pos++;
while (pos < end && *pos != '|') {
pos++;
}
//printf("Looking for: %s\n", String8(start, pos-start).string());
const bag_entry* bagi = bag;
ssize_t i;
for (i=0; i<cnt; i++, bagi++) {
if (!Res_INTERNALID(bagi->map.name.ident)) {
//printf("Trying attr #%08x\n", bagi->map.name.ident);
if (getResourceName(bagi->map.name.ident, &rname)) {
#if 0
printf("Matching %s against %s (0x%08x)\n",
String8(start,pos-start).string(),
String8(rname.name, rname.nameLen).string(),
bagi->map.name.ident);
#endif
if (strzcmp16(start, pos-start, rname.name, rname.nameLen) == 0) {
outValue->data |= bagi->map.value.data;
break;
}
}
}
}
if (i >= cnt) {
// Didn't find this flag identifier.
failed = true;
}
if (pos < end) {
pos++;
}
}
unlockBag(bag);
if (!failed) {
//printf("Final flag value: 0x%lx\n", outValue->data);
return true;
}
}
if (fromAccessor) {
if (accessor->getAttributeFlags(attrID, s, len, outValue)) {
//printf("Final flag value: 0x%lx\n", outValue->data);
return true;
}
}
}
if ((attrType&ResTable_map::TYPE_STRING) == 0) {
if (accessor != NULL) {
accessor->reportError(accessorCookie, "String types not allowed");
}
return false;
}
// Generic string handling...
outValue->dataType = outValue->TYPE_STRING;
if (outString) {
bool failed = collectString(outString, s, len, preserveSpaces, &errorMsg);
if (accessor != NULL) {
accessor->reportError(accessorCookie, errorMsg);
}
return failed;
}
return true;
}
bool ResTable::collectString(String16* outString,
const char16_t* s, size_t len,
bool preserveSpaces,
const char** outErrorMsg,
bool append)
{
String16 tmp;
char quoted = 0;
const char16_t* p = s;
while (p < (s+len)) {
while (p < (s+len)) {
const char16_t c = *p;
if (c == '\\') {
break;
}
if (!preserveSpaces) {
if (quoted == 0 && isspace16(c)
&& (c != ' ' || isspace16(*(p+1)))) {
break;
}
if (c == '"' && (quoted == 0 || quoted == '"')) {
break;
}
if (c == '\'' && (quoted == 0 || quoted == '\'')) {
/*
* In practice, when people write ' instead of \'
* in a string, they are doing it by accident
* instead of really meaning to use ' as a quoting
* character. Warn them so they don't lose it.
*/
if (outErrorMsg) {
*outErrorMsg = "Apostrophe not preceded by \\";
}
return false;
}
}
p++;
}
if (p < (s+len)) {
if (p > s) {
tmp.append(String16(s, p-s));
}
if (!preserveSpaces && (*p == '"' || *p == '\'')) {
if (quoted == 0) {
quoted = *p;
} else {
quoted = 0;
}
p++;
} else if (!preserveSpaces && isspace16(*p)) {
// Space outside of a quote -- consume all spaces and
// leave a single plain space char.
tmp.append(String16(" "));
p++;
while (p < (s+len) && isspace16(*p)) {
p++;
}
} else if (*p == '\\') {
p++;
if (p < (s+len)) {
switch (*p) {
case 't':
tmp.append(String16("\t"));
break;
case 'n':
tmp.append(String16("\n"));
break;
case '#':
tmp.append(String16("#"));
break;
case '@':
tmp.append(String16("@"));
break;
case '?':
tmp.append(String16("?"));
break;
case '"':
tmp.append(String16("\""));
break;
case '\'':
tmp.append(String16("'"));
break;
case '\\':
tmp.append(String16("\\"));
break;
case 'u':
{
char16_t chr = 0;
int i = 0;
while (i < 4 && p[1] != 0) {
p++;
i++;
int c;
if (*p >= '0' && *p <= '9') {
c = *p - '0';
} else if (*p >= 'a' && *p <= 'f') {
c = *p - 'a' + 10;
} else if (*p >= 'A' && *p <= 'F') {
c = *p - 'A' + 10;
} else {
if (outErrorMsg) {
*outErrorMsg = "Bad character in \\u unicode escape sequence";
}
return false;
}
chr = (chr<<4) | c;
}
tmp.append(String16(&chr, 1));
} break;
default:
// ignore unknown escape chars.
break;
}
p++;
}
}
len -= (p-s);
s = p;
}
}
if (tmp.size() != 0) {
if (len > 0) {
tmp.append(String16(s, len));
}
if (append) {
outString->append(tmp);
} else {
outString->setTo(tmp);
}
} else {
if (append) {
outString->append(String16(s, len));
} else {
outString->setTo(s, len);
}
}
return true;
}
size_t ResTable::getBasePackageCount() const
{
if (mError != NO_ERROR) {
return 0;
}
return mPackageGroups.size();
}
const char16_t* ResTable::getBasePackageName(size_t idx) const
{
if (mError != NO_ERROR) {
return 0;
}
LOG_FATAL_IF(idx >= mPackageGroups.size(),
"Requested package index %d past package count %d",
(int)idx, (int)mPackageGroups.size());
return mPackageGroups[idx]->name.string();
}
uint32_t ResTable::getBasePackageId(size_t idx) const
{
if (mError != NO_ERROR) {
return 0;
}
LOG_FATAL_IF(idx >= mPackageGroups.size(),
"Requested package index %d past package count %d",
(int)idx, (int)mPackageGroups.size());
return mPackageGroups[idx]->id;
}
size_t ResTable::getTableCount() const
{
return mHeaders.size();
}
const ResStringPool* ResTable::getTableStringBlock(size_t index) const
{
return &mHeaders[index]->values;
}
void* ResTable::getTableCookie(size_t index) const
{
return mHeaders[index]->cookie;
}
void ResTable::getConfigurations(Vector<ResTable_config>* configs) const
{
const size_t I = mPackageGroups.size();
for (size_t i=0; i<I; i++) {
const PackageGroup* packageGroup = mPackageGroups[i];
const size_t J = packageGroup->packages.size();
for (size_t j=0; j<J; j++) {
const Package* package = packageGroup->packages[j];
const size_t K = package->types.size();
for (size_t k=0; k<K; k++) {
const Type* type = package->types[k];
if (type == NULL) continue;
const size_t L = type->configs.size();
for (size_t l=0; l<L; l++) {
const ResTable_type* config = type->configs[l];
const ResTable_config* cfg = &config->config;
// only insert unique
const size_t M = configs->size();
size_t m;
for (m=0; m<M; m++) {
if (0 == (*configs)[m].compare(*cfg)) {
break;
}
}
// if we didn't find it
if (m == M) {
configs->add(*cfg);
}
}
}
}
}
}
void ResTable::getLocales(Vector<String8>* locales) const
{
Vector<ResTable_config> configs;
ALOGV("calling getConfigurations");
getConfigurations(&configs);
ALOGV("called getConfigurations size=%d", (int)configs.size());
const size_t I = configs.size();
for (size_t i=0; i<I; i++) {
char locale[6];
configs[i].getLocale(locale);
const size_t J = locales->size();
size_t j;
for (j=0; j<J; j++) {
if (0 == strcmp(locale, (*locales)[j].string())) {
break;
}
}
if (j == J) {
locales->add(String8(locale));
}
}
}
ssize_t ResTable::getEntry(
const Package* package, int typeIndex, int entryIndex,
const ResTable_config* config,
const ResTable_type** outType, const ResTable_entry** outEntry,
const Type** outTypeClass) const
{
ALOGV("Getting entry from package %p\n", package);
const ResTable_package* const pkg = package->package;
const Type* allTypes = package->getType(typeIndex);
ALOGV("allTypes=%p\n", allTypes);
if (allTypes == NULL) {
ALOGV("Skipping entry type index 0x%02x because type is NULL!\n", typeIndex);
return 0;
}
if ((size_t)entryIndex >= allTypes->entryCount) {
ALOGW("getEntry failing because entryIndex %d is beyond type entryCount %d",
entryIndex, (int)allTypes->entryCount);
return BAD_TYPE;
}
const ResTable_type* type = NULL;
uint32_t offset = ResTable_type::NO_ENTRY;
ResTable_config bestConfig;
memset(&bestConfig, 0, sizeof(bestConfig)); // make the compiler shut up
const size_t NT = allTypes->configs.size();
for (size_t i=0; i<NT; i++) {
const ResTable_type* const thisType = allTypes->configs[i];
if (thisType == NULL) continue;
ResTable_config thisConfig;
thisConfig.copyFromDtoH(thisType->config);
TABLE_GETENTRY(ALOGI("Match entry 0x%x in type 0x%x (sz 0x%x): %s\n",
entryIndex, typeIndex+1, dtohl(thisType->config.size),
thisConfig.toString().string()));
// Check to make sure this one is valid for the current parameters.
if (config && !thisConfig.match(*config)) {
TABLE_GETENTRY(ALOGI("Does not match config!\n"));
continue;
}
// Check if there is the desired entry in this type.
const uint8_t* const end = ((const uint8_t*)thisType)
+ dtohl(thisType->header.size);
const uint32_t* const eindex = (const uint32_t*)
(((const uint8_t*)thisType) + dtohs(thisType->header.headerSize));
uint32_t thisOffset = dtohl(eindex[entryIndex]);
if (thisOffset == ResTable_type::NO_ENTRY) {
TABLE_GETENTRY(ALOGI("Skipping because it is not defined!\n"));
continue;
}
if (type != NULL) {
// Check if this one is less specific than the last found. If so,
// we will skip it. We check starting with things we most care
// about to those we least care about.
if (!thisConfig.isBetterThan(bestConfig, config)) {
TABLE_GETENTRY(ALOGI("This config is worse than last!\n"));
continue;
}
}
type = thisType;
offset = thisOffset;
bestConfig = thisConfig;
TABLE_GETENTRY(ALOGI("Best entry so far -- using it!\n"));
if (!config) break;
}
if (type == NULL) {
TABLE_GETENTRY(ALOGI("No value found for requested entry!\n"));
return BAD_INDEX;
}
offset += dtohl(type->entriesStart);
TABLE_NOISY(aout << "Looking in resource table " << package->header->header
<< ", typeOff="
<< (void*)(((const char*)type)-((const char*)package->header->header))
<< ", offset=" << (void*)offset << endl);
if (offset > (dtohl(type->header.size)-sizeof(ResTable_entry))) {
ALOGW("ResTable_entry at 0x%x is beyond type chunk data 0x%x",
offset, dtohl(type->header.size));
return BAD_TYPE;
}
if ((offset&0x3) != 0) {
ALOGW("ResTable_entry at 0x%x is not on an integer boundary",
offset);
return BAD_TYPE;
}
const ResTable_entry* const entry = (const ResTable_entry*)
(((const uint8_t*)type) + offset);
if (dtohs(entry->size) < sizeof(*entry)) {
ALOGW("ResTable_entry size 0x%x is too small", dtohs(entry->size));
return BAD_TYPE;
}
*outType = type;
*outEntry = entry;
if (outTypeClass != NULL) {
*outTypeClass = allTypes;
}
return offset + dtohs(entry->size);
}
status_t ResTable::parsePackage(const ResTable_package* const pkg,
const Header* const header, uint32_t idmap_id)
{
const uint8_t* base = (const uint8_t*)pkg;
status_t err = validate_chunk(&pkg->header, sizeof(*pkg),
header->dataEnd, "ResTable_package");
if (err != NO_ERROR) {
return (mError=err);
}
const size_t pkgSize = dtohl(pkg->header.size);
if (dtohl(pkg->typeStrings) >= pkgSize) {
ALOGW("ResTable_package type strings at %p are past chunk size %p.",
(void*)dtohl(pkg->typeStrings), (void*)pkgSize);
return (mError=BAD_TYPE);
}
if ((dtohl(pkg->typeStrings)&0x3) != 0) {
ALOGW("ResTable_package type strings at %p is not on an integer boundary.",
(void*)dtohl(pkg->typeStrings));
return (mError=BAD_TYPE);
}
if (dtohl(pkg->keyStrings) >= pkgSize) {
ALOGW("ResTable_package key strings at %p are past chunk size %p.",
(void*)dtohl(pkg->keyStrings), (void*)pkgSize);
return (mError=BAD_TYPE);
}
if ((dtohl(pkg->keyStrings)&0x3) != 0) {
ALOGW("ResTable_package key strings at %p is not on an integer boundary.",
(void*)dtohl(pkg->keyStrings));
return (mError=BAD_TYPE);
}
Package* package = NULL;
PackageGroup* group = NULL;
uint32_t id = idmap_id != 0 ? idmap_id : dtohl(pkg->id);
// If at this point id == 0, pkg is an overlay package without a
// corresponding idmap. During regular usage, overlay packages are
// always loaded alongside their idmaps, but during idmap creation
// the package is temporarily loaded by itself.
if (id < 256) {
package = new Package(this, header, pkg);
if (package == NULL) {
return (mError=NO_MEMORY);
}
size_t idx = mPackageMap[id];
if (idx == 0) {
idx = mPackageGroups.size()+1;
char16_t tmpName[sizeof(pkg->name)/sizeof(char16_t)];
strcpy16_dtoh(tmpName, pkg->name, sizeof(pkg->name)/sizeof(char16_t));
group = new PackageGroup(this, String16(tmpName), id);
if (group == NULL) {
delete package;
return (mError=NO_MEMORY);
}
err = package->typeStrings.setTo(base+dtohl(pkg->typeStrings),
header->dataEnd-(base+dtohl(pkg->typeStrings)));
if (err != NO_ERROR) {
delete group;
delete package;
return (mError=err);
}
err = package->keyStrings.setTo(base+dtohl(pkg->keyStrings),
header->dataEnd-(base+dtohl(pkg->keyStrings)));
if (err != NO_ERROR) {
delete group;
delete package;
return (mError=err);
}
//printf("Adding new package id %d at index %d\n", id, idx);
err = mPackageGroups.add(group);
if (err < NO_ERROR) {
return (mError=err);
}
group->basePackage = package;
mPackageMap[id] = (uint8_t)idx;
} else {
group = mPackageGroups.itemAt(idx-1);
if (group == NULL) {
return (mError=UNKNOWN_ERROR);
}
}
err = group->packages.add(package);
if (err < NO_ERROR) {
return (mError=err);
}
} else {
LOG_ALWAYS_FATAL("Package id out of range");
return NO_ERROR;
}
// Iterate through all chunks.
size_t curPackage = 0;
const ResChunk_header* chunk =
(const ResChunk_header*)(((const uint8_t*)pkg)
+ dtohs(pkg->header.headerSize));
const uint8_t* endPos = ((const uint8_t*)pkg) + dtohs(pkg->header.size);
while (((const uint8_t*)chunk) <= (endPos-sizeof(ResChunk_header)) &&
((const uint8_t*)chunk) <= (endPos-dtohl(chunk->size))) {
TABLE_NOISY(ALOGV("PackageChunk: type=0x%x, headerSize=0x%x, size=0x%x, pos=%p\n",
dtohs(chunk->type), dtohs(chunk->headerSize), dtohl(chunk->size),
(void*)(((const uint8_t*)chunk) - ((const uint8_t*)header->header))));
const size_t csize = dtohl(chunk->size);
const uint16_t ctype = dtohs(chunk->type);
if (ctype == RES_TABLE_TYPE_SPEC_TYPE) {
const ResTable_typeSpec* typeSpec = (const ResTable_typeSpec*)(chunk);
err = validate_chunk(&typeSpec->header, sizeof(*typeSpec),
endPos, "ResTable_typeSpec");
if (err != NO_ERROR) {
return (mError=err);
}
const size_t typeSpecSize = dtohl(typeSpec->header.size);
LOAD_TABLE_NOISY(printf("TypeSpec off %p: type=0x%x, headerSize=0x%x, size=%p\n",
(void*)(base-(const uint8_t*)chunk),
dtohs(typeSpec->header.type),
dtohs(typeSpec->header.headerSize),
(void*)typeSize));
// look for block overrun or int overflow when multiplying by 4
if ((dtohl(typeSpec->entryCount) > (INT32_MAX/sizeof(uint32_t))
|| dtohs(typeSpec->header.headerSize)+(sizeof(uint32_t)*dtohl(typeSpec->entryCount))
> typeSpecSize)) {
ALOGW("ResTable_typeSpec entry index to %p extends beyond chunk end %p.",
(void*)(dtohs(typeSpec->header.headerSize)
+(sizeof(uint32_t)*dtohl(typeSpec->entryCount))),
(void*)typeSpecSize);
return (mError=BAD_TYPE);
}
if (typeSpec->id == 0) {
ALOGW("ResTable_type has an id of 0.");
return (mError=BAD_TYPE);
}
while (package->types.size() < typeSpec->id) {
package->types.add(NULL);
}
Type* t = package->types[typeSpec->id-1];
if (t == NULL) {
t = new Type(header, package, dtohl(typeSpec->entryCount));
package->types.editItemAt(typeSpec->id-1) = t;
} else if (dtohl(typeSpec->entryCount) != t->entryCount) {
ALOGW("ResTable_typeSpec entry count inconsistent: given %d, previously %d",
(int)dtohl(typeSpec->entryCount), (int)t->entryCount);
return (mError=BAD_TYPE);
}
t->typeSpecFlags = (const uint32_t*)(
((const uint8_t*)typeSpec) + dtohs(typeSpec->header.headerSize));
t->typeSpec = typeSpec;
} else if (ctype == RES_TABLE_TYPE_TYPE) {
const ResTable_type* type = (const ResTable_type*)(chunk);
err = validate_chunk(&type->header, sizeof(*type)-sizeof(ResTable_config)+4,
endPos, "ResTable_type");
if (err != NO_ERROR) {
return (mError=err);
}
const size_t typeSize = dtohl(type->header.size);
LOAD_TABLE_NOISY(printf("Type off %p: type=0x%x, headerSize=0x%x, size=%p\n",
(void*)(base-(const uint8_t*)chunk),
dtohs(type->header.type),
dtohs(type->header.headerSize),
(void*)typeSize));
if (dtohs(type->header.headerSize)+(sizeof(uint32_t)*dtohl(type->entryCount))
> typeSize) {
ALOGW("ResTable_type entry index to %p extends beyond chunk end %p.",
(void*)(dtohs(type->header.headerSize)
+(sizeof(uint32_t)*dtohl(type->entryCount))),
(void*)typeSize);
return (mError=BAD_TYPE);
}
if (dtohl(type->entryCount) != 0
&& dtohl(type->entriesStart) > (typeSize-sizeof(ResTable_entry))) {
ALOGW("ResTable_type entriesStart at %p extends beyond chunk end %p.",
(void*)dtohl(type->entriesStart), (void*)typeSize);
return (mError=BAD_TYPE);
}
if (type->id == 0) {
ALOGW("ResTable_type has an id of 0.");
return (mError=BAD_TYPE);
}
while (package->types.size() < type->id) {
package->types.add(NULL);
}
Type* t = package->types[type->id-1];
if (t == NULL) {
t = new Type(header, package, dtohl(type->entryCount));
package->types.editItemAt(type->id-1) = t;
} else if (dtohl(type->entryCount) != t->entryCount) {
ALOGW("ResTable_type entry count inconsistent: given %d, previously %d",
(int)dtohl(type->entryCount), (int)t->entryCount);
return (mError=BAD_TYPE);
}
TABLE_GETENTRY(
ResTable_config thisConfig;
thisConfig.copyFromDtoH(type->config);
ALOGI("Adding config to type %d: %s\n",
type->id, thisConfig.toString().string()));
t->configs.add(type);
} else {
status_t err = validate_chunk(chunk, sizeof(ResChunk_header),
endPos, "ResTable_package:unknown");
if (err != NO_ERROR) {
return (mError=err);
}
}
chunk = (const ResChunk_header*)
(((const uint8_t*)chunk) + csize);
}
if (group->typeCount == 0) {
group->typeCount = package->types.size();
}
return NO_ERROR;
}
status_t ResTable::createIdmap(const ResTable& overlay, uint32_t originalCrc, uint32_t overlayCrc,
void** outData, size_t* outSize) const
{
// see README for details on the format of map
if (mPackageGroups.size() == 0) {
return UNKNOWN_ERROR;
}
if (mPackageGroups[0]->packages.size() == 0) {
return UNKNOWN_ERROR;
}
Vector<Vector<uint32_t> > map;
const PackageGroup* pg = mPackageGroups[0];
const Package* pkg = pg->packages[0];
size_t typeCount = pkg->types.size();
// starting size is header + first item (number of types in map)
*outSize = (IDMAP_HEADER_SIZE + 1) * sizeof(uint32_t);
const String16 overlayPackage(overlay.mPackageGroups[0]->packages[0]->package->name);
const uint32_t pkg_id = pkg->package->id << 24;
for (size_t typeIndex = 0; typeIndex < typeCount; ++typeIndex) {
ssize_t first = -1;
ssize_t last = -1;
const Type* typeConfigs = pkg->getType(typeIndex);
ssize_t mapIndex = map.add();
if (mapIndex < 0) {
return NO_MEMORY;
}
Vector<uint32_t>& vector = map.editItemAt(mapIndex);
for (size_t entryIndex = 0; entryIndex < typeConfigs->entryCount; ++entryIndex) {
uint32_t resID = pkg_id
| (0x00ff0000 & ((typeIndex+1)<<16))
| (0x0000ffff & (entryIndex));
resource_name resName;
if (!this->getResourceName(resID, &resName)) {
ALOGW("idmap: resource 0x%08x has spec but lacks values, skipping\n", resID);
// add dummy value, or trimming leading/trailing zeroes later will fail
vector.push(0);
continue;
}
const String16 overlayType(resName.type, resName.typeLen);
const String16 overlayName(resName.name, resName.nameLen);
uint32_t overlayResID = overlay.identifierForName(overlayName.string(),
overlayName.size(),
overlayType.string(),
overlayType.size(),
overlayPackage.string(),
overlayPackage.size());
if (overlayResID != 0) {
overlayResID = pkg_id | (0x00ffffff & overlayResID);
last = Res_GETENTRY(resID);
if (first == -1) {
first = Res_GETENTRY(resID);
}
}
vector.push(overlayResID);
#if 0
if (overlayResID != 0) {
ALOGD("%s/%s 0x%08x -> 0x%08x\n",
String8(String16(resName.type)).string(),
String8(String16(resName.name)).string(),
resID, overlayResID);
}
#endif
}
if (first != -1) {
// shave off trailing entries which lack overlay values
const size_t last_past_one = last + 1;
if (last_past_one < vector.size()) {
vector.removeItemsAt(last_past_one, vector.size() - last_past_one);
}
// shave off leading entries which lack overlay values
vector.removeItemsAt(0, first);
// store offset to first overlaid resource ID of this type
vector.insertAt((uint32_t)first, 0, 1);
// reserve space for number and offset of entries, and the actual entries
*outSize += (2 + vector.size()) * sizeof(uint32_t);
} else {
// no entries of current type defined in overlay package
vector.clear();
// reserve space for type offset
*outSize += 1 * sizeof(uint32_t);
}
}
if ((*outData = malloc(*outSize)) == NULL) {
return NO_MEMORY;
}
uint32_t* data = (uint32_t*)*outData;
*data++ = htodl(IDMAP_MAGIC);
*data++ = htodl(originalCrc);
*data++ = htodl(overlayCrc);
const size_t mapSize = map.size();
*data++ = htodl(mapSize);
size_t offset = mapSize;
for (size_t i = 0; i < mapSize; ++i) {
const Vector<uint32_t>& vector = map.itemAt(i);
const size_t N = vector.size();
if (N == 0) {
*data++ = htodl(0);
} else {
offset++;
*data++ = htodl(offset);
offset += N;
}
}
for (size_t i = 0; i < mapSize; ++i) {
const Vector<uint32_t>& vector = map.itemAt(i);
const size_t N = vector.size();
if (N == 0) {
continue;
}
if (N == 1) { // vector expected to hold (offset) + (N > 0 entries)
ALOGW("idmap: type %d supposedly has entries, but no entries found\n", i);
return UNKNOWN_ERROR;
}
*data++ = htodl(N - 1); // do not count the offset (which is vector's first element)
for (size_t j = 0; j < N; ++j) {
const uint32_t& overlayResID = vector.itemAt(j);
*data++ = htodl(overlayResID);
}
}
return NO_ERROR;
}
bool ResTable::getIdmapInfo(const void* idmap, size_t sizeBytes,
uint32_t* pOriginalCrc, uint32_t* pOverlayCrc)
{
const uint32_t* map = (const uint32_t*)idmap;
if (!assertIdmapHeader(map, sizeBytes)) {
return false;
}
*pOriginalCrc = map[1];
*pOverlayCrc = map[2];
return true;
}
#ifndef HAVE_ANDROID_OS
#define CHAR16_TO_CSTR(c16, len) (String8(String16(c16,len)).string())
#define CHAR16_ARRAY_EQ(constant, var, len) \
((len == (sizeof(constant)/sizeof(constant[0]))) && (0 == memcmp((var), (constant), (len))))
void print_complex(uint32_t complex, bool isFraction)
{
const float MANTISSA_MULT =
1.0f / (1<<Res_value::COMPLEX_MANTISSA_SHIFT);
const float RADIX_MULTS[] = {
1.0f*MANTISSA_MULT, 1.0f/(1<<7)*MANTISSA_MULT,
1.0f/(1<<15)*MANTISSA_MULT, 1.0f/(1<<23)*MANTISSA_MULT
};
float value = (complex&(Res_value::COMPLEX_MANTISSA_MASK
<<Res_value::COMPLEX_MANTISSA_SHIFT))
* RADIX_MULTS[(complex>>Res_value::COMPLEX_RADIX_SHIFT)
& Res_value::COMPLEX_RADIX_MASK];
printf("%f", value);
if (!isFraction) {
switch ((complex>>Res_value::COMPLEX_UNIT_SHIFT)&Res_value::COMPLEX_UNIT_MASK) {
case Res_value::COMPLEX_UNIT_PX: printf("px"); break;
case Res_value::COMPLEX_UNIT_DIP: printf("dp"); break;
case Res_value::COMPLEX_UNIT_SP: printf("sp"); break;
case Res_value::COMPLEX_UNIT_PT: printf("pt"); break;
case Res_value::COMPLEX_UNIT_IN: printf("in"); break;
case Res_value::COMPLEX_UNIT_MM: printf("mm"); break;
default: printf(" (unknown unit)"); break;
}
} else {
switch ((complex>>Res_value::COMPLEX_UNIT_SHIFT)&Res_value::COMPLEX_UNIT_MASK) {
case Res_value::COMPLEX_UNIT_FRACTION: printf("%%"); break;
case Res_value::COMPLEX_UNIT_FRACTION_PARENT: printf("%%p"); break;
default: printf(" (unknown unit)"); break;
}
}
}
// Normalize a string for output
String8 ResTable::normalizeForOutput( const char *input )
{
String8 ret;
char buff[2];
buff[1] = '\0';
while (*input != '\0') {
switch (*input) {
// All interesting characters are in the ASCII zone, so we are making our own lives
// easier by scanning the string one byte at a time.
case '\\':
ret += "\\\\";
break;
case '\n':
ret += "\\n";
break;
case '"':
ret += "\\\"";
break;
default:
buff[0] = *input;
ret += buff;
break;
}
input++;
}
return ret;
}
void ResTable::print_value(const Package* pkg, const Res_value& value) const
{
if (value.dataType == Res_value::TYPE_NULL) {
printf("(null)\n");
} else if (value.dataType == Res_value::TYPE_REFERENCE) {
printf("(reference) 0x%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_ATTRIBUTE) {
printf("(attribute) 0x%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_STRING) {
size_t len;
const char* str8 = pkg->header->values.string8At(
value.data, &len);
if (str8 != NULL) {
printf("(string8) \"%s\"\n", normalizeForOutput(str8).string());
} else {
const char16_t* str16 = pkg->header->values.stringAt(
value.data, &len);
if (str16 != NULL) {
printf("(string16) \"%s\"\n",
normalizeForOutput(String8(str16, len).string()).string());
} else {
printf("(string) null\n");
}
}
} else if (value.dataType == Res_value::TYPE_FLOAT) {
printf("(float) %g\n", *(const float*)&value.data);
} else if (value.dataType == Res_value::TYPE_DIMENSION) {
printf("(dimension) ");
print_complex(value.data, false);
printf("\n");
} else if (value.dataType == Res_value::TYPE_FRACTION) {
printf("(fraction) ");
print_complex(value.data, true);
printf("\n");
} else if (value.dataType >= Res_value::TYPE_FIRST_COLOR_INT
|| value.dataType <= Res_value::TYPE_LAST_COLOR_INT) {
printf("(color) #%08x\n", value.data);
} else if (value.dataType == Res_value::TYPE_INT_BOOLEAN) {
printf("(boolean) %s\n", value.data ? "true" : "false");
} else if (value.dataType >= Res_value::TYPE_FIRST_INT
|| value.dataType <= Res_value::TYPE_LAST_INT) {
printf("(int) 0x%08x or %d\n", value.data, value.data);
} else {
printf("(unknown type) t=0x%02x d=0x%08x (s=0x%04x r=0x%02x)\n",
(int)value.dataType, (int)value.data,
(int)value.size, (int)value.res0);
}
}
void ResTable::print(bool inclValues) const
{
if (mError != 0) {
printf("mError=0x%x (%s)\n", mError, strerror(mError));
}
#if 0
printf("mParams=%c%c-%c%c,\n",
mParams.language[0], mParams.language[1],
mParams.country[0], mParams.country[1]);
#endif
size_t pgCount = mPackageGroups.size();
printf("Package Groups (%d)\n", (int)pgCount);
for (size_t pgIndex=0; pgIndex<pgCount; pgIndex++) {
const PackageGroup* pg = mPackageGroups[pgIndex];
printf("Package Group %d id=%d packageCount=%d name=%s\n",
(int)pgIndex, pg->id, (int)pg->packages.size(),
String8(pg->name).string());
size_t pkgCount = pg->packages.size();
for (size_t pkgIndex=0; pkgIndex<pkgCount; pkgIndex++) {
const Package* pkg = pg->packages[pkgIndex];
size_t typeCount = pkg->types.size();
printf(" Package %d id=%d name=%s typeCount=%d\n", (int)pkgIndex,
pkg->package->id, String8(String16(pkg->package->name)).string(),
(int)typeCount);
for (size_t typeIndex=0; typeIndex<typeCount; typeIndex++) {
const Type* typeConfigs = pkg->getType(typeIndex);
if (typeConfigs == NULL) {
printf(" type %d NULL\n", (int)typeIndex);
continue;
}
const size_t NTC = typeConfigs->configs.size();
printf(" type %d configCount=%d entryCount=%d\n",
(int)typeIndex, (int)NTC, (int)typeConfigs->entryCount);
if (typeConfigs->typeSpecFlags != NULL) {
for (size_t entryIndex=0; entryIndex<typeConfigs->entryCount; entryIndex++) {
uint32_t resID = (0xff000000 & ((pkg->package->id)<<24))
| (0x00ff0000 & ((typeIndex+1)<<16))
| (0x0000ffff & (entryIndex));
resource_name resName;
if (this->getResourceName(resID, &resName)) {
printf(" spec resource 0x%08x %s:%s/%s: flags=0x%08x\n",
resID,
CHAR16_TO_CSTR(resName.package, resName.packageLen),
CHAR16_TO_CSTR(resName.type, resName.typeLen),
CHAR16_TO_CSTR(resName.name, resName.nameLen),
dtohl(typeConfigs->typeSpecFlags[entryIndex]));
} else {
printf(" INVALID TYPE CONFIG FOR RESOURCE 0x%08x\n", resID);
}
}
}
for (size_t configIndex=0; configIndex<NTC; configIndex++) {
const ResTable_type* type = typeConfigs->configs[configIndex];
if ((((uint64_t)type)&0x3) != 0) {
printf(" NON-INTEGER ResTable_type ADDRESS: %p\n", type);
continue;
}
String8 configStr = type->config.toString();
printf(" config %s:\n", configStr.size() > 0
? configStr.string() : "(default)");
size_t entryCount = dtohl(type->entryCount);
uint32_t entriesStart = dtohl(type->entriesStart);
if ((entriesStart&0x3) != 0) {
printf(" NON-INTEGER ResTable_type entriesStart OFFSET: %p\n", (void*)entriesStart);
continue;
}
uint32_t typeSize = dtohl(type->header.size);
if ((typeSize&0x3) != 0) {
printf(" NON-INTEGER ResTable_type header.size: %p\n", (void*)typeSize);
continue;
}
for (size_t entryIndex=0; entryIndex<entryCount; entryIndex++) {
const uint8_t* const end = ((const uint8_t*)type)
+ dtohl(type->header.size);
const uint32_t* const eindex = (const uint32_t*)
(((const uint8_t*)type) + dtohs(type->header.headerSize));
uint32_t thisOffset = dtohl(eindex[entryIndex]);
if (thisOffset == ResTable_type::NO_ENTRY) {
continue;
}
uint32_t resID = (0xff000000 & ((pkg->package->id)<<24))
| (0x00ff0000 & ((typeIndex+1)<<16))
| (0x0000ffff & (entryIndex));
resource_name resName;
if (this->getResourceName(resID, &resName)) {
printf(" resource 0x%08x %s:%s/%s: ", resID,
CHAR16_TO_CSTR(resName.package, resName.packageLen),
CHAR16_TO_CSTR(resName.type, resName.typeLen),
CHAR16_TO_CSTR(resName.name, resName.nameLen));
} else {
printf(" INVALID RESOURCE 0x%08x: ", resID);
}
if ((thisOffset&0x3) != 0) {
printf("NON-INTEGER OFFSET: %p\n", (void*)thisOffset);
continue;
}
if ((thisOffset+sizeof(ResTable_entry)) > typeSize) {
printf("OFFSET OUT OF BOUNDS: %p+%p (size is %p)\n",
(void*)entriesStart, (void*)thisOffset,
(void*)typeSize);
continue;
}
const ResTable_entry* ent = (const ResTable_entry*)
(((const uint8_t*)type) + entriesStart + thisOffset);
if (((entriesStart + thisOffset)&0x3) != 0) {
printf("NON-INTEGER ResTable_entry OFFSET: %p\n",
(void*)(entriesStart + thisOffset));
continue;
}
uint16_t esize = dtohs(ent->size);
if ((esize&0x3) != 0) {
printf("NON-INTEGER ResTable_entry SIZE: %p\n", (void*)esize);
continue;
}
if ((thisOffset+esize) > typeSize) {
printf("ResTable_entry OUT OF BOUNDS: %p+%p+%p (size is %p)\n",
(void*)entriesStart, (void*)thisOffset,
(void*)esize, (void*)typeSize);
continue;
}
const Res_value* valuePtr = NULL;
const ResTable_map_entry* bagPtr = NULL;
Res_value value;
if ((dtohs(ent->flags)&ResTable_entry::FLAG_COMPLEX) != 0) {
printf("<bag>");
bagPtr = (const ResTable_map_entry*)ent;
} else {
valuePtr = (const Res_value*)
(((const uint8_t*)ent) + esize);
value.copyFrom_dtoh(*valuePtr);
printf("t=0x%02x d=0x%08x (s=0x%04x r=0x%02x)",
(int)value.dataType, (int)value.data,
(int)value.size, (int)value.res0);
}
if ((dtohs(ent->flags)&ResTable_entry::FLAG_PUBLIC) != 0) {
printf(" (PUBLIC)");
}
printf("\n");
if (inclValues) {
if (valuePtr != NULL) {
printf(" ");
print_value(pkg, value);
} else if (bagPtr != NULL) {
const int N = dtohl(bagPtr->count);
const uint8_t* baseMapPtr = (const uint8_t*)ent;
size_t mapOffset = esize;
const ResTable_map* mapPtr = (ResTable_map*)(baseMapPtr+mapOffset);
printf(" Parent=0x%08x, Count=%d\n",
dtohl(bagPtr->parent.ident), N);
for (int i=0; i<N && mapOffset < (typeSize-sizeof(ResTable_map)); i++) {
printf(" #%i (Key=0x%08x): ",
i, dtohl(mapPtr->name.ident));
value.copyFrom_dtoh(mapPtr->value);
print_value(pkg, value);
const size_t size = dtohs(mapPtr->value.size);
mapOffset += size + sizeof(*mapPtr)-sizeof(mapPtr->value);
mapPtr = (ResTable_map*)(baseMapPtr+mapOffset);
}
}
}
}
}
}
}
}
}
#endif // HAVE_ANDROID_OS
} // namespace android