blob: e6750e677705500b9b88c905be32f222dcad53a7 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.hardware;
import android.os.Looper;
import android.os.Process;
import android.os.RemoteException;
import android.os.Handler;
import android.os.Message;
import android.os.ServiceManager;
import android.util.Log;
import android.util.SparseArray;
import android.view.IRotationWatcher;
import android.view.IWindowManager;
import android.view.Surface;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
/**
* SensorManager lets you access the device's {@link android.hardware.Sensor
* sensors}. Get an instance of this class by calling
* {@link android.content.Context#getSystemService(java.lang.String)
* Context.getSystemService()} with the argument
* {@link android.content.Context#SENSOR_SERVICE}.
*
* <pre class="prettyprint">
* public class SensorActivity extends Activity, implements SensorEventListener {
* private final SensorManager mSensorManager;
* private final Sensor mAccelerometer;
*
* public SensorActivity() {
* mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
* mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
* mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
* }
*
* public void onAccuracyChanged(Sensor sensor, int accuracy) {
* }
*
* public abstract void onSensorChanged(SensorEvent event) {
* }
* }
* </pre>
*
* @see SensorEventListener
* @see SensorEvent
* @see Sensor
*
*/
public class SensorManager
{
private static final String TAG = "SensorManager";
private static final float[] mTempMatrix = new float[16];
/* NOTE: sensor IDs must be a power of 2 */
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION = 1 << 0;
/**
* A constant describing an accelerometer. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ACCELEROMETER = 1 << 1;
/**
* A constant describing a temperature sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TEMPERATURE = 1 << 2;
/**
* A constant describing a magnetic sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
/**
* A constant describing an ambient light sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_LIGHT = 1 << 4;
/**
* A constant describing a proximity sensor See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_PROXIMITY = 1 << 5;
/**
* A constant describing a Tricorder See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_TRICORDER = 1 << 6;
/**
* A constant describing an orientation sensor. See
* {@link android.hardware.SensorListener SensorListener} for more details.
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
/**
* A constant that includes all sensors
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_ALL = 0x7F;
/**
* Smallest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MIN = SENSOR_ORIENTATION;
/**
* Largest sensor ID
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
/**
* Index of the X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_X = 0;
/**
* Index of the Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Y = 1;
/**
* Index of the Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int DATA_Z = 2;
/**
* Offset to the untransformed values in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_INDEX = 3;
/**
* Index of the untransformed X value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_X = 3;
/**
* Index of the untransformed Y value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Y = 4;
/**
* Index of the untransformed Z value in the array returned by
* {@link android.hardware.SensorListener#onSensorChanged}
*
* @deprecated use {@link android.hardware.Sensor Sensor} instead.
*/
@Deprecated
public static final int RAW_DATA_Z = 5;
/** Standard gravity (g) on Earth. This value is equivalent to 1G */
public static final float STANDARD_GRAVITY = 9.80665f;
/** Sun's gravity in SI units (m/s^2) */
public static final float GRAVITY_SUN = 275.0f;
/** Mercury's gravity in SI units (m/s^2) */
public static final float GRAVITY_MERCURY = 3.70f;
/** Venus' gravity in SI units (m/s^2) */
public static final float GRAVITY_VENUS = 8.87f;
/** Earth's gravity in SI units (m/s^2) */
public static final float GRAVITY_EARTH = 9.80665f;
/** The Moon's gravity in SI units (m/s^2) */
public static final float GRAVITY_MOON = 1.6f;
/** Mars' gravity in SI units (m/s^2) */
public static final float GRAVITY_MARS = 3.71f;
/** Jupiter's gravity in SI units (m/s^2) */
public static final float GRAVITY_JUPITER = 23.12f;
/** Saturn's gravity in SI units (m/s^2) */
public static final float GRAVITY_SATURN = 8.96f;
/** Uranus' gravity in SI units (m/s^2) */
public static final float GRAVITY_URANUS = 8.69f;
/** Neptune's gravity in SI units (m/s^2) */
public static final float GRAVITY_NEPTUNE = 11.0f;
/** Pluto's gravity in SI units (m/s^2) */
public static final float GRAVITY_PLUTO = 0.6f;
/** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
public static final float GRAVITY_DEATH_STAR_I = 0.000000353036145f;
/** Gravity on the island */
public static final float GRAVITY_THE_ISLAND = 4.815162342f;
/** Maximum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
/** Minimum magnetic field on Earth's surface */
public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
/** Maximum luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
/** luminance of sunlight in lux */
public static final float LIGHT_SUNLIGHT = 110000.0f;
/** luminance in shade in lux */
public static final float LIGHT_SHADE = 20000.0f;
/** luminance under an overcast sky in lux */
public static final float LIGHT_OVERCAST = 10000.0f;
/** luminance at sunrise in lux */
public static final float LIGHT_SUNRISE = 400.0f;
/** luminance under a cloudy sky in lux */
public static final float LIGHT_CLOUDY = 100.0f;
/** luminance at night with full moon in lux */
public static final float LIGHT_FULLMOON = 0.25f;
/** luminance at night with no moon in lux*/
public static final float LIGHT_NO_MOON = 0.001f;
/** get sensor data as fast as possible */
public static final int SENSOR_DELAY_FASTEST = 0;
/** rate suitable for games */
public static final int SENSOR_DELAY_GAME = 1;
/** rate suitable for the user interface */
public static final int SENSOR_DELAY_UI = 2;
/** rate (default) suitable for screen orientation changes */
public static final int SENSOR_DELAY_NORMAL = 3;
/**
* The values returned by this sensor cannot be trusted, calibration is
* needed or the environment doesn't allow readings
*/
public static final int SENSOR_STATUS_UNRELIABLE = 0;
/**
* This sensor is reporting data with low accuracy, calibration with the
* environment is needed
*/
public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
/**
* This sensor is reporting data with an average level of accuracy,
* calibration with the environment may improve the readings
*/
public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
/** This sensor is reporting data with maximum accuracy */
public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_X = 1;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Y = 2;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_Z = 3;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_X = AXIS_X | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
/** see {@link #remapCoordinateSystem} */
public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
/*-----------------------------------------------------------------------*/
Looper mMainLooper;
@SuppressWarnings("deprecation")
private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
new HashMap<SensorListener, LegacyListener>();
/*-----------------------------------------------------------------------*/
private static final int SENSOR_DISABLE = -1;
private static boolean sSensorModuleInitialized = false;
private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
private static IWindowManager sWindowManager;
private static int sRotation = Surface.ROTATION_0;
/* The thread and the sensor list are global to the process
* but the actual thread is spawned on demand */
private static SensorThread sSensorThread;
private static int sQueue;
// Used within this module from outside SensorManager, don't make private
static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
static final ArrayList<ListenerDelegate> sListeners =
new ArrayList<ListenerDelegate>();
/*-----------------------------------------------------------------------*/
static private class SensorThread {
Thread mThread;
boolean mSensorsReady;
SensorThread() {
}
@Override
protected void finalize() {
}
// must be called with sListeners lock
boolean startLocked() {
try {
if (mThread == null) {
mSensorsReady = false;
SensorThreadRunnable runnable = new SensorThreadRunnable();
Thread thread = new Thread(runnable, SensorThread.class.getName());
thread.start();
synchronized (runnable) {
while (mSensorsReady == false) {
runnable.wait();
}
}
mThread = thread;
}
} catch (InterruptedException e) {
}
return mThread == null ? false : true;
}
private class SensorThreadRunnable implements Runnable {
SensorThreadRunnable() {
}
private boolean open() {
// NOTE: this cannot synchronize on sListeners, since
// it's held in the main thread at least until we
// return from here.
sQueue = sensors_create_queue();
return true;
}
public void run() {
//Log.d(TAG, "entering main sensor thread");
final float[] values = new float[3];
final int[] status = new int[1];
final long timestamp[] = new long[1];
Process.setThreadPriority(Process.THREAD_PRIORITY_URGENT_DISPLAY);
if (!open()) {
return;
}
synchronized (this) {
// we've open the driver, we're ready to open the sensors
mSensorsReady = true;
this.notify();
}
while (true) {
// wait for an event
final int sensor = sensors_data_poll(sQueue, values, status, timestamp);
int accuracy = status[0];
synchronized (sListeners) {
if (sensor == -1 || sListeners.isEmpty()) {
if (sensor == -1) {
// we lost the connection to the event stream. this happens
// when the last listener is removed.
Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
}
// we have no more listeners or polling failed, terminate the thread
sensors_destroy_queue(sQueue);
sQueue = 0;
mThread = null;
break;
}
final Sensor sensorObject = sHandleToSensor.get(sensor);
if (sensorObject != null) {
// report the sensor event to all listeners that
// care about it.
final int size = sListeners.size();
for (int i=0 ; i<size ; i++) {
ListenerDelegate listener = sListeners.get(i);
if (listener.hasSensor(sensorObject)) {
// this is asynchronous (okay to call
// with sListeners lock held).
listener.onSensorChangedLocked(sensorObject,
values, timestamp, accuracy);
}
}
}
}
}
//Log.d(TAG, "exiting main sensor thread");
}
}
}
/*-----------------------------------------------------------------------*/
private class ListenerDelegate {
final SensorEventListener mSensorEventListener;
private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
private final Handler mHandler;
private SensorEvent mValuesPool;
public int mSensors;
ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
mSensorEventListener = listener;
Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
// currently we create one Handler instance per listener, but we could
// have one per looper (we'd need to pass the ListenerDelegate
// instance to handleMessage and keep track of them separately).
mHandler = new Handler(looper) {
@Override
public void handleMessage(Message msg) {
SensorEvent t = (SensorEvent)msg.obj;
if (t.accuracy >= 0) {
mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
}
mSensorEventListener.onSensorChanged(t);
returnToPool(t);
}
};
addSensor(sensor);
}
protected SensorEvent createSensorEvent() {
// maximal size for all legacy events is 3
return new SensorEvent(3);
}
protected SensorEvent getFromPool() {
SensorEvent t = null;
synchronized (this) {
// remove the array from the pool
t = mValuesPool;
mValuesPool = null;
}
if (t == null) {
// the pool was empty, we need a new one
t = createSensorEvent();
}
return t;
}
protected void returnToPool(SensorEvent t) {
synchronized (this) {
// put back the array into the pool
if (mValuesPool == null) {
mValuesPool = t;
}
}
}
Object getListener() {
return mSensorEventListener;
}
int addSensor(Sensor sensor) {
mSensors |= 1<<sensor.getHandle();
mSensorList.add(sensor);
return mSensors;
}
int removeSensor(Sensor sensor) {
mSensors &= ~(1<<sensor.getHandle());
mSensorList.remove(sensor);
return mSensors;
}
boolean hasSensor(Sensor sensor) {
return ((mSensors & (1<<sensor.getHandle())) != 0);
}
List<Sensor> getSensors() {
return mSensorList;
}
void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
SensorEvent t = getFromPool();
final float[] v = t.values;
v[0] = values[0];
v[1] = values[1];
v[2] = values[2];
t.timestamp = timestamp[0];
t.accuracy = accuracy;
t.sensor = sensor;
Message msg = Message.obtain();
msg.what = 0;
msg.obj = t;
mHandler.sendMessage(msg);
}
}
/**
* {@hide}
*/
public SensorManager(Looper mainLooper) {
mMainLooper = mainLooper;
synchronized(sListeners) {
if (!sSensorModuleInitialized) {
sSensorModuleInitialized = true;
nativeClassInit();
sWindowManager = IWindowManager.Stub.asInterface(
ServiceManager.getService("window"));
if (sWindowManager != null) {
// if it's null we're running in the system process
// which won't get the rotated values
try {
sRotation = sWindowManager.watchRotation(
new IRotationWatcher.Stub() {
public void onRotationChanged(int rotation) {
SensorManager.this.onRotationChanged(rotation);
}
}
);
} catch (RemoteException e) {
}
}
// initialize the sensor list
sensors_module_init();
final ArrayList<Sensor> fullList = sFullSensorsList;
int i = 0;
do {
Sensor sensor = new Sensor();
i = sensors_module_get_next_sensor(sensor, i);
if (i>=0) {
//Log.d(TAG, "found sensor: " + sensor.getName() +
// ", handle=" + sensor.getHandle());
sensor.setLegacyType(getLegacySensorType(sensor.getType()));
fullList.add(sensor);
sHandleToSensor.append(sensor.getHandle(), sensor);
}
} while (i>0);
sSensorThread = new SensorThread();
}
}
}
private int getLegacySensorType(int type) {
switch (type) {
case Sensor.TYPE_ACCELEROMETER:
return SENSOR_ACCELEROMETER;
case Sensor.TYPE_MAGNETIC_FIELD:
return SENSOR_MAGNETIC_FIELD;
case Sensor.TYPE_ORIENTATION:
return SENSOR_ORIENTATION_RAW;
case Sensor.TYPE_TEMPERATURE:
return SENSOR_TEMPERATURE;
}
return 0;
}
/**
* @return available sensors.
* @deprecated This method is deprecated, use
* {@link SensorManager#getSensorList(int)} instead
*/
@Deprecated
public int getSensors() {
int result = 0;
final ArrayList<Sensor> fullList = sFullSensorsList;
for (Sensor i : fullList) {
switch (i.getType()) {
case Sensor.TYPE_ACCELEROMETER:
result |= SensorManager.SENSOR_ACCELEROMETER;
break;
case Sensor.TYPE_MAGNETIC_FIELD:
result |= SensorManager.SENSOR_MAGNETIC_FIELD;
break;
case Sensor.TYPE_ORIENTATION:
result |= SensorManager.SENSOR_ORIENTATION |
SensorManager.SENSOR_ORIENTATION_RAW;
break;
}
}
return result;
}
/**
* Use this method to get the list of available sensors of a certain type.
* Make multiple calls to get sensors of different types or use
* {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
* sensors.
*
* @param type
* of sensors requested
*
* @return a list of sensors matching the asked type.
*
* @see #getDefaultSensor(int)
* @see Sensor
*/
public List<Sensor> getSensorList(int type) {
// cache the returned lists the first time
List<Sensor> list;
final ArrayList<Sensor> fullList = sFullSensorsList;
synchronized(fullList) {
list = sSensorListByType.get(type);
if (list == null) {
if (type == Sensor.TYPE_ALL) {
list = fullList;
} else {
list = new ArrayList<Sensor>();
for (Sensor i : fullList) {
if (i.getType() == type)
list.add(i);
}
}
list = Collections.unmodifiableList(list);
sSensorListByType.append(type, list);
}
}
return list;
}
/**
* Use this method to get the default sensor for a given type. Note that the
* returned sensor could be a composite sensor, and its data could be
* averaged or filtered. If you need to access the raw sensors use
* {@link SensorManager#getSensorList(int) getSensorList}.
*
* @param type
* of sensors requested
*
* @return the default sensors matching the asked type.
*
* @see #getSensorList(int)
* @see Sensor
*/
public Sensor getDefaultSensor(int type) {
// TODO: need to be smarter, for now, just return the 1st sensor
List<Sensor> l = getSensorList(type);
return l.isEmpty() ? null : l.get(0);
}
/**
* Registers a listener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors) {
return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
}
/**
* Registers a SensorListener for given sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
* instead.
*
* @param listener
* sensor listener object
*
* @param sensors
* a bit masks of the sensors to register to
*
* @param rate
* rate of events. This is only a hint to the system. events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled
*/
@Deprecated
public boolean registerListener(SensorListener listener, int sensors, int rate) {
if (listener == null) {
return false;
}
boolean result = false;
result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
listener, sensors, rate) || result;
result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
listener, sensors, rate) || result;
result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
listener, sensors, rate) || result;
result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
listener, sensors, rate) || result;
result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
listener, sensors, rate) || result;
return result;
}
@SuppressWarnings("deprecation")
private boolean registerLegacyListener(int legacyType, int type,
SensorListener listener, int sensors, int rate)
{
if (listener == null) {
return false;
}
boolean result = false;
// Are we activating this legacy sensor?
if ((sensors & legacyType) != 0) {
// if so, find a suitable Sensor
Sensor sensor = getDefaultSensor(type);
if (sensor != null) {
// If we don't already have one, create a LegacyListener
// to wrap this listener and process the events as
// they are expected by legacy apps.
LegacyListener legacyListener = null;
synchronized (mLegacyListenersMap) {
legacyListener = mLegacyListenersMap.get(listener);
if (legacyListener == null) {
// we didn't find a LegacyListener for this client,
// create one, and put it in our list.
legacyListener = new LegacyListener(listener);
mLegacyListenersMap.put(listener, legacyListener);
}
}
// register this legacy sensor with this legacy listener
legacyListener.registerSensor(legacyType);
// and finally, register the legacy listener with the new apis
result = registerListener(legacyListener, sensor, rate);
}
}
return result;
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
* instead.
*
* @param listener
* a SensorListener object
*
* @param sensors
* a bit masks of the sensors to unregister from
*/
@Deprecated
public void unregisterListener(SensorListener listener, int sensors) {
unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
listener, sensors);
unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
listener, sensors);
unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
listener, sensors);
unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
listener, sensors);
unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
listener, sensors);
}
@SuppressWarnings("deprecation")
private void unregisterLegacyListener(int legacyType, int type,
SensorListener listener, int sensors)
{
if (listener == null) {
return;
}
// do we know about this listener?
LegacyListener legacyListener = null;
synchronized (mLegacyListenersMap) {
legacyListener = mLegacyListenersMap.get(listener);
}
if (legacyListener != null) {
// Are we deactivating this legacy sensor?
if ((sensors & legacyType) != 0) {
// if so, find the corresponding Sensor
Sensor sensor = getDefaultSensor(type);
if (sensor != null) {
// unregister this legacy sensor and if we don't
// need the corresponding Sensor, unregister it too
if (legacyListener.unregisterSensor(legacyType)) {
// corresponding sensor not needed, unregister
unregisterListener(legacyListener, sensor);
// finally check if we still need the legacyListener
// in our mapping, if not, get rid of it too.
synchronized(sListeners) {
boolean found = false;
for (ListenerDelegate i : sListeners) {
if (i.getListener() == legacyListener) {
found = true;
break;
}
}
if (!found) {
synchronized (mLegacyListenersMap) {
mLegacyListenersMap.remove(listener);
}
}
}
}
}
}
}
}
/**
* Unregisters a listener for all sensors.
*
* @deprecated This method is deprecated, use
* {@link SensorManager#unregisterListener(SensorEventListener)}
* instead.
*
* @param listener
* a SensorListener object
*/
@Deprecated
public void unregisterListener(SensorListener listener) {
unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
}
/**
* Unregisters a listener for the sensors with which it is registered.
*
* @param listener
* a SensorEventListener object
*
* @param sensor
* the sensor to unregister from
*
* @see #unregisterListener(SensorEventListener)
* @see #registerListener(SensorEventListener, Sensor, int)
*
*/
public void unregisterListener(SensorEventListener listener, Sensor sensor) {
unregisterListener((Object)listener, sensor);
}
/**
* Unregisters a listener for all sensors.
*
* @param listener
* a SensorListener object
*
* @see #unregisterListener(SensorEventListener, Sensor)
* @see #registerListener(SensorEventListener, Sensor, int)
*
*/
public void unregisterListener(SensorEventListener listener) {
unregisterListener((Object)listener);
}
/**
* Registers a {@link android.hardware.SensorEventListener
* SensorEventListener} for the given sensor.
*
* @param listener
* A {@link android.hardware.SensorEventListener SensorEventListener}
* object.
*
* @param sensor
* The {@link android.hardware.Sensor Sensor} to register to.
*
* @param rate
* The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @return <code>true</code> if the sensor is supported and successfully
* enabled.
*
* @see #registerListener(SensorEventListener, Sensor, int, Handler)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
return registerListener(listener, sensor, rate, null);
}
/**
* Registers a {@link android.hardware.SensorEventListener
* SensorEventListener} for the given sensor.
*
* @param listener
* A {@link android.hardware.SensorEventListener SensorEventListener}
* object.
*
* @param sensor
* The {@link android.hardware.Sensor Sensor} to register to.
*
* @param rate
* The rate {@link android.hardware.SensorEvent sensor events} are
* delivered at. This is only a hint to the system. Events may be
* received faster or slower than the specified rate. Usually events
* are received faster. The value must be one of
* {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
* {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
*
* @param handler
* The {@link android.os.Handler Handler} the
* {@link android.hardware.SensorEvent sensor events} will be
* delivered to.
*
* @return true if the sensor is supported and successfully enabled.
*
* @see #registerListener(SensorEventListener, Sensor, int)
* @see #unregisterListener(SensorEventListener)
* @see #unregisterListener(SensorEventListener, Sensor)
*
*/
public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
Handler handler) {
if (listener == null || sensor == null) {
return false;
}
boolean result;
int delay = -1;
switch (rate) {
case SENSOR_DELAY_FASTEST:
delay = 0;
break;
case SENSOR_DELAY_GAME:
delay = 20;
break;
case SENSOR_DELAY_UI:
delay = 60;
break;
case SENSOR_DELAY_NORMAL:
delay = 200;
break;
default:
return false;
}
synchronized (sListeners) {
ListenerDelegate l = null;
for (ListenerDelegate i : sListeners) {
if (i.getListener() == listener) {
l = i;
break;
}
}
String name = sensor.getName();
int handle = sensor.getHandle();
if (l == null) {
result = false;
l = new ListenerDelegate(listener, sensor, handler);
sListeners.add(l);
if (!sListeners.isEmpty()) {
result = sSensorThread.startLocked();
if (result) {
result = sensors_enable_sensor(sQueue, name, handle, delay);
if (!result) {
// there was an error, remove the listeners
sListeners.remove(l);
}
}
}
} else {
result = sensors_enable_sensor(sQueue, name, handle, delay);
if (result) {
l.addSensor(sensor);
}
}
}
return result;
}
private void unregisterListener(Object listener, Sensor sensor) {
if (listener == null || sensor == null) {
return;
}
synchronized (sListeners) {
final int size = sListeners.size();
for (int i=0 ; i<size ; i++) {
ListenerDelegate l = sListeners.get(i);
if (l.getListener() == listener) {
// disable these sensors
String name = sensor.getName();
int handle = sensor.getHandle();
sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
// if we have no more sensors enabled on this listener,
// take it off the list.
if (l.removeSensor(sensor) == 0) {
sListeners.remove(i);
}
break;
}
}
}
}
private void unregisterListener(Object listener) {
if (listener == null) {
return;
}
synchronized (sListeners) {
final int size = sListeners.size();
for (int i=0 ; i<size ; i++) {
ListenerDelegate l = sListeners.get(i);
if (l.getListener() == listener) {
// disable all sensors for this listener
for (Sensor sensor : l.getSensors()) {
String name = sensor.getName();
int handle = sensor.getHandle();
sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
}
sListeners.remove(i);
break;
}
}
}
}
/**
* <p>
* Computes the inclination matrix <b>I</b> as well as the rotation matrix
* <b>R</b> transforming a vector from the device coordinate system to the
* world's coordinate system which is defined as a direct orthonormal basis,
* where:
* </p>
*
* <ul>
* <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
* the ground at the device's current location and roughly points East).</li>
* <li>Y is tangential to the ground at the device's current location and
* points towards the magnetic North Pole.</li>
* <li>Z points towards the sky and is perpendicular to the ground.</li>
* </ul>
*
* <p>
* <center><img src="../../../images/axis_globe.png"
* alt="Sensors coordinate-system diagram." border="0" /></center>
* </p>
*
* <p>
* <hr>
* <p>
* By definition:
* <p>
* [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
* <p>
* [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
* geomagnetic field)
* <p>
* <b>R</b> is the identity matrix when the device is aligned with the
* world's coordinate system, that is, when the device's X axis points
* toward East, the Y axis points to the North Pole and the device is facing
* the sky.
*
* <p>
* <b>I</b> is a rotation matrix transforming the geomagnetic vector into
* the same coordinate space as gravity (the world's coordinate space).
* <b>I</b> is a simple rotation around the X axis. The inclination angle in
* radians can be computed with {@link #getInclination}.
* <hr>
*
* <p>
* Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
* on the length of the passed array:
* <p>
* <u>If the array length is 16:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] M[ 3] \
* | M[ 4] M[ 5] M[ 6] M[ 7] |
* | M[ 8] M[ 9] M[10] M[11] |
* \ M[12] M[13] M[14] M[15] /
*</pre>
*
* This matrix is ready to be used by OpenGL ES's
* {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
* glLoadMatrixf(float[], int)}.
* <p>
* Note that because OpenGL matrices are column-major matrices you must
* transpose the matrix before using it. However, since the matrix is a
* rotation matrix, its transpose is also its inverse, conveniently, it is
* often the inverse of the rotation that is needed for rendering; it can
* therefore be used with OpenGL ES directly.
* <p>
* Also note that the returned matrices always have this form:
*
* <pre>
* / M[ 0] M[ 1] M[ 2] 0 \
* | M[ 4] M[ 5] M[ 6] 0 |
* | M[ 8] M[ 9] M[10] 0 |
* \ 0 0 0 1 /
*</pre>
*
* <p>
* <u>If the array length is 9:</u>
*
* <pre>
* / M[ 0] M[ 1] M[ 2] \
* | M[ 3] M[ 4] M[ 5] |
* \ M[ 6] M[ 7] M[ 8] /
*</pre>
*
* <hr>
* <p>
* The inverse of each matrix can be computed easily by taking its
* transpose.
*
* <p>
* The matrices returned by this function are meaningful only when the
* device is not free-falling and it is not close to the magnetic north. If
* the device is accelerating, or placed into a strong magnetic field, the
* returned matrices may be inaccurate.
*
* @param R
* is an array of 9 floats holding the rotation matrix <b>R</b> when
* this function returns. R can be null.
* <p>
*
* @param I
* is an array of 9 floats holding the rotation matrix <b>I</b> when
* this function returns. I can be null.
* <p>
*
* @param gravity
* is an array of 3 floats containing the gravity vector expressed in
* the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_ACCELEROMETER
* TYPE_ACCELEROMETER}.
* <p>
*
* @param geomagnetic
* is an array of 3 floats containing the geomagnetic vector
* expressed in the device's coordinate. You can simply use the
* {@link android.hardware.SensorEvent#values values} returned by a
* {@link android.hardware.SensorEvent SensorEvent} of a
* {@link android.hardware.Sensor Sensor} of type
* {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
* TYPE_MAGNETIC_FIELD}.
*
* @return <code>true</code> on success, <code>false</code> on failure (for
* instance, if the device is in free fall). On failure the output
* matrices are not modified.
*
* @see #getInclination(float[])
* @see #getOrientation(float[], float[])
* @see #remapCoordinateSystem(float[], int, int, float[])
*/
public static boolean getRotationMatrix(float[] R, float[] I,
float[] gravity, float[] geomagnetic) {
// TODO: move this to native code for efficiency
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
if (I != null) {
// compute the inclination matrix by projecting the geomagnetic
// vector onto the Z (gravity) and X (horizontal component
// of geomagnetic vector) axes.
final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
if (I.length == 9) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[3] = 0; I[4] = c; I[5] = s;
I[6] = 0; I[7] =-s; I[8] = c;
} else if (I.length == 16) {
I[0] = 1; I[1] = 0; I[2] = 0;
I[4] = 0; I[5] = c; I[6] = s;
I[8] = 0; I[9] =-s; I[10]= c;
I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
I[15] = 1;
}
}
return true;
}
/**
* Computes the geomagnetic inclination angle in radians from the
* inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
*
* @param I
* inclination matrix see {@link #getRotationMatrix}.
*
* @return The geomagnetic inclination angle in radians.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see #getOrientation(float[], float[])
* @see GeomagneticField
*
*/
public static float getInclination(float[] I) {
if (I.length == 9) {
return (float)Math.atan2(I[5], I[4]);
} else {
return (float)Math.atan2(I[6], I[5]);
}
}
/**
* <p>
* Rotates the supplied rotation matrix so it is expressed in a different
* coordinate system. This is typically used when an application needs to
* compute the three orientation angles of the device (see
* {@link #getOrientation}) in a different coordinate system.
* </p>
*
* <p>
* When the rotation matrix is used for drawing (for instance with OpenGL
* ES), it usually <b>doesn't need</b> to be transformed by this function,
* unless the screen is physically rotated, in which case you can use
* {@link android.view.Display#getRotation() Display.getRotation()} to
* retrieve the current rotation of the screen. Note that because the user
* is generally free to rotate their screen, you often should consider the
* rotation in deciding the parameters to use here.
* </p>
*
* <p>
* <u>Examples:</u>
* <p>
*
* <ul>
* <li>Using the camera (Y axis along the camera's axis) for an augmented
* reality application where the rotation angles are needed:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
* </ul>
* </p>
*
* <li>Using the device as a mechanical compass when rotation is
* {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
*
* <p>
* <ul>
* <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
* </ul>
* </p>
*
* Beware of the above example. This call is needed only to account for a
* rotation from its natural orientation when calculating the rotation
* angles (see {@link #getOrientation}). If the rotation matrix is also used
* for rendering, it may not need to be transformed, for instance if your
* {@link android.app.Activity Activity} is running in landscape mode.
* </ul>
*
* <p>
* Since the resulting coordinate system is orthonormal, only two axes need
* to be specified.
*
* @param inR
* the rotation matrix to be transformed. Usually it is the matrix
* returned by {@link #getRotationMatrix}.
*
* @param X
* defines on which world axis and direction the X axis of the device
* is mapped.
*
* @param Y
* defines on which world axis and direction the Y axis of the device
* is mapped.
*
* @param outR
* the transformed rotation matrix. inR and outR can be the same
* array, but it is not recommended for performance reason.
*
* @return <code>true</code> on success. <code>false</code> if the input
* parameters are incorrect, for instance if X and Y define the same
* axis. Or if inR and outR don't have the same length.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
*/
public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
float[] outR)
{
if (inR == outR) {
final float[] temp = mTempMatrix;
synchronized(temp) {
// we don't expect to have a lot of contention
if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
final int size = outR.length;
for (int i=0 ; i<size ; i++)
outR[i] = temp[i];
return true;
}
}
}
return remapCoordinateSystemImpl(inR, X, Y, outR);
}
private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
float[] outR)
{
/*
* X and Y define a rotation matrix 'r':
*
* (X==1)?((X&0x80)?-1:1):0 (X==2)?((X&0x80)?-1:1):0 (X==3)?((X&0x80)?-1:1):0
* (Y==1)?((Y&0x80)?-1:1):0 (Y==2)?((Y&0x80)?-1:1):0 (Y==3)?((X&0x80)?-1:1):0
* r[0] ^ r[1]
*
* where the 3rd line is the vector product of the first 2 lines
*
*/
final int length = outR.length;
if (inR.length != length)
return false; // invalid parameter
if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
return false; // invalid parameter
if (((X & 0x3)==0) || ((Y & 0x3)==0))
return false; // no axis specified
if ((X & 0x3) == (Y & 0x3))
return false; // same axis specified
// Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
// this can be calculated by exclusive-or'ing X and Y; except for
// the sign inversion (+/-) which is calculated below.
int Z = X ^ Y;
// extract the axis (remove the sign), offset in the range 0 to 2.
final int x = (X & 0x3)-1;
final int y = (Y & 0x3)-1;
final int z = (Z & 0x3)-1;
// compute the sign of Z (whether it needs to be inverted)
final int axis_y = (z+1)%3;
final int axis_z = (z+2)%3;
if (((x^axis_y)|(y^axis_z)) != 0)
Z ^= 0x80;
final boolean sx = (X>=0x80);
final boolean sy = (Y>=0x80);
final boolean sz = (Z>=0x80);
// Perform R * r, in avoiding actual muls and adds.
final int rowLength = ((length==16)?4:3);
for (int j=0 ; j<3 ; j++) {
final int offset = j*rowLength;
for (int i=0 ; i<3 ; i++) {
if (x==i) outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
if (y==i) outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
if (z==i) outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
}
}
if (length == 16) {
outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
outR[15] = 1;
}
return true;
}
/**
* Computes the device's orientation based on the rotation matrix.
* <p>
* When it returns, the array values is filled with the result:
* <ul>
* <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
* <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
* <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
* </ul>
* <p>
* <center><img src="../../../images/axis_device.png"
* alt="Sensors coordinate-system diagram." border="0" /></center>
* </p>
* <p>
* All three angles above are in <b>radians</b> and <b>positive</b> in the
* <b>counter-clockwise</b> direction.
*
* @param R
* rotation matrix see {@link #getRotationMatrix}.
*
* @param values
* an array of 3 floats to hold the result.
*
* @return The array values passed as argument.
*
* @see #getRotationMatrix(float[], float[], float[], float[])
* @see GeomagneticField
*/
public static float[] getOrientation(float[] R, float values[]) {
/*
* 4x4 (length=16) case:
* / R[ 0] R[ 1] R[ 2] 0 \
* | R[ 4] R[ 5] R[ 6] 0 |
* | R[ 8] R[ 9] R[10] 0 |
* \ 0 0 0 1 /
*
* 3x3 (length=9) case:
* / R[ 0] R[ 1] R[ 2] \
* | R[ 3] R[ 4] R[ 5] |
* \ R[ 6] R[ 7] R[ 8] /
*
*/
if (R.length == 9) {
values[0] = (float)Math.atan2(R[1], R[4]);
values[1] = (float)Math.asin(-R[7]);
values[2] = (float)Math.atan2(-R[6], R[8]);
} else {
values[0] = (float)Math.atan2(R[1], R[5]);
values[1] = (float)Math.asin(-R[9]);
values[2] = (float)Math.atan2(-R[8], R[10]);
}
return values;
}
/**
* {@hide}
*/
public void onRotationChanged(int rotation) {
synchronized(sListeners) {
sRotation = rotation;
}
}
static int getRotation() {
synchronized(sListeners) {
return sRotation;
}
}
private class LegacyListener implements SensorEventListener {
private float mValues[] = new float[6];
@SuppressWarnings("deprecation")
private SensorListener mTarget;
private int mSensors;
private final LmsFilter mYawfilter = new LmsFilter();
@SuppressWarnings("deprecation")
LegacyListener(SensorListener target) {
mTarget = target;
mSensors = 0;
}
void registerSensor(int legacyType) {
mSensors |= legacyType;
}
boolean unregisterSensor(int legacyType) {
mSensors &= ~legacyType;
int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
return false;
}
return true;
}
@SuppressWarnings("deprecation")
public void onAccuracyChanged(Sensor sensor, int accuracy) {
try {
mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
} catch (AbstractMethodError e) {
// old app that doesn't implement this method
// just ignore it.
}
}
@SuppressWarnings("deprecation")
public void onSensorChanged(SensorEvent event) {
final float v[] = mValues;
v[0] = event.values[0];
v[1] = event.values[1];
v[2] = event.values[2];
int legacyType = event.sensor.getLegacyType();
mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
}
if ((mSensors & SENSOR_ORIENTATION)!=0) {
v[0] = mYawfilter.filter(event.timestamp, v[0]);
mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
}
} else {
mTarget.onSensorChanged(legacyType, v);
}
}
/*
* Helper function to convert the specified sensor's data to the windows's
* coordinate space from the device's coordinate space.
*
* output: 3,4,5: values in the old API format
* 0,1,2: transformed values in the old API format
*
*/
private void mapSensorDataToWindow(int sensor,
float[] values, int orientation) {
float x = values[0];
float y = values[1];
float z = values[2];
switch (sensor) {
case SensorManager.SENSOR_ORIENTATION:
case SensorManager.SENSOR_ORIENTATION_RAW:
z = -z;
break;
case SensorManager.SENSOR_ACCELEROMETER:
x = -x;
y = -y;
z = -z;
break;
case SensorManager.SENSOR_MAGNETIC_FIELD:
x = -x;
y = -y;
break;
}
values[0] = x;
values[1] = y;
values[2] = z;
values[3] = x;
values[4] = y;
values[5] = z;
if ((orientation & Surface.ROTATION_90) != 0) {
// handles 90 and 270 rotation
switch (sensor) {
case SENSOR_ACCELEROMETER:
case SENSOR_MAGNETIC_FIELD:
values[0] =-y;
values[1] = x;
values[2] = z;
break;
case SENSOR_ORIENTATION:
case SENSOR_ORIENTATION_RAW:
values[0] = x + ((x < 270) ? 90 : -270);
values[1] = z;
values[2] = y;
break;
}
}
if ((orientation & Surface.ROTATION_180) != 0) {
x = values[0];
y = values[1];
z = values[2];
// handles 180 (flip) and 270 (flip + 90) rotation
switch (sensor) {
case SENSOR_ACCELEROMETER:
case SENSOR_MAGNETIC_FIELD:
values[0] =-x;
values[1] =-y;
values[2] = z;
break;
case SENSOR_ORIENTATION:
case SENSOR_ORIENTATION_RAW:
values[0] = (x >= 180) ? (x - 180) : (x + 180);
values[1] =-y;
values[2] =-z;
break;
}
}
}
}
class LmsFilter {
private static final int SENSORS_RATE_MS = 20;
private static final int COUNT = 12;
private static final float PREDICTION_RATIO = 1.0f/3.0f;
private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
private float mV[] = new float[COUNT*2];
private float mT[] = new float[COUNT*2];
private int mIndex;
public LmsFilter() {
mIndex = COUNT;
}
public float filter(long time, float in) {
float v = in;
final float ns = 1.0f / 1000000000.0f;
final float t = time*ns;
float v1 = mV[mIndex];
if ((v-v1) > 180) {
v -= 360;
} else if ((v1-v) > 180) {
v += 360;
}
/* Manage the circular buffer, we write the data twice spaced
* by COUNT values, so that we don't have to copy the array
* when it's full
*/
mIndex++;
if (mIndex >= COUNT*2)
mIndex = COUNT;
mV[mIndex] = v;
mT[mIndex] = t;
mV[mIndex-COUNT] = v;
mT[mIndex-COUNT] = t;
float A, B, C, D, E;
float a, b;
int i;
A = B = C = D = E = 0;
for (i=0 ; i<COUNT-1 ; i++) {
final int j = mIndex - 1 - i;
final float Z = mV[j];
final float T = 0.5f*(mT[j] + mT[j+1]) - t;
float dT = mT[j] - mT[j+1];
dT *= dT;
A += Z*dT;
B += T*(T*dT);
C += (T*dT);
D += Z*(T*dT);
E += dT;
}
b = (A*B + C*D) / (E*B + C*C);
a = (E*b - A) / C;
float f = b + PREDICTION_TIME*a;
// Normalize
f *= (1.0f / 360.0f);
if (((f>=0)?f:-f) >= 0.5f)
f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
if (f < 0)
f += 1.0f;
f *= 360.0f;
return f;
}
}
private static native void nativeClassInit();
private static native int sensors_module_init();
private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
// Used within this module from outside SensorManager, don't make private
static native int sensors_create_queue();
static native void sensors_destroy_queue(int queue);
static native boolean sensors_enable_sensor(int queue, String name, int sensor, int enable);
static native int sensors_data_poll(int queue, float[] values, int[] status, long[] timestamp);
}