blob: 3c7c962eaa12dd0a76133ceb175854cd6a37ad6a [file] [log] [blame]
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.os;
import android.util.Log;
import android.util.Printer;
import java.lang.reflect.Modifier;
/**
* A Handler allows you to send and process {@link Message} and Runnable
* objects associated with a thread's {@link MessageQueue}. Each Handler
* instance is associated with a single thread and that thread's message
* queue. When you create a new Handler, it is bound to the thread /
* message queue of the thread that is creating it -- from that point on,
* it will deliver messages and runnables to that message queue and execute
* them as they come out of the message queue.
*
* <p>There are two main uses for a Handler: (1) to schedule messages and
* runnables to be executed as some point in the future; and (2) to enqueue
* an action to be performed on a different thread than your own.
*
* <p>Scheduling messages is accomplished with the
* {@link #post}, {@link #postAtTime(Runnable, long)},
* {@link #postDelayed}, {@link #sendEmptyMessage},
* {@link #sendMessage}, {@link #sendMessageAtTime}, and
* {@link #sendMessageDelayed} methods. The <em>post</em> versions allow
* you to enqueue Runnable objects to be called by the message queue when
* they are received; the <em>sendMessage</em> versions allow you to enqueue
* a {@link Message} object containing a bundle of data that will be
* processed by the Handler's {@link #handleMessage} method (requiring that
* you implement a subclass of Handler).
*
* <p>When posting or sending to a Handler, you can either
* allow the item to be processed as soon as the message queue is ready
* to do so, or specify a delay before it gets processed or absolute time for
* it to be processed. The latter two allow you to implement timeouts,
* ticks, and other timing-based behavior.
*
* <p>When a
* process is created for your application, its main thread is dedicated to
* running a message queue that takes care of managing the top-level
* application objects (activities, broadcast receivers, etc) and any windows
* they create. You can create your own threads, and communicate back with
* the main application thread through a Handler. This is done by calling
* the same <em>post</em> or <em>sendMessage</em> methods as before, but from
* your new thread. The given Runnable or Message will then be scheduled
* in the Handler's message queue and processed when appropriate.
*/
public class Handler {
/*
* Set this flag to true to detect anonymous, local or member classes
* that extend this Handler class and that are not static. These kind
* of classes can potentially create leaks.
*/
private static final boolean FIND_POTENTIAL_LEAKS = false;
private static final String TAG = "Handler";
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
/**
* Default constructor associates this handler with the {@link Looper} for the
* current thread.
*
* If this thread does not have a looper, this handler won't be able to receive messages
* so an exception is thrown.
*/
public Handler() {
this(null, false);
}
/**
* Constructor associates this handler with the {@link Looper} for the
* current thread and takes a callback interface in which you can handle
* messages.
*
* If this thread does not have a looper, this handler won't be able to receive messages
* so an exception is thrown.
*
* @param callback The callback interface in which to handle messages, or null.
*/
public Handler(Callback callback) {
this(callback, false);
}
/**
* Use the provided {@link Looper} instead of the default one.
*
* @param looper The looper, must not be null.
*/
public Handler(Looper looper) {
this(looper, null, false);
}
/**
* Use the provided {@link Looper} instead of the default one and take a callback
* interface in which to handle messages.
*
* @param looper The looper, must not be null.
* @param callback The callback interface in which to handle messages, or null.
*/
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
/**
* Use the {@link Looper} for the current thread
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(boolean async) {
this(null, async);
}
/**
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
/**
* Use the provided {@link Looper} instead of the default one and take a callback
* interface in which to handle messages. Also set whether the handler
* should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param looper The looper, must not be null.
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
/** {@hide} */
public String getTraceName(Message message) {
final StringBuilder sb = new StringBuilder();
sb.append(getClass().getName()).append(": ");
if (message.callback != null) {
sb.append(message.callback.getClass().getName());
} else {
sb.append("#").append(message.what);
}
return sb.toString();
}
/**
* Returns a string representing the name of the specified message.
* The default implementation will either return the class name of the
* message callback if any, or the hexadecimal representation of the
* message "what" field.
*
* @param message The message whose name is being queried
*/
public String getMessageName(Message message) {
if (message.callback != null) {
return message.callback.getClass().getName();
}
return "0x" + Integer.toHexString(message.what);
}
/**
* Returns a new {@link android.os.Message Message} from the global message pool. More efficient than
* creating and allocating new instances. The retrieved message has its handler set to this instance (Message.target == this).
* If you don't want that facility, just call Message.obtain() instead.
*/
public final Message obtainMessage()
{
return Message.obtain(this);
}
/**
* Same as {@link #obtainMessage()}, except that it also sets the what member of the returned Message.
*
* @param what Value to assign to the returned Message.what field.
* @return A Message from the global message pool.
*/
public final Message obtainMessage(int what)
{
return Message.obtain(this, what);
}
/**
*
* Same as {@link #obtainMessage()}, except that it also sets the what and obj members
* of the returned Message.
*
* @param what Value to assign to the returned Message.what field.
* @param obj Value to assign to the returned Message.obj field.
* @return A Message from the global message pool.
*/
public final Message obtainMessage(int what, Object obj)
{
return Message.obtain(this, what, obj);
}
/**
*
* Same as {@link #obtainMessage()}, except that it also sets the what, arg1 and arg2 members of the returned
* Message.
* @param what Value to assign to the returned Message.what field.
* @param arg1 Value to assign to the returned Message.arg1 field.
* @param arg2 Value to assign to the returned Message.arg2 field.
* @return A Message from the global message pool.
*/
public final Message obtainMessage(int what, int arg1, int arg2)
{
return Message.obtain(this, what, arg1, arg2);
}
/**
*
* Same as {@link #obtainMessage()}, except that it also sets the what, obj, arg1,and arg2 values on the
* returned Message.
* @param what Value to assign to the returned Message.what field.
* @param arg1 Value to assign to the returned Message.arg1 field.
* @param arg2 Value to assign to the returned Message.arg2 field.
* @param obj Value to assign to the returned Message.obj field.
* @return A Message from the global message pool.
*/
public final Message obtainMessage(int what, int arg1, int arg2, Object obj)
{
return Message.obtain(this, what, arg1, arg2, obj);
}
/**
* Causes the Runnable r to be added to the message queue.
* The runnable will be run on the thread to which this handler is
* attached.
*
* @param r The Runnable that will be executed.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
/**
* Causes the Runnable r to be added to the message queue, to be run
* at a specific time given by <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* The runnable will be run on the thread to which this handler is attached.
*
* @param r The Runnable that will be executed.
* @param uptimeMillis The absolute time at which the callback should run,
* using the {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the Runnable will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public final boolean postAtTime(Runnable r, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
/**
* Causes the Runnable r to be added to the message queue, to be run
* at a specific time given by <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* The runnable will be run on the thread to which this handler is attached.
*
* @param r The Runnable that will be executed.
* @param uptimeMillis The absolute time at which the callback should run,
* using the {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the Runnable will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*
* @see android.os.SystemClock#uptimeMillis
*/
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
/**
* Causes the Runnable r to be added to the message queue, to be run
* after the specified amount of time elapses.
* The runnable will be run on the thread to which this handler
* is attached.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
*
* @param r The Runnable that will be executed.
* @param delayMillis The delay (in milliseconds) until the Runnable
* will be executed.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the Runnable will be processed --
* if the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
/**
* Posts a message to an object that implements Runnable.
* Causes the Runnable r to executed on the next iteration through the
* message queue. The runnable will be run on the thread to which this
* handler is attached.
* <b>This method is only for use in very special circumstances -- it
* can easily starve the message queue, cause ordering problems, or have
* other unexpected side-effects.</b>
*
* @param r The Runnable that will be executed.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean postAtFrontOfQueue(Runnable r)
{
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
/**
* Runs the specified task synchronously.
* <p>
* If the current thread is the same as the handler thread, then the runnable
* runs immediately without being enqueued. Otherwise, posts the runnable
* to the handler and waits for it to complete before returning.
* </p><p>
* This method is dangerous! Improper use can result in deadlocks.
* Never call this method while any locks are held or use it in a
* possibly re-entrant manner.
* </p><p>
* This method is occasionally useful in situations where a background thread
* must synchronously await completion of a task that must run on the
* handler's thread. However, this problem is often a symptom of bad design.
* Consider improving the design (if possible) before resorting to this method.
* </p><p>
* One example of where you might want to use this method is when you just
* set up a Handler thread and need to perform some initialization steps on
* it before continuing execution.
* </p><p>
* If timeout occurs then this method returns <code>false</code> but the runnable
* will remain posted on the handler and may already be in progress or
* complete at a later time.
* </p><p>
* When using this method, be sure to use {@link Looper#quitSafely} when
* quitting the looper. Otherwise {@link #runWithScissors} may hang indefinitely.
* (TODO: We should fix this by making MessageQueue aware of blocking runnables.)
* </p>
*
* @param r The Runnable that will be executed synchronously.
* @param timeout The timeout in milliseconds, or 0 to wait indefinitely.
*
* @return Returns true if the Runnable was successfully executed.
* Returns false on failure, usually because the
* looper processing the message queue is exiting.
*
* @hide This method is prone to abuse and should probably not be in the API.
* If we ever do make it part of the API, we might want to rename it to something
* less funny like runUnsafe().
*/
public final boolean runWithScissors(final Runnable r, long timeout) {
if (r == null) {
throw new IllegalArgumentException("runnable must not be null");
}
if (timeout < 0) {
throw new IllegalArgumentException("timeout must be non-negative");
}
if (Looper.myLooper() == mLooper) {
r.run();
return true;
}
BlockingRunnable br = new BlockingRunnable(r);
return br.postAndWait(this, timeout);
}
/**
* Remove any pending posts of Runnable r that are in the message queue.
*/
public final void removeCallbacks(Runnable r)
{
mQueue.removeMessages(this, r, null);
}
/**
* Remove any pending posts of Runnable <var>r</var> with Object
* <var>token</var> that are in the message queue. If <var>token</var> is null,
* all callbacks will be removed.
*/
public final void removeCallbacks(Runnable r, Object token)
{
mQueue.removeMessages(this, r, token);
}
/**
* Pushes a message onto the end of the message queue after all pending messages
* before the current time. It will be received in {@link #handleMessage},
* in the thread attached to this handler.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
/**
* Sends a Message containing only the what value.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
/**
* Sends a Message containing only the what value, to be delivered
* after the specified amount of time elapses.
* @see #sendMessageDelayed(android.os.Message, long)
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
/**
* Sends a Message containing only the what value, to be delivered
* at a specific time.
* @see #sendMessageAtTime(android.os.Message, long)
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
/**
* Enqueue a message into the message queue after all pending messages
* before (current time + delayMillis). You will receive it in
* {@link #handleMessage}, in the thread attached to this handler.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
/**
* Enqueue a message into the message queue after all pending messages
* before the absolute time (in milliseconds) <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* You will receive it in {@link #handleMessage}, in the thread attached
* to this handler.
*
* @param uptimeMillis The absolute time at which the message should be
* delivered, using the
* {@link android.os.SystemClock#uptimeMillis} time-base.
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
/**
* Enqueue a message at the front of the message queue, to be processed on
* the next iteration of the message loop. You will receive it in
* {@link #handleMessage}, in the thread attached to this handler.
* <b>This method is only for use in very special circumstances -- it
* can easily starve the message queue, cause ordering problems, or have
* other unexpected side-effects.</b>
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
/**
* Remove any pending posts of messages with code 'what' that are in the
* message queue.
*/
public final void removeMessages(int what) {
mQueue.removeMessages(this, what, null);
}
/**
* Remove any pending posts of messages with code 'what' and whose obj is
* 'object' that are in the message queue. If <var>object</var> is null,
* all messages will be removed.
*/
public final void removeMessages(int what, Object object) {
mQueue.removeMessages(this, what, object);
}
/**
* Remove any pending posts of callbacks and sent messages whose
* <var>obj</var> is <var>token</var>. If <var>token</var> is null,
* all callbacks and messages will be removed.
*/
public final void removeCallbacksAndMessages(Object token) {
mQueue.removeCallbacksAndMessages(this, token);
}
/**
* Check if there are any pending posts of messages with code 'what' in
* the message queue.
*/
public final boolean hasMessages(int what) {
return mQueue.hasMessages(this, what, null);
}
/**
* Check if there are any pending posts of messages with code 'what' and
* whose obj is 'object' in the message queue.
*/
public final boolean hasMessages(int what, Object object) {
return mQueue.hasMessages(this, what, object);
}
/**
* Check if there are any pending posts of messages with callback r in
* the message queue.
*
* @hide
*/
public final boolean hasCallbacks(Runnable r) {
return mQueue.hasMessages(this, r, null);
}
// if we can get rid of this method, the handler need not remember its loop
// we could instead export a getMessageQueue() method...
public final Looper getLooper() {
return mLooper;
}
public final void dump(Printer pw, String prefix) {
pw.println(prefix + this + " @ " + SystemClock.uptimeMillis());
if (mLooper == null) {
pw.println(prefix + "looper uninitialized");
} else {
mLooper.dump(pw, prefix + " ");
}
}
@Override
public String toString() {
return "Handler (" + getClass().getName() + ") {"
+ Integer.toHexString(System.identityHashCode(this))
+ "}";
}
final IMessenger getIMessenger() {
synchronized (mQueue) {
if (mMessenger != null) {
return mMessenger;
}
mMessenger = new MessengerImpl();
return mMessenger;
}
}
private final class MessengerImpl extends IMessenger.Stub {
public void send(Message msg) {
msg.sendingUid = Binder.getCallingUid();
Handler.this.sendMessage(msg);
}
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
private static Message getPostMessage(Runnable r, Object token) {
Message m = Message.obtain();
m.obj = token;
m.callback = r;
return m;
}
private static void handleCallback(Message message) {
message.callback.run();
}
final Looper mLooper;
final MessageQueue mQueue;
final Callback mCallback;
final boolean mAsynchronous;
IMessenger mMessenger;
private static final class BlockingRunnable implements Runnable {
private final Runnable mTask;
private boolean mDone;
public BlockingRunnable(Runnable task) {
mTask = task;
}
@Override
public void run() {
try {
mTask.run();
} finally {
synchronized (this) {
mDone = true;
notifyAll();
}
}
}
public boolean postAndWait(Handler handler, long timeout) {
if (!handler.post(this)) {
return false;
}
synchronized (this) {
if (timeout > 0) {
final long expirationTime = SystemClock.uptimeMillis() + timeout;
while (!mDone) {
long delay = expirationTime - SystemClock.uptimeMillis();
if (delay <= 0) {
return false; // timeout
}
try {
wait(delay);
} catch (InterruptedException ex) {
}
}
} else {
while (!mDone) {
try {
wait();
} catch (InterruptedException ex) {
}
}
}
}
return true;
}
}
}